Locality regularized reconstruction: structured sparsity and Delaunay triangulations

Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points and a vector , the goal is to find coefficients so that , subject to some desired structure on . In this...

Full description

Saved in:
Bibliographic Details
Published inSampling theory, signal processing, and data analysis Vol. 23; no. 2
Main Authors Mueller, Marshall, Murphy, James M., Tasissa, Abiy
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points and a vector , the goal is to find coefficients so that , subject to some desired structure on . In this work we seek that forms a local reconstruction of by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of that are close to when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of have a unique Delaunay triangulation, the optimal coefficients’ number of non-zero entries is upper bounded by , thereby providing local sparse solutions when . Under the same condition we also show that for any contained in the convex hull of there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing . This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of . We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex.
AbstractList Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points and a vector , the goal is to find coefficients so that , subject to some desired structure on . In this work we seek that forms a local reconstruction of by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of that are close to when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of have a unique Delaunay triangulation, the optimal coefficients’ number of non-zero entries is upper bounded by , thereby providing local sparse solutions when . Under the same condition we also show that for any contained in the convex hull of there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing . This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of . We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex.
ArticleNumber 16
Author Tasissa, Abiy
Mueller, Marshall
Murphy, James M.
Author_xml – sequence: 1
  givenname: Marshall
  orcidid: 0000-0002-6850-3961
  surname: Mueller
  fullname: Mueller, Marshall
  email: marshallm@protonmail.ch
  organization: Department of Mathematics, Tufts University
– sequence: 2
  givenname: James M.
  surname: Murphy
  fullname: Murphy, James M.
  organization: Department of Mathematics, Tufts University
– sequence: 3
  givenname: Abiy
  surname: Tasissa
  fullname: Tasissa, Abiy
  organization: Department of Mathematics, Tufts University
BookMark eNp9kEFOwzAQRS1UJErpBVjlAoaxHTspO1SgIEViU9bWxLGrVMGp7GRRTo9DEEtW_pLfG838a7LwvbeE3DK4YwDFfcyFKoAClxSAQU7lBVnyQgCVBc8Xf5mpK7KO8QiQ0AJAiSXZV73Brh3OWbCHscPQftkmZdP7OITRDG3vH7I5jiF9xROGOPHom-zJdjh6PGdDaNFP_sTHG3LpsIt2_fuuyMfL8377Sqv33dv2saKGyY2kqmGKoVNCCKOMUcpiYaBRdS1FzhgwUzpVgtswiyhqZ5gzZcOldDXfcCzFivB5rgl9jME6fQrtJ4azZqCnavRcjU736p9qtEySmKWYYH-wQR_7Mfi053_WN9olaug
Cites_doi 10.1145/3422818
10.1007/978-0-8176-4948-7
10.1145/1970392.1970395
10.1016/j.acha.2008.07.002
10.1109/TSP.2010.2051150
10.1109/TIT.2006.885507
10.1145/109648.109688
10.1016/S0893-6080(00)00026-5
10.18653/v1/2020.emnlp-demos.6
10.1038/nrg3920
10.1111/j.1467-9868.2005.00532.x
10.1109/TIT.2008.929958
10.1109/LSP.2007.898300
10.1109/TIT.2007.909108
10.1016/0898-1221(92)90045-J
10.1109/TSP.2023.3322820
10.1109/TIT.2011.2146090
10.1002/cpa.20124
10.1109/TSP.2018.2889951
10.1007/978-3-642-61568-9
10.1126/science.290.5500.2323
10.1137/1.9781611974997
10.1109/ACSSC.1993.342465
10.1126/science.290.5500.2319
10.1016/j.acha.2015.10.005
10.1214/11-AOS878
10.1137/1.9781611973655
10.1093/imanum/20.3.389
10.1037/h0071325
10.1214/009053604000000067
10.1016/j.acha.2006.04.006
10.1016/j.acha.2008.09.001
10.1007/BF02678430
10.1137/S003614450037906X
10.1109/TIT.2004.834793
10.1162/089976603321780317
10.1201/b12987
10.1145/323233.323266
10.1109/TSP.2018.2791949
10.1109/TNNLS.2017.2771456
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s43670-025-00104-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2730-5724
ExternalDocumentID 10_1007_s43670_025_00104_5
GroupedDBID 406
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABBRH
ABDBE
ABECU
ABFSG
ABJNI
ABMQK
ABRTQ
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACPIV
ACSTC
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AGMZJ
AGQEE
AHPBZ
AHWEU
AIGIU
AIXLP
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
ATHPR
AYFIA
DPUIP
EBLON
FIGPU
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAYXX
CITATION
ID FETCH-LOGICAL-c1595-6d161af6333c6cc66ea7c0d6bb5341101c8f680f91eaa3bfc1fc8d255fb292a83
ISSN 2730-5716
IngestDate Wed Aug 06 19:03:12 EDT 2025
Tue Aug 05 01:10:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Computational geometry
65F22
90C25
Delaunay triangulation
52C35
68U05
94A12
Regularization
42C15
Optimization
Sparse signal processing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1595-6d161af6333c6cc66ea7c0d6bb5341101c8f680f91eaa3bfc1fc8d255fb292a83
ORCID 0000-0002-6850-3961
ParticipantIDs crossref_primary_10_1007_s43670_025_00104_5
springer_journals_10_1007_s43670_025_00104_5
PublicationCentury 2000
PublicationDate 2025-12-01
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Sampling theory, signal processing, and data analysis
PublicationTitleAbbrev Sampl. Theory Signal Process. Data Anal
PublicationYear 2025
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References 104_CR57
G. Davis (104_CR40) 1997; 13
S. Hershey (104_CR14) 2017
104_CR54
S. Foucart (104_CR28) 2011
H. Hotelling (104_CR3) 1933; 24
N.P. Weatherill (104_CR32) 1992; 24
104_CR59
A. Hyvärinen (104_CR4) 2000; 13
A. Krizhevsky (104_CR13) 2012
104_CR58
D.L. Donoho (104_CR63) 2008; 54
104_CR50
R. Chartrand (104_CR21) 2007; 14
A. Tasissa (104_CR37) 2023; 71
S.W. Cheng (104_CR31) 2016
S. Foucart (104_CR45) 2013
M.W. Libbrecht (104_CR1) 2015; 16
A. Beck (104_CR38) 2017
H. Edelsbrunner (104_CR53) 1985
B. Schölkopf (104_CR6) 1997
J.A. Tropp (104_CR42) 2007; 53
Y.C. Pati (104_CR41) 1993
104_CR22
M.A. Khajehnejad (104_CR24) 2009
J. Huang (104_CR25) 2010; 38
A. Beck (104_CR56) 2014
H. Mansour (104_CR47) 2017; 43
M. Yuan (104_CR26) 2006; 68
N. Dalal (104_CR11) 2005
M. Belkin (104_CR9) 2003; 15
H. Edelsbrunner (104_CR55) 1989
E. Elhamifar (104_CR29) 2011
R.J. Tibshirani (104_CR61) 2011; 39
E.J. Candès (104_CR5) 2011; 58
N. Vaswani (104_CR15) 2010; 58
S.S. Chen (104_CR44) 2001; 43
M. Werenski (104_CR49) 2022
104_CR35
H. Edelsbrunner (104_CR52) 1987
E.J. Candes (104_CR20) 2006; 59
104_CR34
104_CR33
M. Mueller (104_CR51) 2023
P. Sprechmann (104_CR27) 2010
D.G. Lowe (104_CR12) 1999
D. Needell (104_CR18) 2009; 26
M.R. Osborne (104_CR60) 2000; 20
E.J. Candes (104_CR19) 2006; 52
B. Gu (104_CR64) 2017; 29
J. Ho (104_CR48) 2013
B. Efron (104_CR62) 2004; 32
T. Wolf (104_CR16) 2020
J.B. Tenenbaum (104_CR7) 2000; 290
R.R. Coifman (104_CR10) 2006; 21
104_CR2
B. Delaunay (104_CR30) 1934; 7
S.T. Roweis (104_CR8) 2000; 290
J.A. Tropp (104_CR43) 2004; 50
V.T. Rajan (104_CR36) 1991
L. Lian (104_CR46) 2018; 66
T.T. Cai (104_CR17) 2011; 57
T.H. Chang (104_CR39) 2020; 46
S. Huang (104_CR23) 2018; 67
B. Gu (104_CR65) 2015
References_xml – start-page: 131
  volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing
  year: 2017
  ident: 104_CR14
– volume: 46
  start-page: 1
  issue: 4
  year: 2020
  ident: 104_CR39
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/3422818
– volume-title: A Mathematical Introduction to Compressive Sensing
  year: 2013
  ident: 104_CR45
  doi: 10.1007/978-0-8176-4948-7
– volume: 7
  start-page: 1
  issue: 793–800
  year: 1934
  ident: 104_CR30
  publication-title: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk
– start-page: 23781
  volume-title: International Conference on Machine Learning
  year: 2022
  ident: 104_CR49
– start-page: 384
  volume-title: Topological, Algebraic and Geometric Learning Workshops 2023
  year: 2023
  ident: 104_CR51
– volume: 58
  start-page: 1
  issue: 3
  year: 2011
  ident: 104_CR5
  publication-title: J. ACM
  doi: 10.1145/1970392.1970395
– ident: 104_CR57
– volume: 26
  start-page: 301
  issue: 3
  year: 2009
  ident: 104_CR18
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2008.07.002
– start-page: 1150
  volume-title: IEEE International Conference on Computer Vision
  year: 1999
  ident: 104_CR12
– volume: 58
  start-page: 4595
  issue: 9
  year: 2010
  ident: 104_CR15
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2051150
– start-page: 886
  volume-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
  year: 2005
  ident: 104_CR11
– volume: 52
  start-page: 5406
  issue: 12
  year: 2006
  ident: 104_CR19
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.885507
– ident: 104_CR33
– ident: 104_CR2
– start-page: 357
  volume-title: Proceedings of the Seventh Annual Symposium on Computational Geometry
  year: 1991
  ident: 104_CR36
  doi: 10.1145/109648.109688
– volume: 13
  start-page: 411
  issue: 4–5
  year: 2000
  ident: 104_CR4
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(00)00026-5
– start-page: 38
  volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: system Demonstrations
  year: 2020
  ident: 104_CR16
  doi: 10.18653/v1/2020.emnlp-demos.6
– volume-title: Sampling Theory and Applications
  year: 2011
  ident: 104_CR28
– start-page: 1
  volume-title: 2010 44th Annual Conference on Information Sciences and Systems (CISS)
  year: 2010
  ident: 104_CR27
– ident: 104_CR50
– volume: 16
  start-page: 321
  issue: 6
  year: 2015
  ident: 104_CR1
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3920
– start-page: 55
  volume-title: Advances in Neural Information Processing Systems
  year: 2011
  ident: 104_CR29
– ident: 104_CR54
– ident: 104_CR58
– ident: 104_CR59
– volume: 68
  start-page: 49
  issue: 1
  year: 2006
  ident: 104_CR26
  publication-title: J. R. Stat. Soc. Series B Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00532.x
– ident: 104_CR34
– volume: 54
  start-page: 4789
  issue: 11
  year: 2008
  ident: 104_CR63
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2008.929958
– volume: 14
  start-page: 707
  issue: 10
  year: 2007
  ident: 104_CR21
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2007.898300
– volume: 53
  start-page: 4655
  issue: 12
  year: 2007
  ident: 104_CR42
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2007.909108
– start-page: 583
  volume-title: International Conference on Artificial Neural Networks
  year: 1997
  ident: 104_CR6
– volume: 24
  start-page: 129
  issue: 5–6
  year: 1992
  ident: 104_CR32
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(92)90045-J
– volume: 71
  start-page: 3741
  year: 2023
  ident: 104_CR37
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2023.3322820
– volume: 57
  start-page: 4680
  issue: 7
  year: 2011
  ident: 104_CR17
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2011.2146090
– volume: 59
  start-page: 1207
  issue: 8
  year: 2006
  ident: 104_CR20
  publication-title: Commun. Pure Appl. Math.
  doi: 10.1002/cpa.20124
– start-page: 145
  volume-title: Proceedings of the Fifth Annual Symposium on Computational Geometry
  year: 1989
  ident: 104_CR55
– volume: 67
  start-page: 1322
  issue: 5
  year: 2018
  ident: 104_CR23
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2889951
– volume-title: Algorithms in Combinatorial Geometry
  year: 1987
  ident: 104_CR52
  doi: 10.1007/978-3-642-61568-9
– volume-title: Advances in Neural Information Processing Systems
  year: 2012
  ident: 104_CR13
– volume: 290
  start-page: 2323
  issue: 5500
  year: 2000
  ident: 104_CR8
  publication-title: Science
  doi: 10.1126/science.290.5500.2323
– volume-title: First-Order Methods in Optimization
  year: 2017
  ident: 104_CR38
  doi: 10.1137/1.9781611974997
– ident: 104_CR35
– start-page: 40
  volume-title: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers
  year: 1993
  ident: 104_CR41
  doi: 10.1109/ACSSC.1993.342465
– start-page: 1480
  volume-title: International Conference on Machine Learning
  year: 2013
  ident: 104_CR48
– volume: 290
  start-page: 2319
  issue: 5500
  year: 2000
  ident: 104_CR7
  publication-title: Science
  doi: 10.1126/science.290.5500.2319
– volume: 43
  start-page: 23
  issue: 1
  year: 2017
  ident: 104_CR47
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2015.10.005
– start-page: 483
  volume-title: IEEE International Symposium on Information Theory
  year: 2009
  ident: 104_CR24
– volume: 39
  start-page: 1335
  issue: 3
  year: 2011
  ident: 104_CR61
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS878
– volume-title: Introduction to Nonlinear Optimization: theory, Algorithms, and Applications with MATLAB
  year: 2014
  ident: 104_CR56
  doi: 10.1137/1.9781611973655
– start-page: 2549
  volume-title: International Conference on Machine Learning
  year: 2015
  ident: 104_CR65
– volume: 38
  start-page: 1978
  issue: 1
  year: 2010
  ident: 104_CR25
  publication-title: Ann. Stat.
– volume: 20
  start-page: 389
  issue: 3
  year: 2000
  ident: 104_CR60
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/20.3.389
– volume: 24
  start-page: 417
  issue: 6
  year: 1933
  ident: 104_CR3
  publication-title: J. Educ. Psychol.
  doi: 10.1037/h0071325
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 104_CR62
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– volume: 21
  start-page: 5
  issue: 1
  year: 2006
  ident: 104_CR10
  publication-title: Appl. Comput. Harmon. Anal.
  doi: 10.1016/j.acha.2006.04.006
– ident: 104_CR22
  doi: 10.1016/j.acha.2008.09.001
– volume: 13
  start-page: 57
  issue: 1
  year: 1997
  ident: 104_CR40
  publication-title: Constr. Approx.
  doi: 10.1007/BF02678430
– volume: 43
  start-page: 129
  issue: 1
  year: 2001
  ident: 104_CR44
  publication-title: SIAM Rev.
  doi: 10.1137/S003614450037906X
– volume: 50
  start-page: 2231
  issue: 10
  year: 2004
  ident: 104_CR43
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2004.834793
– volume: 15
  start-page: 1373
  issue: 6
  year: 2003
  ident: 104_CR9
  publication-title: Neural Comput.
  doi: 10.1162/089976603321780317
– volume-title: Delaunay Mesh Generation
  year: 2016
  ident: 104_CR31
  doi: 10.1201/b12987
– start-page: 251
  volume-title: Proceedings of the First Annual Symposium on Computational Geometry
  year: 1985
  ident: 104_CR53
  doi: 10.1145/323233.323266
– volume: 66
  start-page: 1607
  issue: 6
  year: 2018
  ident: 104_CR46
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2791949
– volume: 29
  start-page: 4462
  issue: 9
  year: 2017
  ident: 104_CR64
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2771456
SSID ssj0002570063
ssib054931816
ssib042110749
Score 2.3105986
Snippet Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and...
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Abstract Harmonic Analysis
Machine Learning
Mathematics
Mathematics and Statistics
Original Article
Signal,Image and Speech Processing
Title Locality regularized reconstruction: structured sparsity and Delaunay triangulations
URI https://link.springer.com/article/10.1007/s43670-025-00104-5
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5cIFUbUVj1L50Bs1ysaxN-EGqAihLpcuErfI49gICWURC4ei_viOX5tseQh6ibLWapL1fDueseebIeRbkYEtbGVZkxvOijGMWCkrxRQ04yxrNEhfXX9yLk8virNLcTkY_OmzS-5hXz8-yyv5H63iGOrVsWTfodmFUBzAe9QvXlHDeH2Tjn-6hci50Xe-o_zd9aNxZBQ968rCuog_fHhwmeZoP0IWRshAvlEPrUL_E9-1vYqNvOZ9f_WXchnngVE1CyfuLuPD0bcCwyC2RHHiXLIp3oQiJ50iTSIbTvDRrnXLUx37VN29yX63jYAS5mHHF65_93cmctHL8vAGDD2jjInxKJa67o8F3nSywIFxHJGWP2vYQy7HvHD15ph7li8sxES3jKWj-39Wt0XO4aI-s5dRo4zay6jFClnNMcjIh2T18OTo6DzZo8IHx114iqE0WsDoTruV3nUADM36Fj818rI8O_PJyy77PssH796fmW6Q9RiI0MOAqg9kYNqPZJoQRXuIosuIOqAdnmjCE0UA0IQnuoynT-Ti5Mf0-JTFvhtMo3MrmGwwDFBWcs611FpKo8Y6aySAQJ8HbbgurSwzW42MUhysHlldNhibWsirXJX8Mxm2s9ZsEgqgMOAubFlWUKCxgFyCAC54k_GyMXKL7KUZqW9DeZX6ZUVtke9p0ur4N5y_8vXtdwnfIWsdiL-QIU6l2UWH8x6-Rlz8BeUKfOI
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locality+regularized+reconstruction%3A+structured+sparsity+and+Delaunay+triangulations&rft.jtitle=Sampling+theory%2C+signal+processing%2C+and+data+analysis&rft.au=Mueller%2C+Marshall&rft.au=Murphy%2C+James+M.&rft.au=Tasissa%2C+Abiy&rft.date=2025-12-01&rft.issn=2730-5716&rft.eissn=2730-5724&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1007%2Fs43670-025-00104-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43670_025_00104_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-5716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-5716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-5716&client=summon