At the Junction Between Deep Learning and Statistics of Extremes: Formalizing the Landslide Hazard Definition

The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constit...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 3
Main Authors Dahal, Ashok, Huser, Raphaël, Lombardo, Luigi
Format Journal Article
LanguageEnglish
Published 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are dependent on each other because larger events occur less frequently and vice versa. However, due to the lack of multi‐temporal inventories and joint statistical models, modeling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with extreme‐value theory to analyze an inventory of 30 years of observed rainfall‐triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our model performs excellently (with an accuracy of 0.78 and an area under the curve of 0.86) and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under climate change scenarios (SSP245 and SSP585), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions (Siwalik and lower Himalayas; ≈110–3,500 m) while remaining the same in the middle Himalayan region (≈3,500–5,000 m) whilst decreasing slightly in the upper Himalayan region (≳5,000 m) areas. Plain Language Summary We implement a model capable of satisfying the standard definition of landslide hazard. Estimating landslide hazard requires assessing where landslides may occur, how frequently and how large they may be. Since the inception of such a concept, each component of the hazard has been modeled individually, with most of the scientific efforts being dedicated to the spatial and temporal components, thus neglecting the third intensity requirement. Here, we make use of a deep learning architecture to estimate “where” by solving a standard classification problem jointly. As for the intensity, we modeled the landslide area density for each slope in the selected Nepalese landscape. This is done by solving a problem typical of extreme statistics, still in a deep learning framework. Because extreme statistics is suitable to make long‐term predictions, that is, at return periods of a given process, we intrinsically addressed the temporal component as well. Thanks to this property, we generate landslide hazard simulations for this century, incorporating climate projections in our analyses. Key Points A Landslide hazard model is developed by combining deep learning and the extended generalized Pareto distribution from extreme value theory Thirty years of past observations are used to model the current landslide hazard scenario under different return periods of precipitation Landslide hazard is predicted for multiple return periods of climate change scenarios up to the end of the century
AbstractList The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are dependent on each other because larger events occur less frequently and vice versa. However, due to the lack of multi‐temporal inventories and joint statistical models, modeling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with extreme‐value theory to analyze an inventory of 30 years of observed rainfall‐triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our model performs excellently (with an accuracy of 0.78 and an area under the curve of 0.86) and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under climate change scenarios (SSP245 and SSP585), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions (Siwalik and lower Himalayas; ≈110–3,500 m) while remaining the same in the middle Himalayan region (≈3,500–5,000 m) whilst decreasing slightly in the upper Himalayan region (≳5,000 m) areas. Plain Language Summary We implement a model capable of satisfying the standard definition of landslide hazard. Estimating landslide hazard requires assessing where landslides may occur, how frequently and how large they may be. Since the inception of such a concept, each component of the hazard has been modeled individually, with most of the scientific efforts being dedicated to the spatial and temporal components, thus neglecting the third intensity requirement. Here, we make use of a deep learning architecture to estimate “where” by solving a standard classification problem jointly. As for the intensity, we modeled the landslide area density for each slope in the selected Nepalese landscape. This is done by solving a problem typical of extreme statistics, still in a deep learning framework. Because extreme statistics is suitable to make long‐term predictions, that is, at return periods of a given process, we intrinsically addressed the temporal component as well. Thanks to this property, we generate landslide hazard simulations for this century, incorporating climate projections in our analyses. Key Points A Landslide hazard model is developed by combining deep learning and the extended generalized Pareto distribution from extreme value theory Thirty years of past observations are used to model the current landslide hazard scenario under different return periods of precipitation Landslide hazard is predicted for multiple return periods of climate change scenarios up to the end of the century
The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency (return period). Only the first two elements are usually considered and estimated when working over vast areas. Even then, separate models constitute the standard, with frequency being rarely investigated. Frequency and intensity are dependent on each other because larger events occur less frequently and vice versa. However, due to the lack of multi‐temporal inventories and joint statistical models, modeling such properties via a unified hazard model has always been challenging and has yet to be attempted. Here, we develop a unified model to estimate landslide hazard at the slope unit level to address such gaps. We employed deep learning, combined with extreme‐value theory to analyze an inventory of 30 years of observed rainfall‐triggered landslides in Nepal and assess landslide hazard for multiple return periods. We also use our model to further explore landslide hazard for the same return periods under different climate change scenarios up to the end of the century. Our model performs excellently (with an accuracy of 0.78 and an area under the curve of 0.86) and can be used to model landslide hazard in a unified manner. Geomorphologically, we find that under climate change scenarios (SSP245 and SSP585), landslide hazard is likely to increase up to two times on average in the lower Himalayan regions (Siwalik and lower Himalayas; ≈110–3,500 m) while remaining the same in the middle Himalayan region (≈3,500–5,000 m) whilst decreasing slightly in the upper Himalayan region (≳5,000 m) areas. We implement a model capable of satisfying the standard definition of landslide hazard. Estimating landslide hazard requires assessing where landslides may occur, how frequently and how large they may be. Since the inception of such a concept, each component of the hazard has been modeled individually, with most of the scientific efforts being dedicated to the spatial and temporal components, thus neglecting the third intensity requirement. Here, we make use of a deep learning architecture to estimate “where” by solving a standard classification problem jointly. As for the intensity, we modeled the landslide area density for each slope in the selected Nepalese landscape. This is done by solving a problem typical of extreme statistics, still in a deep learning framework. Because extreme statistics is suitable to make long‐term predictions, that is, at return periods of a given process, we intrinsically addressed the temporal component as well. Thanks to this property, we generate landslide hazard simulations for this century, incorporating climate projections in our analyses. A Landslide hazard model is developed by combining deep learning and the extended generalized Pareto distribution from extreme value theory Thirty years of past observations are used to model the current landslide hazard scenario under different return periods of precipitation Landslide hazard is predicted for multiple return periods of climate change scenarios up to the end of the century
Author Dahal, Ashok
Huser, Raphaël
Lombardo, Luigi
Author_xml – sequence: 1
  givenname: Ashok
  orcidid: 0000-0003-3269-5575
  surname: Dahal
  fullname: Dahal, Ashok
  email: a.dahal@utwente.nl
  organization: University of Twente
– sequence: 2
  givenname: Raphaël
  orcidid: 0000-0002-1228-2071
  surname: Huser
  fullname: Huser, Raphaël
  organization: King Abdullah University of Science and Technology (KAUST)
– sequence: 3
  givenname: Luigi
  orcidid: 0000-0003-4348-7288
  surname: Lombardo
  fullname: Lombardo, Luigi
  organization: University of Twente
BookMark eNp9kMtOwzAQRS1UJErpjg_wB1DwI2lidqX0QRUJicc6cp0xGCVOZRuV9utxVBYVEqxmFuce3Zlz1LOtBYQuKbmmhIkbRliyWhJC6Dg5QX0mBB-ljJLe0X6Ght5_RIZzRnKS9VEzCTi8A159WhVMa_EdhC2AxfcAG1yAdNbYNyxthZ-DDMYHozxuNZ59BQcN-Fs8b10ja7PvuE5VRNjXpgK8lHvpqqjSxprOfoFOtaw9DH_mAL3OZy_T5ah4XDxMJ8VI0TRWje3EWHG-1irlUqV6LXQm5HqsqdIsqWie51xpIrMMBM11LuNFTHMteSZAVHyA2MGrXOu9A10q07VvbXDS1CUlZfez8vhnMXT1K7RxppFu9xdODvjW1LD7ly1Xiyeacv4NuqB9HA
CitedBy_id crossref_primary_10_1016_j_catena_2024_107989
Cites_doi 10.1029/2020jf005803
10.3133/ofr97470C
10.1080/01621459.1997.10473683
10.1002/2015wr018552
10.1007/s00382‐018‐4597‐1
10.1016/j.enggeo.2021.106288
10.1038/s41597‐022‐01393‐4
10.1016/j.enggeo.2019.105331
10.3389/feart.2021.640043
10.1016/j.enggeo.2014.07.015
10.1007/s00477‐018‐1518‐0
10.5194/nhess‐18‐3203‐2018
10.5281/zenodo.10974259
10.1016/j.rse.2006.07.011
10.1198/016214506000001437
10.1016/j.jspi.2012.07.001
10.1659/0276‐4741(2002)022[0048:rblalu]2.0.co;2
10.1038/sdata.2015.66
10.5194/nhess‐20‐505‐2020
10.1029/eo081i048p00583
10.1007/s10064‐023‐03474‐z
10.1016/s0169‐555x(99)00078‐1
10.1038/s41467‐021‐26959‐5
10.1016/j.cageo.2023.105364
10.1016/j.earscirev.2012.02.001
10.1016/j.scitotenv.2018.01.124
10.5281/zenodo.10567233
10.1016/j.earscirev.2020.103318
10.1029/2019JF005056
10.1016/j.envsoft.2016.04.002
10.1016/0034‐4257(79)90013‐0
10.1016/B978-0-12-815226-3.00003-X
10.1016/j.earscirev.2019.102881
10.1038/d41586‐022‐02141‐9
10.1016/j.geomorph.2005.06.002
10.1016/j.geomorph.2020.107124
10.1061/9780784413272.315
10.1029/2017jf004494
10.5194/gmd‐14‐1841‐2021
10.1007/s00477‐022‐02215‐0
10.1371/journal.pone.0169748
10.1016/j.earscirev.2018.03.001
10.1007/bf01031290
10.1093/jrsssc/qlad077
10.1016/j.geoderma.2017.12.011
10.1002/0471722146
10.1038/s41467‐021‐26964‐8
10.1130/g33217.1
10.1146/annurev‐statistics‐010814‐020133
10.1007/978-94-009-4029-1_34
10.1016/j.jag.2023.103631
10.5194/gmd‐9‐3975‐2016
10.1007/978‐3‐540‐69970‐5_32
10.1016/s0012‐821x(01)00589‐1
10.1214/aos/1176343003
10.1016/j.spasta.2024.100811
10.5194/nhess-24-823-2024
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000164
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000164
JGR153
Genre researchArticle
GrantInformation_xml – fundername: SURF Cooperative
  funderid: EINF‐7984
– fundername: Global Collaborative Research, King Abdullah University of Science and Technology
  funderid: URF/1/4338‐01‐01
– fundername: King Abdullah University of Science and Technology
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
WIN
AAYXX
CITATION
ID FETCH-LOGICAL-c1593-33296c33bfc53ac5fb9f79ab6f1cf24d18883cf0a77e918f8a0032f3fa379e9d3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Thu Apr 24 23:11:14 EDT 2025
Wed Aug 20 07:26:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1593-33296c33bfc53ac5fb9f79ab6f1cf24d18883cf0a77e918f8a0032f3fa379e9d3
ORCID 0000-0003-4348-7288
0000-0002-1228-2071
0000-0003-3269-5575
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000164
PageCount 22
ParticipantIDs crossref_citationtrail_10_1029_2024JH000164
crossref_primary_10_1029_2024JH000164
wiley_primary_10_1029_2024JH000164_JGR153
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References e_1_2_11_1_25_1
e_1_2_11_1_48_1
e_1_2_11_1_27_1
e_1_2_11_1_46_1
e_1_2_11_1_21_1
e_1_2_11_1_44_1
e_1_2_11_1_23_1
e_1_2_11_1_42_1
e_1_2_11_1_40_1
e_1_2_11_1_4_1
e_1_2_11_1_17_1
e_1_2_11_1_2_1
e_1_2_11_1_19_1
e_1_2_11_1_8_1
e_1_2_11_1_13_1
e_1_2_11_1_38_1
e_1_2_11_1_6_1
e_1_2_11_1_15_1
e_1_2_11_1_36_1
e_1_2_11_1_57_1
e_1_2_11_1_34_1
e_1_2_11_1_55_1
e_1_2_11_1_11_1
e_1_2_11_1_32_1
e_1_2_11_1_53_1
e_1_2_11_1_30_1
e_1_2_11_1_51_1
e_1_2_11_2_2_1
e_1_2_11_2_4_1
e_1_2_11_1_28_1
e_1_2_11_1_24_1
e_1_2_11_1_26_1
e_1_2_11_1_47_1
e_1_2_11_1_20_1
e_1_2_11_1_45_1
Corominas J. (e_1_2_11_1_10_1) 2014; 73
e_1_2_11_1_22_1
e_1_2_11_1_43_1
e_1_2_11_1_41_1
e_1_2_11_2_5_1
e_1_2_11_1_18_1
e_1_2_11_1_5_1
e_1_2_11_1_39_1
e_1_2_11_1_14_1
Kingma D. P. (e_1_2_11_1_29_1) 2014
e_1_2_11_1_37_1
e_1_2_11_1_9_1
Bryce E. (e_1_2_11_1_3_1) 2022
e_1_2_11_1_16_1
e_1_2_11_1_35_1
e_1_2_11_1_58_1
e_1_2_11_1_7_1
Srivastava N. (e_1_2_11_1_49_1) 2014; 15
e_1_2_11_1_33_1
e_1_2_11_1_56_1
e_1_2_11_1_12_1
e_1_2_11_1_31_1
e_1_2_11_1_54_1
e_1_2_11_1_52_1
e_1_2_11_1_50_1
e_1_2_11_2_3_1
References_xml – ident: e_1_2_11_1_28_1
  doi: 10.1029/2020jf005803
– ident: e_1_2_11_1_57_1
  doi: 10.3133/ofr97470C
– ident: e_1_2_11_1_6_1
  doi: 10.1080/01621459.1997.10473683
– ident: e_1_2_11_1_39_1
  doi: 10.1002/2015wr018552
– ident: e_1_2_11_1_42_1
  doi: 10.1007/s00382‐018‐4597‐1
– ident: e_1_2_11_1_36_1
  doi: 10.1016/j.enggeo.2021.106288
– ident: e_1_2_11_1_52_1
  doi: 10.1038/s41597‐022‐01393‐4
– ident: e_1_2_11_1_51_1
  doi: 10.1016/j.enggeo.2019.105331
– ident: e_1_2_11_1_50_1
  doi: 10.3389/feart.2021.640043
– ident: e_1_2_11_1_30_1
  doi: 10.1016/j.enggeo.2014.07.015
– ident: e_1_2_11_1_33_1
  doi: 10.1007/s00477‐018‐1518‐0
– ident: e_1_2_11_1_37_1
  doi: 10.5194/nhess‐18‐3203‐2018
– ident: e_1_2_11_1_11_1
  doi: 10.5281/zenodo.10974259
– start-page: 1
  year: 2022
  ident: e_1_2_11_1_3_1
  article-title: Unified landslide hazard assessment using hurdle models: A case study in the Island of Dominica
  publication-title: Stochastic Environmental Research and Risk Assessment
– ident: e_1_2_11_2_5_1
  doi: 10.1016/j.rse.2006.07.011
– ident: e_1_2_11_1_20_1
  doi: 10.1198/016214506000001437
– ident: e_1_2_11_1_43_1
  doi: 10.1016/j.jspi.2012.07.001
– ident: e_1_2_11_1_19_1
  doi: 10.1659/0276‐4741(2002)022[0048:rblalu]2.0.co;2
– volume: 73
  start-page: 209
  issue: 2
  year: 2014
  ident: e_1_2_11_1_10_1
  article-title: Recommendations for the quantitative analysis of landslide risk
  publication-title: Bulletin of Engineering Geology and the Environment
– ident: e_1_2_11_1_18_1
  doi: 10.1038/sdata.2015.66
– ident: e_1_2_11_1_38_1
  doi: 10.5194/nhess‐20‐505‐2020
– ident: e_1_2_11_1_17_1
  doi: 10.1029/eo081i048p00583
– ident: e_1_2_11_1_9_1
  doi: 10.1007/s10064‐023‐03474‐z
– ident: e_1_2_11_1_21_1
  doi: 10.1016/s0169‐555x(99)00078‐1
– ident: e_1_2_11_1_47_1
  doi: 10.1038/s41467‐021‐26959‐5
– ident: e_1_2_11_1_13_1
  doi: 10.1016/j.cageo.2023.105364
– ident: e_1_2_11_1_23_1
  doi: 10.1016/j.earscirev.2012.02.001
– ident: e_1_2_11_1_7_1
  doi: 10.1016/j.scitotenv.2018.01.124
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: e_1_2_11_1_49_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_11_1_12_1
  doi: 10.5281/zenodo.10567233
– ident: e_1_2_11_1_32_1
  doi: 10.1016/j.earscirev.2020.103318
– year: 2014
  ident: e_1_2_11_1_29_1
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv preprint arXiv:1412.6980
– ident: e_1_2_11_1_31_1
  doi: 10.1029/2019JF005056
– ident: e_1_2_11_2_2_1
  doi: 10.1016/j.envsoft.2016.04.002
– ident: e_1_2_11_1_55_1
  doi: 10.1016/0034‐4257(79)90013‐0
– ident: e_1_2_11_1_34_1
  doi: 10.1016/B978-0-12-815226-3.00003-X
– ident: e_1_2_11_1_53_1
  doi: 10.1016/j.earscirev.2019.102881
– ident: e_1_2_11_1_41_1
  doi: 10.1038/d41586‐022‐02141‐9
– ident: e_1_2_11_1_24_1
  doi: 10.1016/j.geomorph.2005.06.002
– ident: e_1_2_11_2_3_1
  doi: 10.1016/j.geomorph.2020.107124
– ident: e_1_2_11_1_54_1
  doi: 10.1061/9780784413272.315
– ident: e_1_2_11_1_40_1
  doi: 10.1029/2017jf004494
– ident: e_1_2_11_1_56_1
  doi: 10.5194/gmd‐14‐1841‐2021
– ident: e_1_2_11_1_2_1
  doi: 10.1007/s00477‐022‐02215‐0
– ident: e_1_2_11_1_25_1
  doi: 10.1371/journal.pone.0169748
– ident: e_1_2_11_1_48_1
  doi: 10.1016/j.earscirev.2018.03.001
– ident: e_1_2_11_1_4_1
  doi: 10.1007/bf01031290
– ident: e_1_2_11_1_58_1
  doi: 10.1093/jrsssc/qlad077
– ident: e_1_2_11_1_35_1
  doi: 10.1016/j.geoderma.2017.12.011
– ident: e_1_2_11_1_26_1
  doi: 10.1002/0471722146
– ident: e_1_2_11_1_27_1
  doi: 10.1038/s41467‐021‐26964‐8
– ident: e_1_2_11_1_44_1
  doi: 10.1130/g33217.1
– ident: e_1_2_11_1_15_1
  doi: 10.1146/annurev‐statistics‐010814‐020133
– ident: e_1_2_11_1_5_1
  doi: 10.1007/978-94-009-4029-1_34
– ident: e_1_2_11_1_16_1
  doi: 10.1016/j.jag.2023.103631
– ident: e_1_2_11_2_4_1
  doi: 10.5194/gmd‐9‐3975‐2016
– ident: e_1_2_11_1_46_1
  doi: 10.1007/978‐3‐540‐69970‐5_32
– ident: e_1_2_11_1_22_1
  doi: 10.1016/s0012‐821x(01)00589‐1
– ident: e_1_2_11_1_45_1
  doi: 10.1214/aos/1176343003
– ident: e_1_2_11_1_8_1
  doi: 10.1016/j.spasta.2024.100811
– ident: e_1_2_11_1_14_1
  doi: 10.5194/nhess-24-823-2024
SSID ssj0003320807
Score 2.2669437
Snippet The most adopted definition of landslide hazard combines spatial information about landslide location (susceptibility), threat (intensity), and frequency...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms climate change
deep learning
landslides
modeling
Nepal
statistics of extremes
Title At the Junction Between Deep Learning and Statistics of Extremes: Formalizing the Landslide Hazard Definition
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000164
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46X3wRRcWfIw_6IFJsmzZdfJu6WYqKiIO9lSRNZDC74SrIHvzbvUvrmA8KvpRSjqO9JrnvLndfCDkxwi9ixrnHQj_xYCZ2PCWk8HiEbZTc6lC5aosHng6ibBgPm4Qb9sLU_BCLhBvODLde4wSXataQDSBHJkTtUZY6zBKtkjXsrsWSvjB6XORYGLxA3TEdYpkaeCq_qX0HFRfLCn54pWWU6txMf5NsNPiQdusfukVWTLlNXrsVBaBGM3BCaEh6VVdX0RtjprShSH2hsiwogseae5lOLO19VJj_m13SPmLT8WiOcqjqDlt8x6PC0FTOYZSAKjsqXf3WDhn0e8_Xqdeck-BpACPMg88UXDOmrI6Z1LFVwiZCKm4DbcOoCCDKZdr6MkmMCDq2I8E0oWVWskQYUbBd0ionpdkjVOkC4kOjVazgBqIxxZSBONYG3Foe631y_m2nXDck4niWxTh3m9mhyJetuk9OF9LTmjzjF7kzZ_I_hfLs9gmW54N_yB6SdXxal4QdkVb19m6OAUNUqu0GSttF4HC9_-x9AeMSvsE
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT8IwFG8QD3oxGjV-24McjFkc7dZREw8o4PiQGAMJt7l2rSHBQQSj8k_5L_q6DYIHTTxw2-HlpXl97fvY7_2K0JniduRSxixKbM-Ck1iyBA-5xRwzRsm0JCJBW7SZ33UaPbeXQ1-zWZiUH2LecDMnI7mvzQE3DemMbcCQZELZ7jT8JGlxMlRlU32-Q802vq5XYIMLhNSqnVvfyp4VsCTEbmpRSjiTlAotXRpKVwuuPR4KpotSEycqQlFIpbZDz1O8WNKlEDyfaKpD6nHFIwp6V9Cqw4hnnkwgzsO8qQOq7XREmxhcHIRGOwPbw5IvFxf8IwwupsVJXKttoo0sIcXl1IO2UE7F2-ilPMGQGeIGRD2zc_gmhXPhilIjnHGyPuMwjrDJVlOyZzzUuPoxMQ3H8RWumWR40J8aOaOqZWaKB_1IYT-cgluCKt2PE8DYDuouxYK7KB8PY7WHsJARFKRKClfAB5R_ggoFhbMuMq2ZK_fRxcxOgcxYy83jGYMg-XtOeLBo1X1UmEuPUraOX-TOE5P_KRQ07h4hHhz8Q_YUrfmd-1bQqrebh2jdSKR4tCOUn7y-qWNIYCbiJHEajJ6W7aXfh-b6TQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEA61gngRRcX6zMEeRBa3yW62ETxU29oXpYiF3tZNNpFC3Ra7ovZH-Rud7G5LPSh46G0PwxAmMzszyTdfEDpX3A5dyphFie1ZEIllS_CAW8wxY5RMSyIStEWXNfpOa-AOcuhrPguT8kMsDtxMZCT_axPgk1BnZAOGIxO6dqfVSGoWJwNVttXnO7Rs05tmFfa3SEi99njXsLJXBSwJqZtalBLOJKVCS5cG0tWCa48HgumS1MQJS9ATUqntwPMUL5V1OQDHJ5rqgHpc8ZCC3jW0bu4XDYSMOL3FmQ6ottMJbWJgcZAZ7QxrD0u-Wl7wjyy4XBUnaa2-jbayehRXUgfaQTkV7aKXSoyhMMQtSHpm4_BtiubCVaUmOKNkfcZBFGJTrKZcz3isce0jNueN02tcN7XwaDgzckZVx4wUj4ahwo1gBl4JqvQwSvBie6i_Egvuo3w0jtQBwkKG0I8qKVwBH9D9CSoU9M26xLRmriygy7mdfJmRlpu3M0Z-cnlOuL9s1QIqLqQnKVnHL3IXicn_FPJb9w-QDg7_IXuGNnrVut9pdttHaNMIpGi0Y5SPX9_UCZQvsThNfAajp1U76Tf0ZPl_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=At+the+Junction+Between+Deep+Learning+and+Statistics+of+Extremes%3A+Formalizing+the+Landslide+Hazard+Definition&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Dahal%2C+Ashok&rft.au=Huser%2C+Rapha%C3%ABl&rft.au=Lombardo%2C+Luigi&rft.date=2024-09-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000164&rft.externalDBID=10.1029%252F2024JH000164&rft.externalDocID=JGR153
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon