Locality regularized reconstruction: structured sparsity and Delaunay triangulations
Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points and a vector , the goal is to find coefficients so that , subject to some desired structure on . In this...
Saved in:
Published in | Sampling theory, signal processing, and data analysis Vol. 23; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.12.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points
and a vector
, the goal is to find coefficients
so that
, subject to some desired structure on
. In this work we seek
that forms a local reconstruction of
by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of
that are close to
when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of
have a unique Delaunay triangulation, the optimal coefficients’ number of non-zero entries is upper bounded by
, thereby providing local sparse solutions when
. Under the same condition we also show that for any
contained in the convex hull of
there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing
. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of
. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex. |
---|---|
AbstractList | Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and feature extraction. Given a set of points
and a vector
, the goal is to find coefficients
so that
, subject to some desired structure on
. In this work we seek
that forms a local reconstruction of
by solving a regularized least squares regression problem. We obtain local solutions through a locality function that promotes the use of columns of
that are close to
when used as a regularization term. We prove that, for all levels of regularization and under a mild condition that the columns of
have a unique Delaunay triangulation, the optimal coefficients’ number of non-zero entries is upper bounded by
, thereby providing local sparse solutions when
. Under the same condition we also show that for any
contained in the convex hull of
there exists a regime of regularization parameter such that the optimal coefficients are supported on the vertices of the Delaunay simplex containing
. This provides an interpretation of the sparsity as having structure obtained implicitly from the Delaunay triangulation of
. We demonstrate that our locality regularized problem can be solved in comparable time to other methods that identify the containing Delaunay simplex. |
ArticleNumber | 16 |
Author | Tasissa, Abiy Mueller, Marshall Murphy, James M. |
Author_xml | – sequence: 1 givenname: Marshall orcidid: 0000-0002-6850-3961 surname: Mueller fullname: Mueller, Marshall email: marshallm@protonmail.ch organization: Department of Mathematics, Tufts University – sequence: 2 givenname: James M. surname: Murphy fullname: Murphy, James M. organization: Department of Mathematics, Tufts University – sequence: 3 givenname: Abiy surname: Tasissa fullname: Tasissa, Abiy organization: Department of Mathematics, Tufts University |
BookMark | eNp9kEFOwzAQRS1UJErpBVjlAoaxHTspO1SgIEViU9bWxLGrVMGp7GRRTo9DEEtW_pLfG838a7LwvbeE3DK4YwDFfcyFKoAClxSAQU7lBVnyQgCVBc8Xf5mpK7KO8QiQ0AJAiSXZV73Brh3OWbCHscPQftkmZdP7OITRDG3vH7I5jiF9xROGOPHom-zJdjh6PGdDaNFP_sTHG3LpsIt2_fuuyMfL8377Sqv33dv2saKGyY2kqmGKoVNCCKOMUcpiYaBRdS1FzhgwUzpVgtswiyhqZ5gzZcOldDXfcCzFivB5rgl9jME6fQrtJ4azZqCnavRcjU736p9qtEySmKWYYH-wQR_7Mfi053_WN9olaug |
Cites_doi | 10.1145/3422818 10.1007/978-0-8176-4948-7 10.1145/1970392.1970395 10.1016/j.acha.2008.07.002 10.1109/TSP.2010.2051150 10.1109/TIT.2006.885507 10.1145/109648.109688 10.1016/S0893-6080(00)00026-5 10.18653/v1/2020.emnlp-demos.6 10.1038/nrg3920 10.1111/j.1467-9868.2005.00532.x 10.1109/TIT.2008.929958 10.1109/LSP.2007.898300 10.1109/TIT.2007.909108 10.1016/0898-1221(92)90045-J 10.1109/TSP.2023.3322820 10.1109/TIT.2011.2146090 10.1002/cpa.20124 10.1109/TSP.2018.2889951 10.1007/978-3-642-61568-9 10.1126/science.290.5500.2323 10.1137/1.9781611974997 10.1109/ACSSC.1993.342465 10.1126/science.290.5500.2319 10.1016/j.acha.2015.10.005 10.1214/11-AOS878 10.1137/1.9781611973655 10.1093/imanum/20.3.389 10.1037/h0071325 10.1214/009053604000000067 10.1016/j.acha.2006.04.006 10.1016/j.acha.2008.09.001 10.1007/BF02678430 10.1137/S003614450037906X 10.1109/TIT.2004.834793 10.1162/089976603321780317 10.1201/b12987 10.1145/323233.323266 10.1109/TSP.2018.2791949 10.1109/TNNLS.2017.2771456 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s43670-025-00104-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2730-5724 |
ExternalDocumentID | 10_1007_s43670_025_00104_5 |
GroupedDBID | 406 AACDK AAHNG AAJBT AASML AATNV ABAKF ABBRH ABDBE ABECU ABFSG ABJNI ABMQK ABRTQ ABTEG ABTKH ACAOD ACDTI ACHSB ACPIV ACSTC ACZOJ ADTPH AEFQL AEMSY AESKC AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AGMZJ AGQEE AHPBZ AHWEU AIGIU AIXLP ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF ATHPR AYFIA DPUIP EBLON FIGPU IKXTQ IWAJR JZLTJ LLZTM NPVJJ NQJWS ROL RSV SJYHP SNE SOJ SRMVM SSLCW AAYXX CITATION |
ID | FETCH-LOGICAL-c1595-6d161af6333c6cc66ea7c0d6bb5341101c8f680f91eaa3bfc1fc8d255fb292a83 |
ISSN | 2730-5716 |
IngestDate | Wed Aug 06 19:03:12 EDT 2025 Tue Aug 05 01:10:58 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Computational geometry 65F22 90C25 Delaunay triangulation 52C35 68U05 94A12 Regularization 42C15 Optimization Sparse signal processing |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1595-6d161af6333c6cc66ea7c0d6bb5341101c8f680f91eaa3bfc1fc8d255fb292a83 |
ORCID | 0000-0002-6850-3961 |
ParticipantIDs | crossref_primary_10_1007_s43670_025_00104_5 springer_journals_10_1007_s43670_025_00104_5 |
PublicationCentury | 2000 |
PublicationDate | 2025-12-01 |
PublicationDateYYYYMMDD | 2025-12-01 |
PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | Sampling theory, signal processing, and data analysis |
PublicationTitleAbbrev | Sampl. Theory Signal Process. Data Anal |
PublicationYear | 2025 |
Publisher | Springer International Publishing |
Publisher_xml | – name: Springer International Publishing |
References | 104_CR57 G. Davis (104_CR40) 1997; 13 S. Hershey (104_CR14) 2017 104_CR54 S. Foucart (104_CR28) 2011 H. Hotelling (104_CR3) 1933; 24 N.P. Weatherill (104_CR32) 1992; 24 104_CR59 A. Hyvärinen (104_CR4) 2000; 13 A. Krizhevsky (104_CR13) 2012 104_CR58 D.L. Donoho (104_CR63) 2008; 54 104_CR50 R. Chartrand (104_CR21) 2007; 14 A. Tasissa (104_CR37) 2023; 71 S.W. Cheng (104_CR31) 2016 S. Foucart (104_CR45) 2013 M.W. Libbrecht (104_CR1) 2015; 16 A. Beck (104_CR38) 2017 H. Edelsbrunner (104_CR53) 1985 B. Schölkopf (104_CR6) 1997 J.A. Tropp (104_CR42) 2007; 53 Y.C. Pati (104_CR41) 1993 104_CR22 M.A. Khajehnejad (104_CR24) 2009 J. Huang (104_CR25) 2010; 38 A. Beck (104_CR56) 2014 H. Mansour (104_CR47) 2017; 43 M. Yuan (104_CR26) 2006; 68 N. Dalal (104_CR11) 2005 M. Belkin (104_CR9) 2003; 15 H. Edelsbrunner (104_CR55) 1989 E. Elhamifar (104_CR29) 2011 R.J. Tibshirani (104_CR61) 2011; 39 E.J. Candès (104_CR5) 2011; 58 N. Vaswani (104_CR15) 2010; 58 S.S. Chen (104_CR44) 2001; 43 M. Werenski (104_CR49) 2022 104_CR35 H. Edelsbrunner (104_CR52) 1987 E.J. Candes (104_CR20) 2006; 59 104_CR34 104_CR33 M. Mueller (104_CR51) 2023 P. Sprechmann (104_CR27) 2010 D.G. Lowe (104_CR12) 1999 D. Needell (104_CR18) 2009; 26 M.R. Osborne (104_CR60) 2000; 20 E.J. Candes (104_CR19) 2006; 52 B. Gu (104_CR64) 2017; 29 J. Ho (104_CR48) 2013 B. Efron (104_CR62) 2004; 32 T. Wolf (104_CR16) 2020 J.B. Tenenbaum (104_CR7) 2000; 290 R.R. Coifman (104_CR10) 2006; 21 104_CR2 B. Delaunay (104_CR30) 1934; 7 S.T. Roweis (104_CR8) 2000; 290 J.A. Tropp (104_CR43) 2004; 50 V.T. Rajan (104_CR36) 1991 L. Lian (104_CR46) 2018; 66 T.T. Cai (104_CR17) 2011; 57 T.H. Chang (104_CR39) 2020; 46 S. Huang (104_CR23) 2018; 67 B. Gu (104_CR65) 2015 |
References_xml | – start-page: 131 volume-title: IEEE International Conference on Acoustics, Speech and Signal Processing year: 2017 ident: 104_CR14 – volume: 46 start-page: 1 issue: 4 year: 2020 ident: 104_CR39 publication-title: ACM Trans. Math. Software doi: 10.1145/3422818 – volume-title: A Mathematical Introduction to Compressive Sensing year: 2013 ident: 104_CR45 doi: 10.1007/978-0-8176-4948-7 – volume: 7 start-page: 1 issue: 793–800 year: 1934 ident: 104_CR30 publication-title: Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i Estestvennyka Nauk – start-page: 23781 volume-title: International Conference on Machine Learning year: 2022 ident: 104_CR49 – start-page: 384 volume-title: Topological, Algebraic and Geometric Learning Workshops 2023 year: 2023 ident: 104_CR51 – volume: 58 start-page: 1 issue: 3 year: 2011 ident: 104_CR5 publication-title: J. ACM doi: 10.1145/1970392.1970395 – ident: 104_CR57 – volume: 26 start-page: 301 issue: 3 year: 2009 ident: 104_CR18 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2008.07.002 – start-page: 1150 volume-title: IEEE International Conference on Computer Vision year: 1999 ident: 104_CR12 – volume: 58 start-page: 4595 issue: 9 year: 2010 ident: 104_CR15 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2051150 – start-page: 886 volume-title: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05) year: 2005 ident: 104_CR11 – volume: 52 start-page: 5406 issue: 12 year: 2006 ident: 104_CR19 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.885507 – ident: 104_CR33 – ident: 104_CR2 – start-page: 357 volume-title: Proceedings of the Seventh Annual Symposium on Computational Geometry year: 1991 ident: 104_CR36 doi: 10.1145/109648.109688 – volume: 13 start-page: 411 issue: 4–5 year: 2000 ident: 104_CR4 publication-title: Neural Netw. doi: 10.1016/S0893-6080(00)00026-5 – start-page: 38 volume-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: system Demonstrations year: 2020 ident: 104_CR16 doi: 10.18653/v1/2020.emnlp-demos.6 – volume-title: Sampling Theory and Applications year: 2011 ident: 104_CR28 – start-page: 1 volume-title: 2010 44th Annual Conference on Information Sciences and Systems (CISS) year: 2010 ident: 104_CR27 – ident: 104_CR50 – volume: 16 start-page: 321 issue: 6 year: 2015 ident: 104_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3920 – start-page: 55 volume-title: Advances in Neural Information Processing Systems year: 2011 ident: 104_CR29 – ident: 104_CR54 – ident: 104_CR58 – ident: 104_CR59 – volume: 68 start-page: 49 issue: 1 year: 2006 ident: 104_CR26 publication-title: J. R. Stat. Soc. Series B Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00532.x – ident: 104_CR34 – volume: 54 start-page: 4789 issue: 11 year: 2008 ident: 104_CR63 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2008.929958 – volume: 14 start-page: 707 issue: 10 year: 2007 ident: 104_CR21 publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2007.898300 – volume: 53 start-page: 4655 issue: 12 year: 2007 ident: 104_CR42 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2007.909108 – start-page: 583 volume-title: International Conference on Artificial Neural Networks year: 1997 ident: 104_CR6 – volume: 24 start-page: 129 issue: 5–6 year: 1992 ident: 104_CR32 publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(92)90045-J – volume: 71 start-page: 3741 year: 2023 ident: 104_CR37 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2023.3322820 – volume: 57 start-page: 4680 issue: 7 year: 2011 ident: 104_CR17 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2011.2146090 – volume: 59 start-page: 1207 issue: 8 year: 2006 ident: 104_CR20 publication-title: Commun. Pure Appl. Math. doi: 10.1002/cpa.20124 – start-page: 145 volume-title: Proceedings of the Fifth Annual Symposium on Computational Geometry year: 1989 ident: 104_CR55 – volume: 67 start-page: 1322 issue: 5 year: 2018 ident: 104_CR23 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2889951 – volume-title: Algorithms in Combinatorial Geometry year: 1987 ident: 104_CR52 doi: 10.1007/978-3-642-61568-9 – volume-title: Advances in Neural Information Processing Systems year: 2012 ident: 104_CR13 – volume: 290 start-page: 2323 issue: 5500 year: 2000 ident: 104_CR8 publication-title: Science doi: 10.1126/science.290.5500.2323 – volume-title: First-Order Methods in Optimization year: 2017 ident: 104_CR38 doi: 10.1137/1.9781611974997 – ident: 104_CR35 – start-page: 40 volume-title: Proceedings of 27th Asilomar Conference on Signals, Systems and Computers year: 1993 ident: 104_CR41 doi: 10.1109/ACSSC.1993.342465 – start-page: 1480 volume-title: International Conference on Machine Learning year: 2013 ident: 104_CR48 – volume: 290 start-page: 2319 issue: 5500 year: 2000 ident: 104_CR7 publication-title: Science doi: 10.1126/science.290.5500.2319 – volume: 43 start-page: 23 issue: 1 year: 2017 ident: 104_CR47 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.10.005 – start-page: 483 volume-title: IEEE International Symposium on Information Theory year: 2009 ident: 104_CR24 – volume: 39 start-page: 1335 issue: 3 year: 2011 ident: 104_CR61 publication-title: Ann. Stat. doi: 10.1214/11-AOS878 – volume-title: Introduction to Nonlinear Optimization: theory, Algorithms, and Applications with MATLAB year: 2014 ident: 104_CR56 doi: 10.1137/1.9781611973655 – start-page: 2549 volume-title: International Conference on Machine Learning year: 2015 ident: 104_CR65 – volume: 38 start-page: 1978 issue: 1 year: 2010 ident: 104_CR25 publication-title: Ann. Stat. – volume: 20 start-page: 389 issue: 3 year: 2000 ident: 104_CR60 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/20.3.389 – volume: 24 start-page: 417 issue: 6 year: 1933 ident: 104_CR3 publication-title: J. Educ. Psychol. doi: 10.1037/h0071325 – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 104_CR62 publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – volume: 21 start-page: 5 issue: 1 year: 2006 ident: 104_CR10 publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2006.04.006 – ident: 104_CR22 doi: 10.1016/j.acha.2008.09.001 – volume: 13 start-page: 57 issue: 1 year: 1997 ident: 104_CR40 publication-title: Constr. Approx. doi: 10.1007/BF02678430 – volume: 43 start-page: 129 issue: 1 year: 2001 ident: 104_CR44 publication-title: SIAM Rev. doi: 10.1137/S003614450037906X – volume: 50 start-page: 2231 issue: 10 year: 2004 ident: 104_CR43 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2004.834793 – volume: 15 start-page: 1373 issue: 6 year: 2003 ident: 104_CR9 publication-title: Neural Comput. doi: 10.1162/089976603321780317 – volume-title: Delaunay Mesh Generation year: 2016 ident: 104_CR31 doi: 10.1201/b12987 – start-page: 251 volume-title: Proceedings of the First Annual Symposium on Computational Geometry year: 1985 ident: 104_CR53 doi: 10.1145/323233.323266 – volume: 66 start-page: 1607 issue: 6 year: 2018 ident: 104_CR46 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2791949 – volume: 29 start-page: 4462 issue: 9 year: 2017 ident: 104_CR64 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2771456 |
SSID | ssj0002570063 ssib054931816 ssib042110749 |
Score | 2.3105986 |
Snippet | Linear representation learning is widely studied due to its conceptual simplicity and empirical utility in tasks such as compression, classification, and... |
SourceID | crossref springer |
SourceType | Index Database Publisher |
SubjectTerms | Abstract Harmonic Analysis Machine Learning Mathematics Mathematics and Statistics Original Article Signal,Image and Speech Processing |
Title | Locality regularized reconstruction: structured sparsity and Delaunay triangulations |
URI | https://link.springer.com/article/10.1007/s43670-025-00104-5 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaW5cIFUbUVj1L50Bs1ysaxN-EGqAihLpcuErfI49gICWURC4ei_viOX5tseQh6ibLWapL1fDueseebIeRbkYEtbGVZkxvOijGMWCkrxRQ04yxrNEhfXX9yLk8virNLcTkY_OmzS-5hXz8-yyv5H63iGOrVsWTfodmFUBzAe9QvXlHDeH2Tjn-6hci50Xe-o_zd9aNxZBQ968rCuog_fHhwmeZoP0IWRshAvlEPrUL_E9-1vYqNvOZ9f_WXchnngVE1CyfuLuPD0bcCwyC2RHHiXLIp3oQiJ50iTSIbTvDRrnXLUx37VN29yX63jYAS5mHHF65_93cmctHL8vAGDD2jjInxKJa67o8F3nSywIFxHJGWP2vYQy7HvHD15ph7li8sxES3jKWj-39Wt0XO4aI-s5dRo4zay6jFClnNMcjIh2T18OTo6DzZo8IHx114iqE0WsDoTruV3nUADM36Fj818rI8O_PJyy77PssH796fmW6Q9RiI0MOAqg9kYNqPZJoQRXuIosuIOqAdnmjCE0UA0IQnuoynT-Ti5Mf0-JTFvhtMo3MrmGwwDFBWcs611FpKo8Y6aySAQJ8HbbgurSwzW42MUhysHlldNhibWsirXJX8Mxm2s9ZsEgqgMOAubFlWUKCxgFyCAC54k_GyMXKL7KUZqW9DeZX6ZUVtke9p0ur4N5y_8vXtdwnfIWsdiL-QIU6l2UWH8x6-Rlz8BeUKfOI |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Locality+regularized+reconstruction%3A+structured+sparsity+and+Delaunay+triangulations&rft.jtitle=Sampling+theory%2C+signal+processing%2C+and+data+analysis&rft.au=Mueller%2C+Marshall&rft.au=Murphy%2C+James+M.&rft.au=Tasissa%2C+Abiy&rft.date=2025-12-01&rft.issn=2730-5716&rft.eissn=2730-5724&rft.volume=23&rft.issue=2&rft_id=info:doi/10.1007%2Fs43670-025-00104-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43670_025_00104_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-5716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-5716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-5716&client=summon |