Keystroke dynamics for intelligent biometric authentication with machine learning
The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions. Authentication plays a crucial role in safeguarding sensitive data, and a promising authentication method is analyzing the user’s unique typing pattern...
Saved in:
Published in | Discover applied sciences Vol. 7; no. 9; p. 992 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
26.08.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions. Authentication plays a crucial role in safeguarding sensitive data, and a promising authentication method is analyzing the user’s unique typing patterns to ensure access control. KeyRecs, a recent keystroke dynamics dataset containing temporal, demographic, and handedness features, has been proposed but has not yet been benchmarked. This work focuses on analyzing KeyRecs with the primary objective of assessing the feasibility of distinguishing users based on their typing patterns in a zero-effort attack scenario using Machine Learning (ML) models. The study includes an Exploratory Data Analysis, effectively identifying and removing outliers and visualizing distinctive writing patterns. In addition, an evaluation of the fixed-text subset of KeyRecs was established with three algorithms employed for binary and multi-class classification: K-Nearest Neighbours (KNN), Random Forest (RF), and Light Gradient Boosting Machine (LGBM). The results show that LGBM for binary classification achieved the best performance with 80% F1-score, and lowest False Rejection Rate (FRR) and Equal Error Rate (EER) mean values. In conclusion, the KeyRecs dataset offers potential to enhance security measures and access control in digital systems, paving the way for the use of ML in intelligent biometric authentication solutions. |
---|---|
AbstractList | The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions. Authentication plays a crucial role in safeguarding sensitive data, and a promising authentication method is analyzing the user’s unique typing patterns to ensure access control. KeyRecs, a recent keystroke dynamics dataset containing temporal, demographic, and handedness features, has been proposed but has not yet been benchmarked. This work focuses on analyzing KeyRecs with the primary objective of assessing the feasibility of distinguishing users based on their typing patterns in a zero-effort attack scenario using Machine Learning (ML) models. The study includes an Exploratory Data Analysis, effectively identifying and removing outliers and visualizing distinctive writing patterns. In addition, an evaluation of the fixed-text subset of KeyRecs was established with three algorithms employed for binary and multi-class classification: K-Nearest Neighbours (KNN), Random Forest (RF), and Light Gradient Boosting Machine (LGBM). The results show that LGBM for binary classification achieved the best performance with 80% F1-score, and lowest False Rejection Rate (FRR) and Equal Error Rate (EER) mean values. In conclusion, the KeyRecs dataset offers potential to enhance security measures and access control in digital systems, paving the way for the use of ML in intelligent biometric authentication solutions. |
ArticleNumber | 992 |
Author | Martins, Andreia Praça, Isabel Dias, Tiago Dias, André Vitorino, João Maia, Eva |
Author_xml | – sequence: 1 givenname: Andreia surname: Martins fullname: Martins, Andreia organization: GECAD, ISEP, Polytechnic of Porto – sequence: 2 givenname: Tiago surname: Dias fullname: Dias, Tiago organization: GECAD, ISEP, Polytechnic of Porto – sequence: 3 givenname: André surname: Dias fullname: Dias, André organization: GECAD, ISEP, Polytechnic of Porto – sequence: 4 givenname: João surname: Vitorino fullname: Vitorino, João email: jpmvo@isep.ipp.pt organization: GECAD, ISEP, Polytechnic of Porto – sequence: 5 givenname: Eva surname: Maia fullname: Maia, Eva organization: GECAD, ISEP, Polytechnic of Porto – sequence: 6 givenname: Isabel surname: Praça fullname: Praça, Isabel organization: GECAD, ISEP, Polytechnic of Porto |
BookMark | eNp9kEtLAzEUhYNUsNb-AVcB16M3r8nMUopasSCCrkOaZtrUmaQmKdJ_79QRdOXqvs45F75zNPLBW4QuCVwTAHmTOOWCFkBFAZLzuhAnaMwAeFHTkoz-9GdomtIWABgDKUU9Ri9P9pByDO8Wrw5ed84k3ISInc-2bd3a-oyXLnQ2R2ew3udNv3FGZxc8_nR5gzttNs5b3FodvfPrC3Ta6DbZ6U-doLf7u9fZvFg8PzzObheFIaIWhaRWlsTQiplSV7UmSykqzk0lteBNf9OCEEEawWBVNpKVhiw572fBGk2ZYBN0NeTuYvjY25TVNuyj718qRjmroIKy6lV0UJkYUoq2UbvoOh0PioA60lMDPdXTU9_01DGaDabUi_3axt_of1xfw7hzsQ |
Cites_doi | 10.1109/I-SMAC.2017.8058304 10.1016/j.clsr.2015.12.004 10.1109/ICBAKE.2009.42 10.35784/acs-2021-30 10.1109/ACCESS.2016.2626718 10.1109/DSN.2009.5270346 10.1016/S0167-739X(99)00059-X 10.1109/DESEC.2018.8625137 10.2139/ssrn.4456119 10.4018/978-1-60566-725-6.ch016 10.3233/IDA-2002-6504 10.1145/2379616.2379617 10.1109/ICC.2008.301 10.1109/DSN.2010.5544311 10.1109/BTAS.2013.6712743 10.1145/3173574.3174220 10.1109/ACCESS.2021.3061589 10.1016/S1361-3723(19)30081-8 10.1109/ICB.2015.7139076 10.1088/1742-6596/1529/2/022088 10.1109/SYSMART.2018.8746932 10.1109/WIFS.2016.7823894 10.1109/BTAS.2014.6996259 10.3390/s23104898 10.3390/app132011478 10.1145/581271.581272 10.1016/j.infsof.2017.09.012 10.21608/erjsh.2022.224312 10.3390/j2020016 10.3390/cryptography2010001 10.1109/IJCB.2011.6117480 10.1109/IIH-MSP.2007.218 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. L6V M2P M7S PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U |
DOI | 10.1007/s42452-025-07449-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 3004-9261 2523-3971 |
ExternalDocumentID | 10_1007_s42452_025_07449_5 |
GrantInformation_xml | – fundername: European Regional Development Fund grantid: NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286; NORTE2030-FEDER-00382400, 1286 funderid: https://doi.org/10.13039/501100008530 |
GroupedDBID | AAJSJ AASML ADMLS ALMA_UNASSIGNED_HOLDINGS BGNMA C6C GROUPED_DOAJ M4Y M~E NU0 SOJ AAYXX CITATION 0R~ 3V. 7XB 88I 8FE 8FG 8FK AAHNG AAKKN ABDZT ABECU ABEEZ ABFTV ABHQN ABJCF ABKCH ABMQK ABTMW ABUWG ABXPI ACACY ACMLO ACOKC ACSTC ACULB ADKNI ADURQ ADYFF AEJRE AEUYN AFGXO AFKRA AFQWF AGDGC AGJBK AILAN AITGF AJZVZ AMKLP ATCPS AXYYD AZQEC BAPOH BENPR BGLVJ BHPHI BKSAR C24 CCPQU D1I DWQXO EBLON EBS FNLPD GNUQQ GNWQR HCIFZ J-C KB. KOV L6V M2P M7S NQJWS OK1 PATMY PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PUEGO PYCSY Q9U STPWE TSG UOJIU UTJUX VEKWB VFIZW ZMTXR |
ID | FETCH-LOGICAL-c1595-72e761c283c6a89a1b75844c87a54fe76a51151f530d6f736c1b441f553fa2353 |
IEDL.DBID | BENPR |
ISSN | 3004-9261 2523-3963 |
IngestDate | Wed Aug 27 07:20:12 EDT 2025 Wed Aug 27 16:28:07 EDT 2025 Wed Aug 27 01:37:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Typing pattern recognition Cybersecurity Fixed-text Free-text Machine learning Typing biometrics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1595-72e761c283c6a89a1b75844c87a54fe76a51151f530d6f736c1b441f553fa2353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.proquest.com/docview/3243808068?pq-origsite=%requestingapplication% |
PQID | 3243808068 |
PQPubID | 5758472 |
ParticipantIDs | proquest_journals_3243808068 crossref_primary_10_1007_s42452_025_07449_5 springer_journals_10_1007_s42452_025_07449_5 |
PublicationCentury | 2000 |
PublicationDate | 20250826 |
PublicationDateYYYYMMDD | 2025-08-26 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250826 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: London |
PublicationTitle | Discover applied sciences |
PublicationTitleAbbrev | Discov Appl Sci |
PublicationYear | 2025 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | 7449_CR18 E Kennedy (7449_CR13) 2016; 32 7449_CR17 7449_CR39 7449_CR16 JR Vacca (7449_CR34) 2007 7449_CR38 7449_CR15 7449_CR37 7449_CR19 I Velásquez (7449_CR35) 2018; 94 7449_CR10 A Salem (7449_CR28) 2019; 13 7449_CR32 7449_CR31 HC Chang (7449_CR4) 2022 7449_CR14 F Monrose (7449_CR21) 2000; 16 7449_CR36 RS Gaines (7449_CR7) 1980 7449_CR11 G Saggio (7449_CR27) 2011; 1 7449_CR33 7449_CR29 A Morales (7449_CR22) 2016; 4 F Bergadano (7449_CR3) 2002; 5 R Ryu (7449_CR26) 2021; 9 A Ometov (7449_CR23) 2018; 2 7449_CR1 7449_CR2 N Japkowicz (7449_CR12) 2002; 6 R Splittgerber (7449_CR30) 2018 7449_CR5 7449_CR20 7449_CR6 7449_CR40 7449_CR8 7449_CR25 7449_CR9 7449_CR24 |
References_xml | – ident: 7449_CR11 doi: 10.1109/I-SMAC.2017.8058304 – volume: 32 start-page: 91 issue: 1 year: 2016 ident: 7449_CR13 publication-title: Comput Law Secur Rev doi: 10.1016/j.clsr.2015.12.004 – ident: 7449_CR25 doi: 10.1109/ICBAKE.2009.42 – ident: 7449_CR29 doi: 10.35784/acs-2021-30 – volume: 4 start-page: 7736 year: 2016 ident: 7449_CR22 publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2626718 – volume: 13 start-page: 4076 issue: 8 year: 2019 ident: 7449_CR28 publication-title: KSII Trans Internet Inf Syst – volume-title: Authentication by keystroke timing: some preliminary results year: 1980 ident: 7449_CR7 – ident: 7449_CR14 doi: 10.1109/DSN.2009.5270346 – volume: 16 start-page: 351 issue: 4 year: 2000 ident: 7449_CR21 publication-title: Futur Gener Comput Syst doi: 10.1016/S0167-739X(99)00059-X – ident: 7449_CR16 – ident: 7449_CR38 doi: 10.1109/DESEC.2018.8625137 – ident: 7449_CR6 doi: 10.2139/ssrn.4456119 – volume-title: Snell’s clinical neuroanatomy year: 2018 ident: 7449_CR30 – ident: 7449_CR33 doi: 10.4018/978-1-60566-725-6.ch016 – volume: 6 start-page: 429 issue: 5 year: 2002 ident: 7449_CR12 publication-title: Intelligent data analysis doi: 10.3233/IDA-2002-6504 – ident: 7449_CR15 doi: 10.1145/2379616.2379617 – ident: 7449_CR9 doi: 10.1109/ICC.2008.301 – ident: 7449_CR18 doi: 10.1109/DSN.2010.5544311 – ident: 7449_CR19 doi: 10.1109/BTAS.2013.6712743 – ident: 7449_CR5 doi: 10.1145/3173574.3174220 – volume: 9 start-page: 34541 year: 2021 ident: 7449_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061589 – ident: 7449_CR8 – ident: 7449_CR10 doi: 10.1016/S1361-3723(19)30081-8 – ident: 7449_CR20 doi: 10.1109/ICB.2015.7139076 – ident: 7449_CR37 doi: 10.1088/1742-6596/1529/2/022088 – ident: 7449_CR24 doi: 10.1109/SYSMART.2018.8746932 – start-page: 309 volume-title: Machine Learning and Deep Learning for Fixed-Text Keystroke Dynamics year: 2022 ident: 7449_CR4 – ident: 7449_CR32 doi: 10.1109/WIFS.2016.7823894 – ident: 7449_CR36 doi: 10.1109/BTAS.2014.6996259 – ident: 7449_CR1 doi: 10.3390/s23104898 – ident: 7449_CR2 doi: 10.3390/app132011478 – volume: 5 start-page: 367 issue: 4 year: 2002 ident: 7449_CR3 publication-title: ACM Trans Inf Syst Secur doi: 10.1145/581271.581272 – volume-title: Biometric technologies and verification systems year: 2007 ident: 7449_CR34 – volume: 94 start-page: 30 year: 2018 ident: 7449_CR35 publication-title: Inf Softw Technol doi: 10.1016/j.infsof.2017.09.012 – ident: 7449_CR40 doi: 10.21608/erjsh.2022.224312 – ident: 7449_CR39 doi: 10.3390/j2020016 – volume: 1 start-page: 2 year: 2011 ident: 7449_CR27 publication-title: J Comput Inf Technol – volume: 2 start-page: 1 issue: 1 year: 2018 ident: 7449_CR23 publication-title: Cryptography doi: 10.3390/cryptography2010001 – ident: 7449_CR31 doi: 10.1109/IJCB.2011.6117480 – ident: 7449_CR17 doi: 10.1109/IIH-MSP.2007.218 |
SSID | ssj0003307759 ssj0002793483 ssib051670015 |
Score | 2.3014116 |
Snippet | The growing number of privacy breaches that access confidential and sensitive data has increased the demand for intelligent cybersecurity solutions.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 992 |
SubjectTerms | Access control Algorithms Applied and Technical Physics Authentication Behavior Biometrics Chemistry/Food Science Classification Cybersecurity Data analysis Data integrity Datasets Digital systems Earth Sciences Engineering Environment Handedness Human error Keyboards Learning algorithms Machine learning Materials Science Neural networks Outliers (statistics) Performance evaluation Rejection rate Support vector machines Typing |
SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEB20XvQgfmK1Sg7eNNhsvnaPUixFURAs9Bay21kRcZV2_f9O0m2rRQ-ek-zhJWHezmTeAzhXRKExKYJ72Rg5nRDNvfeKY5rlmRVl5qPO9v2DGQzV7UiPGpmc0AuzUr-_mobKXMKD6SoFO5VxvQ4bWkgbbBp6prfIp9B_ubU6a_pifl_6M_YsCeVKDTSGlv4ObDeckF3PNnEX1rDag61vSoH78HhHiNeT91dk45mH_JQR3WQvC0XNmsVO-iC4z3x4tl7VTTqOhVwre4uvJpE1NhHPBzDs3zz1BrxxQ-AFUY7gOYvWiILoQGF8mnmRE9VXqkgtwVnSmCfupEWpZXdsSitNIXLiOqXWsvSJ1PIQWtV7hUfAdIoq9120mJbKeJ-hEmgFCoGpQmnacDHHyX3MRC_cQt44ouoIVRdRdboNnTmUrrkAU0c8TQbJSpO24XIO73L4768d_2_6CWwmcYfpvpsOtOrJJ54STajzs3g-vgCT3bRa priority: 102 providerName: Springer Nature |
Title | Keystroke dynamics for intelligent biometric authentication with machine learning |
URI | https://link.springer.com/article/10.1007/s42452-025-07449-5 https://www.proquest.com/docview/3243808068 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxEB3R5EIPFR9FTQmRD9xaq_H6Y70nFEJCBCQCSqTcVt7NbAWIJCTL_2fseJOCBNe15MPM7MzzjP0ewEtFEBqT0quXLZFThGjunFMcbVZkqagyF3i2pzMzmat3C72IDbddvFbZ5MSQqJfr0vfIb6jwS8-BaOyrzU_uVaP8dDVKaJxAm1KwtS1ovx7NPn5uIkoL_wolFrxvYcyWSRW4ORM6gXFJ4Rdf0oT3dH4MmHCv8EqVVWVc_1mtjhD0r6lpKEbjR3AWUSQb7N3-GB7g6gmc3uMWfAqf3pOP6u36O7LlXnV-xwigsq8HDs6ahbf3nqKfOX_RfVXHBh7z3Vn2I9yzRBaFJe7OYT4efRlOeNRP4CWBFK9Si6kRJQGI0jibOVHQ4UCp0qbkgIrWHKEtLSot-0tTpdKUoiB0VGktK5dILZ9Ba7Ve4QUwbVEVro8p2koZ5zJUAlOBQqBVKE0Hrho75Zs9TUZ-IEQOVs3Jqnmwaq470G1MmcdfZpcfHdyB68a8x-V_73b5_92ew8MkeJQygulCq97-whcEJOqiByd2_LYH7cGb6YfbXowd-jo0w144nP8G0UHGoA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB5KPagH8Yn1uQc96aKb7OZxEBG11icILfQWN8lEVGxrGxH_lL_R2W3SqqA3zwtLmP0y37ePmQ9gS5KERicx7mUpckKI4lpryTEI49AXWahtn-3rG6_Rkhdt1a7AR1kLY55VljnRJuq0m5gz8j0iftf0QPSCw94LN65R5na1tNAYwuIS399oyzY4OD-h9d12nPpp87jBC1cBnhB1G-9WpK17QrSaeDoItYhJMkuZBD59VkZjmjSIEply91Mv810vETFphkwpN9OOdYmglD8hXWJyU5lePyvxq4SpeSno9dFe6oWutJ1AHdrvcZfAXtTt2Oo9c-nocOMnSzwuQ66-c-NY8P64o7XUV5-FmUKzsqMhyOaggp15mP7SyXABbikog7zffUKWDj3uB4zkMHsYdfzMma30N4YATJtn9Z28OC5k5iyYPdtXncgKG4v7RWj9S1yXoNrpdnAZmApQxnoffQwy6WkdohToCxQCA4muV4OdMk5Rb9iUIxq1X7ZRjSiqkY1qpGqwVoYyKn7QQTSGUw12y_COh3-fbeXv2TZhstG8voquzm8uV2HKsatLuchbg2ref8V1kjB5vGFxw-Duv4H6Cdi2-0w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5KBdGD-MT6zEFPGjS7yT4OIj5afBYVBW9rdjsrKrbVroh_zV_nJM1aFfTmORCWL9_OI5OZD2BFUgiNXmbUy1rIiSGKa60lxyhO41DksbZztk-bwcGVPLpW1xV4L3thzLPK0iZaQ93qZOaOfIMcv29mIAbRRu6eRZztN7a7T9woSJlKaymn0afIMb69UvrW2zrcp7Ne9bxG_XLvgDuFAZ6RGzc6rkhpfEYuNgt0FGuRUvgsZRaF9Ik5rWmKR5TIlb_ZCvLQDzKRUvyQK-Xn2rOKEWT-h0KTFVVhaLfePLso2ayE6YBxzvbelvhiX9q5oB5lf9wn6rsuHtvLZ0qQHjfqsuTVZczVd085CH9_VGytI2yMw5iLYNlOn3ITUMH2JIx-mWs4BecES6947jwga_UV73uMgmN29zn_s2C279_IAzBtHtm3C3d5yMzNMHu0bzyROVGL22m4-hdkZ6Da7rRxFpiKUKZ6E0OMchloHaMUGAoUAiOJflCDtRKnpNsf0ZF8DmO2qCaEamJRTVQNFkooE_e79pIBuWqwXsI7WP59t7m_d1uGYSJpcnLYPJ6HEc8eLhmmYAGqxfMLLlI8U6RLjjgMbv6bqx8PVgDt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Keystroke+dynamics+for+intelligent+biometric+authentication+with+machine+learning&rft.jtitle=SN+applied+sciences&rft.au=Martins%2C+Andreia&rft.au=Dias%2C+Tiago&rft.au=Dias%2C+Andr%C3%A9&rft.au=Vitorino%2C+Jo%C3%A3o&rft.date=2025-08-26&rft.pub=Springer+Nature+B.V&rft.issn=2523-3963&rft.eissn=2523-3971&rft.volume=7&rft.issue=9&rft.spage=992&rft_id=info:doi/10.1007%2Fs42452-025-07449-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=3004-9261&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=3004-9261&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=3004-9261&client=summon |