At the Junction Between Deep Learning and Statistics of Extremes: Formalizing the Landslide Hazard Definition
The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constit...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are dependent on each other because larger events occur less frequently and vice versa. However, due to the lack of multi‐temporal inventories and joint statistical models, modeling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with extreme‐value theory to analyze an inventory of 30 years of observed rainfall‐triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our model performs excellently (with an accuracy of 0.78 and an area under the curve of 0.86) and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under climate change scenarios (SSP245 and SSP585), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions (Siwalik and lower Himalayas; ≈110–3,500 m) while remaining the same in the middle Himalayan region (≈3,500–5,000 m) whilst decreasing slightly in the upper Himalayan region (≳5,000 m) areas.
Plain Language Summary
We implement a model capable of satisfying the standard definition of landslide hazard. Estimating landslide hazard requires assessing where landslides may occur, how frequently and how large they may be. Since the inception of such a concept, each component of the hazard has been modeled individually, with most of the scientific efforts being dedicated to the spatial and temporal components, thus neglecting the third intensity requirement. Here, we make use of a deep learning architecture to estimate “where” by solving a standard classification problem jointly. As for the intensity, we modeled the landslide area density for each slope in the selected Nepalese landscape. This is done by solving a problem typical of extreme statistics, still in a deep learning framework. Because extreme statistics is suitable to make long‐term predictions, that is, at return periods of a given process, we intrinsically addressed the temporal component as well. Thanks to this property, we generate landslide hazard simulations for this century, incorporating climate projections in our analyses.
Key Points
A Landslide hazard model is developed by combining deep learning and the extended generalized Pareto distribution from extreme value theory
Thirty years of past observations are used to model the current landslide hazard scenario under different return periods of precipitation
Landslide hazard is predicted for multiple return periods of climate change scenarios up to the end of the century |
---|---|
AbstractList | The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are dependent on each other because larger events occur less frequently and vice versa. However, due to the lack of multi‐temporal inventories and joint statistical models, modeling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with extreme‐value theory to analyze an inventory of 30 years of observed rainfall‐triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our model performs excellently (with an accuracy of 0.78 and an area under the curve of 0.86) and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under climate change scenarios (SSP245 and SSP585), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions (Siwalik and lower Himalayas; ≈110–3,500 m) while remaining the same in the middle Himalayan region (≈3,500–5,000 m) whilst decreasing slightly in the upper Himalayan region (≳5,000 m) areas.
Plain Language Summary
We implement a model capable of satisfying the standard definition of landslide hazard. Estimating landslide hazard requires assessing where landslides may occur, how frequently and how large they may be. Since the inception of such a concept, each component of the hazard has been modeled individually, with most of the scientific efforts being dedicated to the spatial and temporal components, thus neglecting the third intensity requirement. Here, we make use of a deep learning architecture to estimate “where” by solving a standard classification problem jointly. As for the intensity, we modeled the landslide area density for each slope in the selected Nepalese landscape. This is done by solving a problem typical of extreme statistics, still in a deep learning framework. Because extreme statistics is suitable to make long‐term predictions, that is, at return periods of a given process, we intrinsically addressed the temporal component as well. Thanks to this property, we generate landslide hazard simulations for this century, incorporating climate projections in our analyses.
Key Points
A Landslide hazard model is developed by combining deep learning and the extended generalized Pareto distribution from extreme value theory
Thirty years of past observations are used to model the current landslide hazard scenario under different return periods of precipitation
Landslide hazard is predicted for multiple return periods of climate change scenarios up to the end of the century The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are dependent on each other because larger events occur less frequently and vice versa. However, due to the lack of multi‐temporal inventories and joint statistical models, modeling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with extreme‐value theory to analyze an inventory of 30 years of observed rainfall‐triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our model performs excellently (with an accuracy of 0.78 and an area under the curve of 0.86) and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under climate change scenarios (SSP245 and SSP585), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions (Siwalik and lower Himalayas; ≈110–3,500 m) while remaining the same in the middle Himalayan region (≈3,500–5,000 m) whilst decreasing slightly in the upper Himalayan region (≳5,000 m) areas. We implement a model capable of satisfying the standard definition of landslide hazard. Estimating landslide hazard requires assessing where landslides may occur, how frequently and how large they may be. Since the inception of such a concept, each component of the hazard has been modeled individually, with most of the scientific efforts being dedicated to the spatial and temporal components, thus neglecting the third intensity requirement. Here, we make use of a deep learning architecture to estimate “where” by solving a standard classification problem jointly. As for the intensity, we modeled the landslide area density for each slope in the selected Nepalese landscape. This is done by solving a problem typical of extreme statistics, still in a deep learning framework. Because extreme statistics is suitable to make long‐term predictions, that is, at return periods of a given process, we intrinsically addressed the temporal component as well. Thanks to this property, we generate landslide hazard simulations for this century, incorporating climate projections in our analyses. A Landslide hazard model is developed by combining deep learning and the extended generalized Pareto distribution from extreme value theory Thirty years of past observations are used to model the current landslide hazard scenario under different return periods of precipitation Landslide hazard is predicted for multiple return periods of climate change scenarios up to the end of the century |
Author | Dahal, Ashok Huser, Raphaël Lombardo, Luigi |
Author_xml | – sequence: 1 givenname: Ashok orcidid: 0000-0003-3269-5575 surname: Dahal fullname: Dahal, Ashok email: a.dahal@utwente.nl organization: University of Twente – sequence: 2 givenname: Raphaël orcidid: 0000-0002-1228-2071 surname: Huser fullname: Huser, Raphaël organization: King Abdullah University of Science and Technology (KAUST) – sequence: 3 givenname: Luigi orcidid: 0000-0003-4348-7288 surname: Lombardo fullname: Lombardo, Luigi organization: University of Twente |
BookMark | eNp9kMtOwzAQRS1UJErpjg_wB1DwI2lidqX0QRUJicc6cp0xGCVOZRuV9utxVBYVEqxmFuce3Zlz1LOtBYQuKbmmhIkbRliyWhJC6Dg5QX0mBB-ljJLe0X6Ght5_RIZzRnKS9VEzCTi8A159WhVMa_EdhC2AxfcAG1yAdNbYNyxthZ-DDMYHozxuNZ59BQcN-Fs8b10ja7PvuE5VRNjXpgK8lHvpqqjSxprOfoFOtaw9DH_mAL3OZy_T5ah4XDxMJ8VI0TRWje3EWHG-1irlUqV6LXQm5HqsqdIsqWie51xpIrMMBM11LuNFTHMteSZAVHyA2MGrXOu9A10q07VvbXDS1CUlZfez8vhnMXT1K7RxppFu9xdODvjW1LD7ly1Xiyeacv4NuqB9HA |
CitedBy_id | crossref_primary_10_1016_j_catena_2024_107989 |
Cites_doi | 10.1029/2020jf005803 10.3133/ofr97470C 10.1080/01621459.1997.10473683 10.1002/2015wr018552 10.1007/s00382‐018‐4597‐1 10.1016/j.enggeo.2021.106288 10.1038/s41597‐022‐01393‐4 10.1016/j.enggeo.2019.105331 10.3389/feart.2021.640043 10.1016/j.enggeo.2014.07.015 10.1007/s00477‐018‐1518‐0 10.5194/nhess‐18‐3203‐2018 10.5281/zenodo.10974259 10.1016/j.rse.2006.07.011 10.1198/016214506000001437 10.1016/j.jspi.2012.07.001 10.1659/0276‐4741(2002)022[0048:rblalu]2.0.co;2 10.1038/sdata.2015.66 10.5194/nhess‐20‐505‐2020 10.1029/eo081i048p00583 10.1007/s10064‐023‐03474‐z 10.1016/s0169‐555x(99)00078‐1 10.1038/s41467‐021‐26959‐5 10.1016/j.cageo.2023.105364 10.1016/j.earscirev.2012.02.001 10.1016/j.scitotenv.2018.01.124 10.5281/zenodo.10567233 10.1016/j.earscirev.2020.103318 10.1029/2019JF005056 10.1016/j.envsoft.2016.04.002 10.1016/0034‐4257(79)90013‐0 10.1016/B978-0-12-815226-3.00003-X 10.1016/j.earscirev.2019.102881 10.1038/d41586‐022‐02141‐9 10.1016/j.geomorph.2005.06.002 10.1016/j.geomorph.2020.107124 10.1061/9780784413272.315 10.1029/2017jf004494 10.5194/gmd‐14‐1841‐2021 10.1007/s00477‐022‐02215‐0 10.1371/journal.pone.0169748 10.1016/j.earscirev.2018.03.001 10.1007/bf01031290 10.1093/jrsssc/qlad077 10.1016/j.geoderma.2017.12.011 10.1002/0471722146 10.1038/s41467‐021‐26964‐8 10.1130/g33217.1 10.1146/annurev‐statistics‐010814‐020133 10.1007/978-94-009-4029-1_34 10.1016/j.jag.2023.103631 10.5194/gmd‐9‐3975‐2016 10.1007/978‐3‐540‐69970‐5_32 10.1016/s0012‐821x(01)00589‐1 10.1214/aos/1176343003 10.1016/j.spasta.2024.100811 10.5194/nhess-24-823-2024 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION |
DOI | 10.1029/2024JH000164 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JH000164 JGR153 |
Genre | researchArticle |
GrantInformation_xml | – fundername: SURF Cooperative funderid: EINF‐7984 – fundername: Global Collaborative Research, King Abdullah University of Science and Technology funderid: URF/1/4338‐01‐01 – fundername: King Abdullah University of Science and Technology |
GroupedDBID | 0R~ 24P AAMMB ACCMX AEFGJ AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS GROUPED_DOAJ M~E WIN AAYXX CITATION |
ID | FETCH-LOGICAL-c1593-33296c33bfc53ac5fb9f79ab6f1cf24d18883cf0a77e918f8a0032f3fa379e9d3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Tue Jul 01 03:43:13 EDT 2025 Thu Apr 24 23:11:14 EDT 2025 Wed Aug 20 07:26:06 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1593-33296c33bfc53ac5fb9f79ab6f1cf24d18883cf0a77e918f8a0032f3fa379e9d3 |
ORCID | 0000-0003-4348-7288 0000-0002-1228-2071 0000-0003-3269-5575 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000164 |
PageCount | 22 |
ParticipantIDs | crossref_citationtrail_10_1029_2024JH000164 crossref_primary_10_1029_2024JH000164 wiley_primary_10_1029_2024JH000164_JGR153 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
References | e_1_2_11_1_25_1 e_1_2_11_1_48_1 e_1_2_11_1_27_1 e_1_2_11_1_46_1 e_1_2_11_1_21_1 e_1_2_11_1_44_1 e_1_2_11_1_23_1 e_1_2_11_1_42_1 e_1_2_11_1_40_1 e_1_2_11_1_4_1 e_1_2_11_1_17_1 e_1_2_11_1_2_1 e_1_2_11_1_19_1 e_1_2_11_1_8_1 e_1_2_11_1_13_1 e_1_2_11_1_38_1 e_1_2_11_1_6_1 e_1_2_11_1_15_1 e_1_2_11_1_36_1 e_1_2_11_1_57_1 e_1_2_11_1_34_1 e_1_2_11_1_55_1 e_1_2_11_1_11_1 e_1_2_11_1_32_1 e_1_2_11_1_53_1 e_1_2_11_1_30_1 e_1_2_11_1_51_1 e_1_2_11_2_2_1 e_1_2_11_2_4_1 e_1_2_11_1_28_1 e_1_2_11_1_24_1 e_1_2_11_1_26_1 e_1_2_11_1_47_1 e_1_2_11_1_20_1 e_1_2_11_1_45_1 Corominas J. (e_1_2_11_1_10_1) 2014; 73 e_1_2_11_1_22_1 e_1_2_11_1_43_1 e_1_2_11_1_41_1 e_1_2_11_2_5_1 e_1_2_11_1_18_1 e_1_2_11_1_5_1 e_1_2_11_1_39_1 e_1_2_11_1_14_1 Kingma D. P. (e_1_2_11_1_29_1) 2014 e_1_2_11_1_37_1 e_1_2_11_1_9_1 Bryce E. (e_1_2_11_1_3_1) 2022 e_1_2_11_1_16_1 e_1_2_11_1_35_1 e_1_2_11_1_58_1 e_1_2_11_1_7_1 Srivastava N. (e_1_2_11_1_49_1) 2014; 15 e_1_2_11_1_33_1 e_1_2_11_1_56_1 e_1_2_11_1_12_1 e_1_2_11_1_31_1 e_1_2_11_1_54_1 e_1_2_11_1_52_1 e_1_2_11_1_50_1 e_1_2_11_2_3_1 |
References_xml | – ident: e_1_2_11_1_28_1 doi: 10.1029/2020jf005803 – ident: e_1_2_11_1_57_1 doi: 10.3133/ofr97470C – ident: e_1_2_11_1_6_1 doi: 10.1080/01621459.1997.10473683 – ident: e_1_2_11_1_39_1 doi: 10.1002/2015wr018552 – ident: e_1_2_11_1_42_1 doi: 10.1007/s00382‐018‐4597‐1 – ident: e_1_2_11_1_36_1 doi: 10.1016/j.enggeo.2021.106288 – ident: e_1_2_11_1_52_1 doi: 10.1038/s41597‐022‐01393‐4 – ident: e_1_2_11_1_51_1 doi: 10.1016/j.enggeo.2019.105331 – ident: e_1_2_11_1_50_1 doi: 10.3389/feart.2021.640043 – ident: e_1_2_11_1_30_1 doi: 10.1016/j.enggeo.2014.07.015 – ident: e_1_2_11_1_33_1 doi: 10.1007/s00477‐018‐1518‐0 – ident: e_1_2_11_1_37_1 doi: 10.5194/nhess‐18‐3203‐2018 – ident: e_1_2_11_1_11_1 doi: 10.5281/zenodo.10974259 – start-page: 1 year: 2022 ident: e_1_2_11_1_3_1 article-title: Unified landslide hazard assessment using hurdle models: A case study in the Island of Dominica publication-title: Stochastic Environmental Research and Risk Assessment – ident: e_1_2_11_2_5_1 doi: 10.1016/j.rse.2006.07.011 – ident: e_1_2_11_1_20_1 doi: 10.1198/016214506000001437 – ident: e_1_2_11_1_43_1 doi: 10.1016/j.jspi.2012.07.001 – ident: e_1_2_11_1_19_1 doi: 10.1659/0276‐4741(2002)022[0048:rblalu]2.0.co;2 – volume: 73 start-page: 209 issue: 2 year: 2014 ident: e_1_2_11_1_10_1 article-title: Recommendations for the quantitative analysis of landslide risk publication-title: Bulletin of Engineering Geology and the Environment – ident: e_1_2_11_1_18_1 doi: 10.1038/sdata.2015.66 – ident: e_1_2_11_1_38_1 doi: 10.5194/nhess‐20‐505‐2020 – ident: e_1_2_11_1_17_1 doi: 10.1029/eo081i048p00583 – ident: e_1_2_11_1_9_1 doi: 10.1007/s10064‐023‐03474‐z – ident: e_1_2_11_1_21_1 doi: 10.1016/s0169‐555x(99)00078‐1 – ident: e_1_2_11_1_47_1 doi: 10.1038/s41467‐021‐26959‐5 – ident: e_1_2_11_1_13_1 doi: 10.1016/j.cageo.2023.105364 – ident: e_1_2_11_1_23_1 doi: 10.1016/j.earscirev.2012.02.001 – ident: e_1_2_11_1_7_1 doi: 10.1016/j.scitotenv.2018.01.124 – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: e_1_2_11_1_49_1 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – ident: e_1_2_11_1_12_1 doi: 10.5281/zenodo.10567233 – ident: e_1_2_11_1_32_1 doi: 10.1016/j.earscirev.2020.103318 – year: 2014 ident: e_1_2_11_1_29_1 article-title: Adam: A method for stochastic optimization publication-title: arXiv preprint arXiv:1412.6980 – ident: e_1_2_11_1_31_1 doi: 10.1029/2019JF005056 – ident: e_1_2_11_2_2_1 doi: 10.1016/j.envsoft.2016.04.002 – ident: e_1_2_11_1_55_1 doi: 10.1016/0034‐4257(79)90013‐0 – ident: e_1_2_11_1_34_1 doi: 10.1016/B978-0-12-815226-3.00003-X – ident: e_1_2_11_1_53_1 doi: 10.1016/j.earscirev.2019.102881 – ident: e_1_2_11_1_41_1 doi: 10.1038/d41586‐022‐02141‐9 – ident: e_1_2_11_1_24_1 doi: 10.1016/j.geomorph.2005.06.002 – ident: e_1_2_11_2_3_1 doi: 10.1016/j.geomorph.2020.107124 – ident: e_1_2_11_1_54_1 doi: 10.1061/9780784413272.315 – ident: e_1_2_11_1_40_1 doi: 10.1029/2017jf004494 – ident: e_1_2_11_1_56_1 doi: 10.5194/gmd‐14‐1841‐2021 – ident: e_1_2_11_1_2_1 doi: 10.1007/s00477‐022‐02215‐0 – ident: e_1_2_11_1_25_1 doi: 10.1371/journal.pone.0169748 – ident: e_1_2_11_1_48_1 doi: 10.1016/j.earscirev.2018.03.001 – ident: e_1_2_11_1_4_1 doi: 10.1007/bf01031290 – ident: e_1_2_11_1_58_1 doi: 10.1093/jrsssc/qlad077 – ident: e_1_2_11_1_35_1 doi: 10.1016/j.geoderma.2017.12.011 – ident: e_1_2_11_1_26_1 doi: 10.1002/0471722146 – ident: e_1_2_11_1_27_1 doi: 10.1038/s41467‐021‐26964‐8 – ident: e_1_2_11_1_44_1 doi: 10.1130/g33217.1 – ident: e_1_2_11_1_15_1 doi: 10.1146/annurev‐statistics‐010814‐020133 – ident: e_1_2_11_1_5_1 doi: 10.1007/978-94-009-4029-1_34 – ident: e_1_2_11_1_16_1 doi: 10.1016/j.jag.2023.103631 – ident: e_1_2_11_2_4_1 doi: 10.5194/gmd‐9‐3975‐2016 – ident: e_1_2_11_1_46_1 doi: 10.1007/978‐3‐540‐69970‐5_32 – ident: e_1_2_11_1_22_1 doi: 10.1016/s0012‐821x(01)00589‐1 – ident: e_1_2_11_1_45_1 doi: 10.1214/aos/1176343003 – ident: e_1_2_11_1_8_1 doi: 10.1016/j.spasta.2024.100811 – ident: e_1_2_11_1_14_1 doi: 10.5194/nhess-24-823-2024 |
SSID | ssj0003320807 |
Score | 2.2669437 |
Snippet | The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | climate change deep learning landslides modeling Nepal statistics of extremes |
Title | At the Junction Between Deep Learning and Statistics of Extremes: Formalizing the Landslide Hazard Definition |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000164 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46X3wRRcWfIw_6IFJsmzZdfJu6WYqKiIO9lSRNZDC74SrIHvzbvUvrmA8KvpRSjqO9JrnvLndfCDkxwi9ixrnHQj_xYCZ2PCWk8HiEbZTc6lC5aosHng6ibBgPm4Qb9sLU_BCLhBvODLde4wSXataQDSBHJkTtUZY6zBKtkjXsrsWSvjB6XORYGLxA3TEdYpkaeCq_qX0HFRfLCn54pWWU6txMf5NsNPiQdusfukVWTLlNXrsVBaBGM3BCaEh6VVdX0RtjprShSH2hsiwogseae5lOLO19VJj_m13SPmLT8WiOcqjqDlt8x6PC0FTOYZSAKjsqXf3WDhn0e8_Xqdeck-BpACPMg88UXDOmrI6Z1LFVwiZCKm4DbcOoCCDKZdr6MkmMCDq2I8E0oWVWskQYUbBd0ionpdkjVOkC4kOjVazgBqIxxZSBONYG3Foe631y_m2nXDck4niWxTh3m9mhyJetuk9OF9LTmjzjF7kzZ_I_hfLs9gmW54N_yB6SdXxal4QdkVb19m6OAUNUqu0GSttF4HC9_-x9AeMSvsE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8QD3oxGjV-24McjFkc7dZREw8o4PiQGAMJt7l2rSHBQQSj8k_5L_q6DYIHTTxw2-HlpXl97fvY7_2K0JniduRSxixKbM-Ck1iyBA-5xRwzRsm0JCJBW7SZ33UaPbeXQ1-zWZiUH2LecDMnI7mvzQE3DemMbcCQZELZ7jT8JGlxMlRlU32-Q802vq5XYIMLhNSqnVvfyp4VsCTEbmpRSjiTlAotXRpKVwuuPR4KpotSEycqQlFIpbZDz1O8WNKlEDyfaKpD6nHFIwp6V9Cqw4hnnkwgzsO8qQOq7XREmxhcHIRGOwPbw5IvFxf8IwwupsVJXKttoo0sIcXl1IO2UE7F2-ilPMGQGeIGRD2zc_gmhXPhilIjnHGyPuMwjrDJVlOyZzzUuPoxMQ3H8RWumWR40J8aOaOqZWaKB_1IYT-cgluCKt2PE8DYDuouxYK7KB8PY7WHsJARFKRKClfAB5R_ggoFhbMuMq2ZK_fRxcxOgcxYy83jGYMg-XtOeLBo1X1UmEuPUraOX-TOE5P_KRQ07h4hHhz8Q_YUrfmd-1bQqrebh2jdSKR4tCOUn7y-qWNIYCbiJHEajJ6W7aXfh-b6TQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA61gngRRcX6zMEeRBa3yW62ETxU29oXpYiF3tZNNpFC3Ra7ovZH-Rud7G5LPSh46G0PwxAmMzszyTdfEDpX3A5dyphFie1ZEIllS_CAW8wxY5RMSyIStEWXNfpOa-AOcuhrPguT8kMsDtxMZCT_axPgk1BnZAOGIxO6dqfVSGoWJwNVttXnO7Rs05tmFfa3SEi99njXsLJXBSwJqZtalBLOJKVCS5cG0tWCa48HgumS1MQJS9ATUqntwPMUL5V1OQDHJ5rqgHpc8ZCC3jW0bu4XDYSMOL3FmQ6ottMJbWJgcZAZ7QxrD0u-Wl7wjyy4XBUnaa2-jbayehRXUgfaQTkV7aKXSoyhMMQtSHpm4_BtiubCVaUmOKNkfcZBFGJTrKZcz3isce0jNueN02tcN7XwaDgzckZVx4wUj4ahwo1gBl4JqvQwSvBie6i_Egvuo3w0jtQBwkKG0I8qKVwBH9D9CSoU9M26xLRmriygy7mdfJmRlpu3M0Z-cnlOuL9s1QIqLqQnKVnHL3IXicn_FPJb9w-QDg7_IXuGNnrVut9pdttHaNMIpGi0Y5SPX9_UCZQvsThNfAajp1U76Tf0ZPl_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=At+the+Junction+Between+Deep+Learning+and+Statistics+of+Extremes%3A+Formalizing+the+Landslide+Hazard+Definition&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Dahal%2C+Ashok&rft.au=Huser%2C+Rapha%C3%ABl&rft.au=Lombardo%2C+Luigi&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000164&rft.externalDBID=10.1029%252F2024JH000164&rft.externalDocID=JGR153 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |