Keystroke dynamics for intelligent biometric authentication with machine learning

The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions. Authentication plays a crucial role in safeguarding sensitive data, and a promising authentication method is analyzing the user’s unique typing pattern...

Full description

Saved in:
Bibliographic Details
Published inDiscover applied sciences Vol. 7; no. 9; p. 992
Main Authors Martins, Andreia, Dias, Tiago, Dias, André, Vitorino, João, Maia, Eva, Praça, Isabel
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 26.08.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions. Authentication plays a crucial role in safeguarding sensitive data, and a promising authentication method is analyzing the user’s unique typing patterns to ensure access control. KeyRecs, a recent keystroke dynamics dataset containing temporal, demographic, and handedness features, has been proposed but has not yet been benchmarked. This work focuses on analyzing KeyRecs with the primary objective of assessing the feasibility of distinguishing users based on their typing patterns in a zero-effort attack scenario using Machine Learning (ML) models. The study includes an Exploratory Data Analysis, effectively identifying and removing outliers and visualizing distinctive writing patterns. In addition, an evaluation of the fixed-text subset of KeyRecs was established with three algorithms employed for binary and multi-class classification: K-Nearest Neighbours (KNN), Random Forest (RF), and Light Gradient Boosting Machine (LGBM). The results show that LGBM for binary classification achieved the best performance with 80% F1-score, and lowest False Rejection Rate (FRR) and Equal Error Rate (EER) mean values. In conclusion, the KeyRecs dataset offers potential to enhance security measures and access control in digital systems, paving the way for the use of ML in intelligent biometric authentication solutions.
AbstractList The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions. Authentication plays a crucial role in safeguarding sensitive data, and a promising authentication method is analyzing the user’s unique typing patterns to ensure access control. KeyRecs, a recent keystroke dynamics dataset containing temporal, demographic, and handedness features, has been proposed but has not yet been benchmarked. This work focuses on analyzing KeyRecs with the primary objective of assessing the feasibility of distinguishing users based on their typing patterns in a zero-effort attack scenario using Machine Learning (ML) models. The study includes an Exploratory Data Analysis, effectively identifying and removing outliers and visualizing distinctive writing patterns. In addition, an evaluation of the fixed-text subset of KeyRecs was established with three algorithms employed for binary and multi-class classification: K-Nearest Neighbours (KNN), Random Forest (RF), and Light Gradient Boosting Machine (LGBM). The results show that LGBM for binary classification achieved the best performance with 80% F1-score, and lowest False Rejection Rate (FRR) and Equal Error Rate (EER) mean values. In conclusion, the KeyRecs dataset offers potential to enhance security measures and access control in digital systems, paving the way for the use of ML in intelligent biometric authentication solutions.
ArticleNumber 992
Author Martins, Andreia
Praça, Isabel
Dias, Tiago
Dias, André
Vitorino, João
Maia, Eva
Author_xml – sequence: 1
  givenname: Andreia
  surname: Martins
  fullname: Martins, Andreia
  organization: GECAD, ISEP, Polytechnic of Porto
– sequence: 2
  givenname: Tiago
  surname: Dias
  fullname: Dias, Tiago
  organization: GECAD, ISEP, Polytechnic of Porto
– sequence: 3
  givenname: André
  surname: Dias
  fullname: Dias, André
  organization: GECAD, ISEP, Polytechnic of Porto
– sequence: 4
  givenname: João
  surname: Vitorino
  fullname: Vitorino, João
  email: jpmvo@isep.ipp.pt
  organization: GECAD, ISEP, Polytechnic of Porto
– sequence: 5
  givenname: Eva
  surname: Maia
  fullname: Maia, Eva
  organization: GECAD, ISEP, Polytechnic of Porto
– sequence: 6
  givenname: Isabel
  surname: Praça
  fullname: Praça, Isabel
  organization: GECAD, ISEP, Polytechnic of Porto
BookMark eNp9kEtLAzEUhYNUsNb-AVcB16M3r8nMUopasSCCrkOaZtrUmaQmKdJ_79QRdOXqvs45F75zNPLBW4QuCVwTAHmTOOWCFkBFAZLzuhAnaMwAeFHTkoz-9GdomtIWABgDKUU9Ri9P9pByDO8Wrw5ed84k3ISInc-2bd3a-oyXLnQ2R2ew3udNv3FGZxc8_nR5gzttNs5b3FodvfPrC3Ta6DbZ6U-doLf7u9fZvFg8PzzObheFIaIWhaRWlsTQiplSV7UmSykqzk0lteBNf9OCEEEawWBVNpKVhiw572fBGk2ZYBN0NeTuYvjY25TVNuyj718qRjmroIKy6lV0UJkYUoq2UbvoOh0PioA60lMDPdXTU9_01DGaDabUi_3axt_of1xfw7hzsQ
Cites_doi 10.1109/I-SMAC.2017.8058304
10.1016/j.clsr.2015.12.004
10.1109/ICBAKE.2009.42
10.35784/acs-2021-30
10.1109/ACCESS.2016.2626718
10.1109/DSN.2009.5270346
10.1016/S0167-739X(99)00059-X
10.1109/DESEC.2018.8625137
10.2139/ssrn.4456119
10.4018/978-1-60566-725-6.ch016
10.3233/IDA-2002-6504
10.1145/2379616.2379617
10.1109/ICC.2008.301
10.1109/DSN.2010.5544311
10.1109/BTAS.2013.6712743
10.1145/3173574.3174220
10.1109/ACCESS.2021.3061589
10.1016/S1361-3723(19)30081-8
10.1109/ICB.2015.7139076
10.1088/1742-6596/1529/2/022088
10.1109/SYSMART.2018.8746932
10.1109/WIFS.2016.7823894
10.1109/BTAS.2014.6996259
10.3390/s23104898
10.3390/app132011478
10.1145/581271.581272
10.1016/j.infsof.2017.09.012
10.21608/erjsh.2022.224312
10.3390/j2020016
10.3390/cryptography2010001
10.1109/IJCB.2011.6117480
10.1109/IIH-MSP.2007.218
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
L6V
M2P
M7S
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
DOI 10.1007/s42452-025-07449-5
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Materials Science Database
ProQuest Central (New)
Engineering Collection
ProQuest Materials Science Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 3004-9261
2523-3971
ExternalDocumentID 10_1007_s42452_025_07449_5
GrantInformation_xml – fundername: European Regional Development Fund
  grantid: NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286
  funderid: https://doi.org/10.13039/501100008530
GroupedDBID AAJSJ
AASML
ADMLS
ALMA_UNASSIGNED_HOLDINGS
BGNMA
C6C
GROUPED_DOAJ
M4Y
M~E
NU0
SOJ
AAYXX
CITATION
0R~
3V.
7XB
88I
8FE
8FG
8FK
AAHNG
AAKKN
ABDZT
ABECU
ABEEZ
ABFTV
ABHQN
ABJCF
ABKCH
ABMQK
ABTMW
ABUWG
ABXPI
ACACY
ACMLO
ACOKC
ACSTC
ACULB
ADKNI
ADURQ
ADYFF
AEJRE
AEUYN
AFGXO
AFKRA
AFQWF
AGDGC
AGJBK
AILAN
AITGF
AJZVZ
AMKLP
ATCPS
AXYYD
AZQEC
BAPOH
BENPR
BGLVJ
BHPHI
BKSAR
C24
CCPQU
D1I
DWQXO
EBLON
EBS
FNLPD
GNUQQ
GNWQR
HCIFZ
J-C
KB.
KOV
L6V
M2P
M7S
NQJWS
OK1
PATMY
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PUEGO
PYCSY
Q9U
STPWE
TSG
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
ID FETCH-LOGICAL-c1595-72e761c283c6a89a1b75844c87a54fe76a51151f530d6f736c1b441f553fa2353
IEDL.DBID BENPR
ISSN 3004-9261
2523-3963
IngestDate Wed Aug 27 07:20:12 EDT 2025
Wed Aug 27 16:28:07 EDT 2025
Wed Aug 27 01:37:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Typing pattern recognition
Cybersecurity
Fixed-text
Free-text
Machine learning
Typing biometrics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1595-72e761c283c6a89a1b75844c87a54fe76a51151f530d6f736c1b441f553fa2353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3243808068?pq-origsite=%requestingapplication%
PQID 3243808068
PQPubID 5758472
ParticipantIDs proquest_journals_3243808068
crossref_primary_10_1007_s42452_025_07449_5
springer_journals_10_1007_s42452_025_07449_5
PublicationCentury 2000
PublicationDate 20250826
PublicationDateYYYYMMDD 2025-08-26
PublicationDate_xml – month: 8
  year: 2025
  text: 20250826
  day: 26
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: London
PublicationTitle Discover applied sciences
PublicationTitleAbbrev Discov Appl Sci
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References 7449_CR18
E Kennedy (7449_CR13) 2016; 32
7449_CR17
7449_CR39
7449_CR16
JR Vacca (7449_CR34) 2007
7449_CR38
7449_CR15
7449_CR37
7449_CR19
I Velásquez (7449_CR35) 2018; 94
7449_CR10
A Salem (7449_CR28) 2019; 13
7449_CR32
7449_CR31
HC Chang (7449_CR4) 2022
7449_CR14
F Monrose (7449_CR21) 2000; 16
7449_CR36
RS Gaines (7449_CR7) 1980
7449_CR11
G Saggio (7449_CR27) 2011; 1
7449_CR33
7449_CR29
A Morales (7449_CR22) 2016; 4
F Bergadano (7449_CR3) 2002; 5
R Ryu (7449_CR26) 2021; 9
A Ometov (7449_CR23) 2018; 2
7449_CR1
7449_CR2
N Japkowicz (7449_CR12) 2002; 6
R Splittgerber (7449_CR30) 2018
7449_CR5
7449_CR20
7449_CR6
7449_CR40
7449_CR8
7449_CR25
7449_CR9
7449_CR24
References_xml – ident: 7449_CR11
  doi: 10.1109/I-SMAC.2017.8058304
– volume: 32
  start-page: 91
  issue: 1
  year: 2016
  ident: 7449_CR13
  publication-title: Comput Law Secur Rev
  doi: 10.1016/j.clsr.2015.12.004
– ident: 7449_CR25
  doi: 10.1109/ICBAKE.2009.42
– ident: 7449_CR29
  doi: 10.35784/acs-2021-30
– volume: 4
  start-page: 7736
  year: 2016
  ident: 7449_CR22
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2626718
– volume: 13
  start-page: 4076
  issue: 8
  year: 2019
  ident: 7449_CR28
  publication-title: KSII Trans Internet Inf Syst
– volume-title: Authentication by keystroke timing: some preliminary results
  year: 1980
  ident: 7449_CR7
– ident: 7449_CR14
  doi: 10.1109/DSN.2009.5270346
– volume: 16
  start-page: 351
  issue: 4
  year: 2000
  ident: 7449_CR21
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/S0167-739X(99)00059-X
– ident: 7449_CR16
– ident: 7449_CR38
  doi: 10.1109/DESEC.2018.8625137
– ident: 7449_CR6
  doi: 10.2139/ssrn.4456119
– volume-title: Snell’s clinical neuroanatomy
  year: 2018
  ident: 7449_CR30
– ident: 7449_CR33
  doi: 10.4018/978-1-60566-725-6.ch016
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 7449_CR12
  publication-title: Intelligent data analysis
  doi: 10.3233/IDA-2002-6504
– ident: 7449_CR15
  doi: 10.1145/2379616.2379617
– ident: 7449_CR9
  doi: 10.1109/ICC.2008.301
– ident: 7449_CR18
  doi: 10.1109/DSN.2010.5544311
– ident: 7449_CR19
  doi: 10.1109/BTAS.2013.6712743
– ident: 7449_CR5
  doi: 10.1145/3173574.3174220
– volume: 9
  start-page: 34541
  year: 2021
  ident: 7449_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3061589
– ident: 7449_CR8
– ident: 7449_CR10
  doi: 10.1016/S1361-3723(19)30081-8
– ident: 7449_CR20
  doi: 10.1109/ICB.2015.7139076
– ident: 7449_CR37
  doi: 10.1088/1742-6596/1529/2/022088
– ident: 7449_CR24
  doi: 10.1109/SYSMART.2018.8746932
– start-page: 309
  volume-title: Machine Learning and Deep Learning for Fixed-Text Keystroke Dynamics
  year: 2022
  ident: 7449_CR4
– ident: 7449_CR32
  doi: 10.1109/WIFS.2016.7823894
– ident: 7449_CR36
  doi: 10.1109/BTAS.2014.6996259
– ident: 7449_CR1
  doi: 10.3390/s23104898
– ident: 7449_CR2
  doi: 10.3390/app132011478
– volume: 5
  start-page: 367
  issue: 4
  year: 2002
  ident: 7449_CR3
  publication-title: ACM Trans Inf Syst Secur
  doi: 10.1145/581271.581272
– volume-title: Biometric technologies and verification systems
  year: 2007
  ident: 7449_CR34
– volume: 94
  start-page: 30
  year: 2018
  ident: 7449_CR35
  publication-title: Inf Softw Technol
  doi: 10.1016/j.infsof.2017.09.012
– ident: 7449_CR40
  doi: 10.21608/erjsh.2022.224312
– ident: 7449_CR39
  doi: 10.3390/j2020016
– volume: 1
  start-page: 2
  year: 2011
  ident: 7449_CR27
  publication-title: J Comput Inf Technol
– volume: 2
  start-page: 1
  issue: 1
  year: 2018
  ident: 7449_CR23
  publication-title: Cryptography
  doi: 10.3390/cryptography2010001
– ident: 7449_CR31
  doi: 10.1109/IJCB.2011.6117480
– ident: 7449_CR17
  doi: 10.1109/IIH-MSP.2007.218
SSID ssj0003307759
ssj0002793483
ssib051670015
Score 2.3014116
Snippet The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 992
SubjectTerms Access control
Algorithms
Applied and Technical Physics
Authentication
Behavior
Biometrics
Chemistry/Food Science
Classification
Cybersecurity
Data analysis
Data integrity
Datasets
Digital systems
Earth Sciences
Engineering
Environment
Handedness
Human error
Keyboards
Learning algorithms
Machine learning
Materials Science
Neural networks
Outliers (statistics)
Performance evaluation
Rejection rate
Support vector machines
Typing
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20XvQgfmK1Sg7eNNhsvnaPUixFURAs9Bay21kRcZV2_f9O0m2rRQ-ek-zhJWHezmTeAzhXRKExKYJ72Rg5nRDNvfeKY5rlmRVl5qPO9v2DGQzV7UiPGpmc0AuzUr-_mobKXMKD6SoFO5VxvQ4bWkgbbBp6prfIp9B_ubU6a_pifl_6M_YsCeVKDTSGlv4ObDeckF3PNnEX1rDag61vSoH78HhHiNeT91dk45mH_JQR3WQvC0XNmsVO-iC4z3x4tl7VTTqOhVwre4uvJpE1NhHPBzDs3zz1BrxxQ-AFUY7gOYvWiILoQGF8mnmRE9VXqkgtwVnSmCfupEWpZXdsSitNIXLiOqXWsvSJ1PIQWtV7hUfAdIoq9120mJbKeJ-hEmgFCoGpQmnacDHHyX3MRC_cQt44ouoIVRdRdboNnTmUrrkAU0c8TQbJSpO24XIO73L4768d_2_6CWwmcYfpvpsOtOrJJ54STajzs3g-vgCT3bRa
  priority: 102
  providerName: Springer Nature
Title Keystroke dynamics for intelligent biometric authentication with machine learning
URI https://link.springer.com/article/10.1007/s42452-025-07449-5
https://www.proquest.com/docview/3243808068
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB3R5EIPFR9FTQmRD9xaq_H6Y70nFEJCBCQCSqTcVt7NbAWIJCTL_2fseJOCBNe15MPM7MzzjP0ewEtFEBqT0quXLZFThGjunFMcbVZkqagyF3i2pzMzmat3C72IDbddvFbZ5MSQqJfr0vfIb6jwS8-BaOyrzU_uVaP8dDVKaJxAm1KwtS1ovx7NPn5uIkoL_wolFrxvYcyWSRW4ORM6gXFJ4Rdf0oT3dH4MmHCv8EqVVWVc_1mtjhD0r6lpKEbjR3AWUSQb7N3-GB7g6gmc3uMWfAqf3pOP6u36O7LlXnV-xwigsq8HDs6ahbf3nqKfOX_RfVXHBh7z3Vn2I9yzRBaFJe7OYT4efRlOeNRP4CWBFK9Si6kRJQGI0jibOVHQ4UCp0qbkgIrWHKEtLSot-0tTpdKUoiB0VGktK5dILZ9Ba7Ve4QUwbVEVro8p2koZ5zJUAlOBQqBVKE0Hrho75Zs9TUZ-IEQOVs3Jqnmwaq470G1MmcdfZpcfHdyB68a8x-V_73b5_92ew8MkeJQygulCq97-whcEJOqiByd2_LYH7cGb6YfbXowd-jo0w144nP8G0UHGoA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KPagH8Yn1uQc96aKb7OZxEBG11icILfQWN8lEVGxrGxH_lL_R2W3SqqA3zwtLmP0y37ePmQ9gS5KERicx7mUpckKI4lpryTEI49AXWahtn-3rG6_Rkhdt1a7AR1kLY55VljnRJuq0m5gz8j0iftf0QPSCw94LN65R5na1tNAYwuIS399oyzY4OD-h9d12nPpp87jBC1cBnhB1G-9WpK17QrSaeDoItYhJMkuZBD59VkZjmjSIEply91Mv810vETFphkwpN9OOdYmglD8hXWJyU5lePyvxq4SpeSno9dFe6oWutJ1AHdrvcZfAXtTt2Oo9c-nocOMnSzwuQ66-c-NY8P64o7XUV5-FmUKzsqMhyOaggp15mP7SyXABbikog7zffUKWDj3uB4zkMHsYdfzMma30N4YATJtn9Z28OC5k5iyYPdtXncgKG4v7RWj9S1yXoNrpdnAZmApQxnoffQwy6WkdohToCxQCA4muV4OdMk5Rb9iUIxq1X7ZRjSiqkY1qpGqwVoYyKn7QQTSGUw12y_COh3-fbeXv2TZhstG8voquzm8uV2HKsatLuchbg2ref8V1kjB5vGFxw-Duv4H6Cdi2-0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5KBdGD-MT6zEFPGjS7yT4OIj5afBYVBW9rdjsrKrbVroh_zV_nJM1aFfTmORCWL9_OI5OZD2BFUgiNXmbUy1rIiSGKa60lxyhO41DksbZztk-bwcGVPLpW1xV4L3thzLPK0iZaQ93qZOaOfIMcv29mIAbRRu6eRZztN7a7T9woSJlKaymn0afIMb69UvrW2zrcp7Ne9bxG_XLvgDuFAZ6RGzc6rkhpfEYuNgt0FGuRUvgsZRaF9Ik5rWmKR5TIlb_ZCvLQDzKRUvyQK-Xn2rOKEWT-h0KTFVVhaLfePLso2ayE6YBxzvbelvhiX9q5oB5lf9wn6rsuHtvLZ0qQHjfqsuTVZczVd085CH9_VGytI2yMw5iLYNlOn3ITUMH2JIx-mWs4BecES6947jwga_UV73uMgmN29zn_s2C279_IAzBtHtm3C3d5yMzNMHu0bzyROVGL22m4-hdkZ6Da7rRxFpiKUKZ6E0OMchloHaMUGAoUAiOJflCDtRKnpNsf0ZF8DmO2qCaEamJRTVQNFkooE_e79pIBuWqwXsI7WP59t7m_d1uGYSJpcnLYPJ6HEc8eLhmmYAGqxfMLLlI8U6RLjjgMbv6bqx8PVgDt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Keystroke+dynamics+for+intelligent+biometric+authentication+with+machine+learning&rft.jtitle=SN+applied+sciences&rft.au=Martins%2C+Andreia&rft.au=Dias%2C+Tiago&rft.au=Dias%2C+Andr%C3%A9&rft.au=Vitorino%2C+Jo%C3%A3o&rft.date=2025-08-26&rft.pub=Springer+Nature+B.V&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=7&rft.issue=9&rft.spage=992&rft_id=info:doi/10.1007%2Fs42452-025-07449-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon