Improving Tropical Cyclone Precipitation Forecasting With Deep Learning and Satellite Image Sequencing
Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 2 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2993-5210 2993-5210 |
DOI | 10.1029/2024JH000175 |
Cover
Loading…
Abstract | Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing predictability. To the former, using the Global Precipitation Measurement, we establish a high‐accuracy regional and intensity forecasting method. Through an analysis of precipitation patterns and intensities, we have demonstrated the effectiveness, reliability, and robustness of forecasting TC precipitation. To the latter, we conduct predictability research, which covers different intensity categories and landfall versus non‐landfall TC precipitation. The conclusions are: (a) TC precipitation varies regionally with predictability differences among intensity categories; (b) Forecasting landfalling TC precipitation is less challenging than non‐landfalling, considering TC intensity and paths. The proposed method also demonstrates strong forecasting capabilities in handling extreme and accumulated precipitation within 0–120 min, achieving an accuracy rate of 87%.
Plain Language Summary
Tropical cyclones (TC) are commonly known for their strong winds, but the true dangers lie in associated rainfall and resulting floods. With a warming atmosphere due to global climate change, tropical cyclone precipitation is expected to rise. Accurate forecasts of where and how intense these TCs will produce precipitation become crucial. However, existing methods often struggle to meet this demand. Our new method, the Tropical Cyclone Precipitation Forecasting Model (TCPF), uses satellite image sequencing to forecast TC precipitation accurately within 0–120 min of a cyclone, even in extreme situations. By analyzing TCs by intensity and whether they make landfall, our predictability research enhances the understanding of TC precipitation, providing intelligent insights for improved forecasting models.
Key Points
We develop a tropical cyclone precipitation forecasting model (TCPF) using satellite image sequencing from Global Precipitation Measurement
TCPF forecasts TC precipitation accurately within 0–120 min, including extreme and accumulated precipitation
The research gives the predictability in different intensity categories and landfall versus non‐landfall TC precipitation |
---|---|
AbstractList | Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing predictability. To the former, using the Global Precipitation Measurement, we establish a high‐accuracy regional and intensity forecasting method. Through an analysis of precipitation patterns and intensities, we have demonstrated the effectiveness, reliability, and robustness of forecasting TC precipitation. To the latter, we conduct predictability research, which covers different intensity categories and landfall versus non‐landfall TC precipitation. The conclusions are: (a) TC precipitation varies regionally with predictability differences among intensity categories; (b) Forecasting landfalling TC precipitation is less challenging than non‐landfalling, considering TC intensity and paths. The proposed method also demonstrates strong forecasting capabilities in handling extreme and accumulated precipitation within 0–120 min, achieving an accuracy rate of 87%.
Tropical cyclones (TC) are commonly known for their strong winds, but the true dangers lie in associated rainfall and resulting floods. With a warming atmosphere due to global climate change, tropical cyclone precipitation is expected to rise. Accurate forecasts of where and how intense these TCs will produce precipitation become crucial. However, existing methods often struggle to meet this demand. Our new method, the Tropical Cyclone Precipitation Forecasting Model (TCPF), uses satellite image sequencing to forecast TC precipitation accurately within 0–120 min of a cyclone, even in extreme situations. By analyzing TCs by intensity and whether they make landfall, our predictability research enhances the understanding of TC precipitation, providing intelligent insights for improved forecasting models.
We develop a tropical cyclone precipitation forecasting model (TCPF) using satellite image sequencing from Global Precipitation Measurement
TCPF forecasts TC precipitation accurately within 0–120 min, including extreme and accumulated precipitation
The research gives the predictability in different intensity categories and landfall versus non‐landfall TC precipitation Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing predictability. To the former, using the Global Precipitation Measurement, we establish a high‐accuracy regional and intensity forecasting method. Through an analysis of precipitation patterns and intensities, we have demonstrated the effectiveness, reliability, and robustness of forecasting TC precipitation. To the latter, we conduct predictability research, which covers different intensity categories and landfall versus non‐landfall TC precipitation. The conclusions are: (a) TC precipitation varies regionally with predictability differences among intensity categories; (b) Forecasting landfalling TC precipitation is less challenging than non‐landfalling, considering TC intensity and paths. The proposed method also demonstrates strong forecasting capabilities in handling extreme and accumulated precipitation within 0–120 min, achieving an accuracy rate of 87%. Plain Language Summary Tropical cyclones (TC) are commonly known for their strong winds, but the true dangers lie in associated rainfall and resulting floods. With a warming atmosphere due to global climate change, tropical cyclone precipitation is expected to rise. Accurate forecasts of where and how intense these TCs will produce precipitation become crucial. However, existing methods often struggle to meet this demand. Our new method, the Tropical Cyclone Precipitation Forecasting Model (TCPF), uses satellite image sequencing to forecast TC precipitation accurately within 0–120 min of a cyclone, even in extreme situations. By analyzing TCs by intensity and whether they make landfall, our predictability research enhances the understanding of TC precipitation, providing intelligent insights for improved forecasting models. Key Points We develop a tropical cyclone precipitation forecasting model (TCPF) using satellite image sequencing from Global Precipitation Measurement TCPF forecasts TC precipitation accurately within 0–120 min, including extreme and accumulated precipitation The research gives the predictability in different intensity categories and landfall versus non‐landfall TC precipitation |
Author | Yang, Nan Wang, Chong Li, Xiaofeng |
Author_xml | – sequence: 1 givenname: Nan orcidid: 0000-0002-3864-1191 surname: Yang fullname: Yang, Nan organization: Chinese Academy of Sciences – sequence: 2 givenname: Chong orcidid: 0000-0002-8275-8450 surname: Wang fullname: Wang, Chong organization: Chinese Academy of Sciences – sequence: 3 givenname: Xiaofeng orcidid: 0000-0001-7038-5119 surname: Li fullname: Li, Xiaofeng email: lixf@qdio.ac.cn organization: Chinese Academy of Sciences |
BookMark | eNp9kMtKAzEUhoNUsNbufIA8gKO5dDKZpVR7o6DYisshzZzUSJoZM6nSt3dKuyiCrs7t-38O_yXq-MoDQteU3FLC8jtG2GA2IYTQLD1DXZbnPEkZJZ2T_gL1m-ajZThnRJKsi8x0U4fqy_o1Xoaqtlo5PNxp13rj5wDa1jaqaCuPR1U7qibu0Tcb3_EDQI3noILfr5Qv8UJFcM5GwNONWgNewOcWvG7PV-jcKNdA_1h76HX0uBxOkvnTeDq8nyeapjlLlARQYMRAigHjQq1SwkttMsFYSUvDV4ZxmYHgQECAlsqUeW7STMqSi2yleQ-xg68OVdMEMIU-_h-Dsq6gpNiHVZyG1YpufonqYDcq7P7CyQH_tg52_7LFbPxCKeM_Dr97pw |
CitedBy_id | crossref_primary_10_1088_1748_9326_ad661f |
Cites_doi | 10.1007/s13131‐021‐1880‐5 10.1109/TGRS.2021.3126460 10.1175/MWR‐D‐15‐0404.1 10.1038/s41612‐022‐00270‐6 10.1109/MGRS.2023.3343623 10.1029/2022EA002362 10.5772/2036 10.1038/s41586‐021‐03854‐z 10.1016/j.asoc.2022.109003 10.1175/1520‐0493(2003)131〈0749:HTPUAS〉2.0.CO;2 10.1175/MWR‐D‐19‐0199.1 10.3390/atmos13010126 10.1038/273287a0 10.1016/j.atmosres.2022.106037 10.1093/NSR/NWAA047 10.1007/978-3-642-04474-8_21 10.1175/MWR‐D‐16‐0438.1 10.1109/TIP.2003.819861 10.1109/JSTARS.2022.3203398 10.1175/WAF‐D‐15‐0016.1 10.25921/82ty‐9e16 10.1016/j.ocemod.2023.102176 10.1175/JCLI‐D‐16‐0150.1 10.1002/met.1842 10.1175/MWR‐D‐22‐0166.1 10.1109/TGRS.2023.3328945 10.1109/TGRS.2021.3103251 10.1175/WAF‐D‐14‐00037.1 10.1029/2022JD038163 10.1007/s13351‐017‐6007‐8 10.1126/sciadv.aba1482 10.3390/jmse7100336 10.34133/olar.0012 10.1109/CVPR42600.2020.01149 10.1038/s41612‐022‐00320‐z 10.5067/GPM/IMERG/3B‐HH/07 10.1038/nature12855 10.1109/TGRS.2022.3177600 10.1029/2018MS001597 10.1093/nsr/nwac044 10.1109/TGRS.2023.3279089 10.1029/2023GL104347 10.1175/JCLI‐D‐16‐0289.1 10.1109/CVPR52688.2022.00317 10.1256/qj.05.149 10.1109/TPAMI.2022.3165153 10.1175/JAMC‐D‐16‐0300.1 10.1002/2016MS000892 10.1175/2009BAMS2755.1 10.1038/s41612‐023‐00391‐6 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION |
DOI | 10.1029/2024JH000175 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JH000175 JGR112 |
Genre | researchArticle |
GrantInformation_xml | – fundername: Shandong Province Postdoctoral Innovative Talents Support Program funderid: SDBX2022026 – fundername: Strategic Priority Research Program of the Chinese Academy of Sciences funderid: XDB42000000 – fundername: National Science Foundation of China funderid: 42306214 – fundername: China Postdoctoral Science Foundation funderid: 2023M733533 – fundername: Major Scientific and Technological Innovation Projects in Shandong Province funderid: 2019JZZY010102 |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAYXX CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c1592-a8eeaef64864236ab503dcf7622d1df3bf2387e63e0e6ec8afd99f5788d367bc3 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Thu Apr 24 23:00:48 EDT 2025 Tue Jul 01 03:43:13 EDT 2025 Wed Jan 22 17:18:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution-NonCommercial-NoDerivs http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1592-a8eeaef64864236ab503dcf7622d1df3bf2387e63e0e6ec8afd99f5788d367bc3 |
ORCID | 0000-0002-8275-8450 0000-0002-3864-1191 0000-0001-7038-5119 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000175 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1029_2024JH000175 crossref_primary_10_1029_2024JH000175 wiley_primary_10_1029_2024JH000175_JGR112 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
References | 2023; 182 2023; 36 2023; 6 2019; 11 2015; 30 2016; 31 2016; 144 2006; 131 2023; 2 2017; 9 2018; 7 2017; 31 2020; 6 2017; 30 2022; 162 2021; 597 2015; 612 2022; 124 2019; 7 2021; 7 2022; 270 2012 2002; 31 2013; 504 2020; 148 2023; 128 1978; 273 2022; 41 2024; 12 2023; 61 2003; 131 2009; 5735 2022; 2022 2023; 45 2022; 60 2022; 5 2021 2023; 151 2020 2022; 9 2017; 56 2004; 13 2015; 2015 2022; 13 2020; 27 2018 2022; 15 2016 2016; 29 2010; 91 2017; 145 2023; 50 e_1_2_10_46_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Zhou J. (e_1_2_10_56_1) 2022 Leroux M.‐D. (e_1_2_10_23_1) 2018; 7 Hon W. Y. (e_1_2_10_13_1) 2016 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_58_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Tan C. (e_1_2_10_38_1) 2023; 36 Lee S. (e_1_2_10_21_1) 2021 e_1_2_10_29_1 e_1_2_10_27_1 Shi X. (e_1_2_10_35_1) 2015; 2015 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 Pietrafesa L. J. (e_1_2_10_26_1) 2002; 31 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_47_1 |
References_xml | – volume: 5 start-page: 93 issue: 1 year: 2022 article-title: Uncertainties in tropical cyclone landfall decay publication-title: npj Climate and Atmospheric Science – volume: 30 start-page: 217 issue: 1 year: 2015 end-page: 237 article-title: Ensemble typhoon quantitative precipitation forecasts model in Taiwan publication-title: Weather and Forecasting – volume: 13 issue: 1 year: 2022 article-title: The use of composite GOES‐R satellite imagery to evaluate a TC intensity and vortex structure forecast by an FV3GFS‐based hurricane forecast model publication-title: Atmosphere – start-page: 11471 year: 2020 end-page: 11481 – volume: 31 start-page: 747 issue: 4 year: 2017 end-page: 766 article-title: Improving the extreme rainfall forecast of Typhoon Morakot (2009) by assimilating radar data from Taiwan Island and mainland China publication-title: Journal of Meteorological Research – volume: 29 start-page: 6127 issue: 17 year: 2016 end-page: 6135 article-title: On the link between tropical cyclones and daily rainfall extremes derived from global satellite observations publication-title: Journal of Climate – volume: 597 start-page: 672 issue: 7878 year: 2021 end-page: 677 article-title: Skilful precipitation nowcasting using deep generative models of radar publication-title: Nature – start-page: 3053 year: 2021 end-page: 3062 – volume: 50 issue: 17 year: 2023 article-title: Subseasonal prediction of regional Antarctic sea ice by a deep learning model publication-title: Geophysical Research Letters – volume: 5735 start-page: 250 year: 2009 end-page: 261 – volume: 61 year: 2023 article-title: Predicting the daily sea ice concentration on a subseasonal scale of the pan‐Arctic during the melting season by a deep learning model publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 145 start-page: 3969 issue: 10 year: 2017 end-page: 3987 article-title: Improving the stable surface layer in the NCEP global forecast system publication-title: Monthly Weather Review – volume: 162 start-page: 27179 year: 2022 end-page: 27202 – volume: 612 issue: 47 year: 2015 – year: 2018 – volume: 61 start-page: 1 year: 2023 end-page: 19 article-title: LPT‐QPN: A lightweight physics‐informed transformer for quantitative precipitation nowcasting publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 6 start-page: 60 issue: 1 year: 2023 article-title: Global tropical cyclone precipitation scaling with sea surface temperature publication-title: npj Climate and Atmospheric Science – volume: 182 year: 2023 article-title: Extreme cooling of 12.5°C triggered by Typhoon Fungwong (2008) publication-title: Ocean Modelling – volume: 27 issue: 1 year: 2020 article-title: Benchmark rainfall verification of landfall tropical cyclone forecasts by operational ACCESS‐TC over China publication-title: Meteorological Applications – volume: 31 start-page: 627 issue: 2 year: 2016 end-page: 645 article-title: Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model publication-title: Weather and Forecasting – volume: 45 start-page: 2208 issue: 2 year: 2023 end-page: 2225 article-title: PredRNN: A recurrent neural network for spatiotemporal predictive learning publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 56 start-page: 1383 issue: 5 year: 2017 end-page: 1404 article-title: The ice water paths of small and large ice species in Hurricanes Arthur (2014) and Irene (2011) publication-title: Journal of Applied Meteorology and Climatology – volume: 5 start-page: 46 issue: 1 year: 2022 article-title: An analytic model of the tropical cyclone outer size publication-title: npj Climate and Atmospheric Science – start-page: 20 year: 2016 end-page: 22 – volume: 7 start-page: 1584 issue: 10 year: 2021 end-page: 1605 article-title: Deep‐learning‐based information mining from ocean remote‐sensing imagery publication-title: National Science Review – volume: 12 start-page: 138 issue: 1 year: 2024 end-page: 161 article-title: DeepBlue: Advanced convolutional neural network applications for ocean remote sensing publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 13 start-page: 600 issue: 4 year: 2004 end-page: 612 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Transactions on Image Processing – volume: 2 year: 2023 article-title: An interpretable deep learning ENSO forecasting model publication-title: Ocean‐Land‐Atmosphere Research – volume: 9 start-page: 1150 issue: 2 year: 2017 end-page: 1166 article-title: Improvements to the snow melting process in a partially double moment microphysics parameterization publication-title: Journal of Advances in Modeling Earth Systems – volume: 7 issue: 10 year: 2019 article-title: Coastal flooding and inundation and inland flooding due to downstream blocking publication-title: Journal of Marine Science and Engineering – volume: 36 start-page: 69819 year: 2023 end-page: 69831 article-title: OpenSTL: A comprehensive benchmark of spatio‐temporal predictive learning publication-title: Advances in Neural Information Processing Systems – volume: 60 start-page: 1 year: 2022 end-page: 14 article-title: Vertical structure‐based classification of oceanic eddy using 3‐D convolutional neural network publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 504 start-page: 44 issue: 7478 year: 2013 end-page: 52 article-title: Coastal flooding by tropical cyclones and sea‐level rise publication-title: Nature – volume: 2022 start-page: 3160 year: 2022 end-page: 3170 – volume: 41 start-page: 41 issue: 2 year: 2022 end-page: 50 article-title: Bias correction of sea surface temperature retrospective forecasts in the South China Sea publication-title: Acta Oceanologica Sinica – volume: 6 issue: 29 year: 2020 article-title: Purely satellite data‐driven deep learning forecast of complicated tropical instability waves publication-title: Science Advances – volume: 60 start-page: 1 year: 2022 end-page: 11 article-title: Multilayer fusion recurrent neural network for sea surface height anomaly field prediction publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 128 issue: 10 year: 2023 article-title: Deep learning for downscaling tropical cyclone rainfall to hazard‐relevant spatial scales publication-title: Journal of Geophysical Research: Atmospheres – volume: 2015 start-page: 802 year: 2015 end-page: 810 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – volume: 30 start-page: 3621 issue: 10 year: 2017 end-page: 3633 article-title: Contribution of tropical cyclones to rainfall in the Philippines publication-title: Journal of Climate – volume: 60 start-page: 1 year: 2022 end-page: 19 article-title: A data‐driven deep learning model for weekly sea ice concentration prediction of the pan‐Arctic during the melting season publication-title: IEEE Transactions on Geoscience and Remote Sensing – volume: 31 start-page: 561 year: 2002 end-page: 572 article-title: The need for a coastal estuary/inland flood risk damage potential index publication-title: Management Information Systems – volume: 148 start-page: 783 issue: 2 year: 2020 end-page: 808 article-title: Non‐Gaussian deterministic assimilation of radar‐derived precipitation accumulations publication-title: Monthly Weather Review – year: 2012 – volume: 11 start-page: 1402 issue: 5 year: 2019 end-page: 1417 article-title: Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction publication-title: Journal of Advances in Modeling Earth Systems – volume: 131 start-page: 3439 issue: 613 year: 2006 end-page: 3463 article-title: Convective‐scale assimilation of radar data: Progress and challenges publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 273 start-page: 287 issue: 5660 year: 1978 end-page: 289 article-title: Three‐dimensional storm motion detection by conventional weather radar publication-title: Nature – volume: 144 start-page: 4081 issue: 11 year: 2016 end-page: 4099 article-title: Regionalizing rainfall at very high resolution over La Réunion Island: A case study for Tropical Cyclone Ando publication-title: Monthly Weather Review – volume: 9 issue: 8 year: 2022 article-title: Physics‐informed deep‐learning parameterization of ocean vertical mixing improves climate simulations publication-title: National Science Review – volume: 124 year: 2022 article-title: A spatio‐temporal graph‐guided convolutional LSTM for tropical cyclones precipitation nowcasting publication-title: Applied Soft Computing – volume: 270 year: 2022 article-title: Near real‐time hurricane rainfall forecasting using convolutional neural network models with Integrated Multi‐satellitE Retrievals for GPM (IMERG) product publication-title: Atmospheric Research – volume: 7 start-page: 85 issue: 2 year: 2018 end-page: 105 article-title: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall publication-title: Tropical Cyclone Research and Review – volume: 9 issue: 9 year: 2022 article-title: Improving numerical model predicted float trajectories by deep learning publication-title: Earth and Space Science – volume: 91 start-page: 363 issue: 3 year: 2010 end-page: 376 article-title: The international best track archive for climate stewardship (IBTrACS) publication-title: Bulletin of the American Meteorological Society – volume: 151 start-page: 403 issue: 2 year: 2023 end-page: 417 article-title: A deep learning model for estimating tropical cyclone wind radius from geostationary satellite infrared imagery publication-title: Monthly Weather Review – volume: 15 start-page: 7400 year: 2022 end-page: 7413 article-title: An improved deep learning model for high‐impact weather nowcasting publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing – volume: 131 start-page: 749 issue: 5 year: 2003 end-page: 770 article-title: Hurricane track prediction using a statistical ensemble of numerical models publication-title: Monthly Weather Review – ident: e_1_2_10_11_1 doi: 10.1007/s13131‐021‐1880‐5 – ident: e_1_2_10_57_1 doi: 10.1109/TGRS.2021.3126460 – ident: e_1_2_10_28_1 doi: 10.1175/MWR‐D‐15‐0404.1 – ident: e_1_2_10_43_1 doi: 10.1038/s41612‐022‐00270‐6 – ident: e_1_2_10_42_1 doi: 10.1109/MGRS.2023.3343623 – start-page: 20 volume-title: The 30th Guangdong‐Hong Kong‐Macau Seminar on Meteorological Technology, Guangzhou year: 2016 ident: e_1_2_10_13_1 – ident: e_1_2_10_34_1 doi: 10.1029/2022EA002362 – ident: e_1_2_10_6_1 doi: 10.5772/2036 – ident: e_1_2_10_30_1 doi: 10.1038/s41586‐021‐03854‐z – ident: e_1_2_10_50_1 doi: 10.1016/j.asoc.2022.109003 – ident: e_1_2_10_48_1 doi: 10.1175/1520‐0493(2003)131〈0749:HTPUAS〉2.0.CO;2 – ident: e_1_2_10_8_1 doi: 10.1175/MWR‐D‐19‐0199.1 – ident: e_1_2_10_4_1 doi: 10.3390/atmos13010126 – ident: e_1_2_10_33_1 doi: 10.1038/273287a0 – ident: e_1_2_10_18_1 doi: 10.1016/j.atmosres.2022.106037 – volume: 31 start-page: 561 year: 2002 ident: e_1_2_10_26_1 article-title: The need for a coastal estuary/inland flood risk damage potential index publication-title: Management Information Systems – volume: 2015 start-page: 802 year: 2015 ident: e_1_2_10_35_1 article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_25_1 doi: 10.1093/NSR/NWAA047 – ident: e_1_2_10_2_1 doi: 10.1007/978-3-642-04474-8_21 – ident: e_1_2_10_54_1 doi: 10.1175/MWR‐D‐16‐0438.1 – volume: 36 start-page: 69819 year: 2023 ident: e_1_2_10_38_1 article-title: OpenSTL: A comprehensive benchmark of spatio‐temporal predictive learning publication-title: Advances in Neural Information Processing Systems – ident: e_1_2_10_46_1 doi: 10.1109/TIP.2003.819861 – ident: e_1_2_10_51_1 doi: 10.1109/JSTARS.2022.3203398 – ident: e_1_2_10_12_1 doi: 10.1175/WAF‐D‐15‐0016.1 – ident: e_1_2_10_19_1 doi: 10.25921/82ty‐9e16 – ident: e_1_2_10_55_1 doi: 10.1016/j.ocemod.2023.102176 – ident: e_1_2_10_3_1 doi: 10.1175/JCLI‐D‐16‐0150.1 – ident: e_1_2_10_52_1 doi: 10.1002/met.1842 – ident: e_1_2_10_40_1 doi: 10.1175/MWR‐D‐22‐0166.1 – ident: e_1_2_10_24_1 doi: 10.1109/TGRS.2023.3328945 – ident: e_1_2_10_15_1 doi: 10.1109/TGRS.2021.3103251 – ident: e_1_2_10_14_1 doi: 10.1175/WAF‐D‐14‐00037.1 – volume: 7 start-page: 85 issue: 2 year: 2018 ident: e_1_2_10_23_1 article-title: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall publication-title: Tropical Cyclone Research and Review – ident: e_1_2_10_39_1 doi: 10.1029/2022JD038163 – ident: e_1_2_10_5_1 doi: 10.1007/s13351‐017‐6007‐8 – ident: e_1_2_10_53_1 doi: 10.1126/sciadv.aba1482 – ident: e_1_2_10_27_1 doi: 10.3390/jmse7100336 – ident: e_1_2_10_41_1 doi: 10.34133/olar.0012 – ident: e_1_2_10_22_1 doi: 10.1109/CVPR42600.2020.01149 – ident: e_1_2_10_9_1 doi: 10.1038/s41612‐022‐00320‐z – ident: e_1_2_10_16_1 doi: 10.5067/GPM/IMERG/3B‐HH/07 – ident: e_1_2_10_49_1 doi: 10.1038/nature12855 – ident: e_1_2_10_32_1 doi: 10.1109/TGRS.2022.3177600 – ident: e_1_2_10_47_1 doi: 10.1029/2018MS001597 – start-page: 3053 volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition year: 2021 ident: e_1_2_10_21_1 – ident: e_1_2_10_58_1 doi: 10.1093/nsr/nwac044 – ident: e_1_2_10_31_1 doi: 10.1109/TGRS.2023.3279089 – ident: e_1_2_10_45_1 doi: 10.1029/2023GL104347 – ident: e_1_2_10_29_1 doi: 10.1175/JCLI‐D‐16‐0289.1 – ident: e_1_2_10_10_1 doi: 10.1109/CVPR52688.2022.00317 – ident: e_1_2_10_37_1 doi: 10.1256/qj.05.149 – ident: e_1_2_10_44_1 doi: 10.1109/TPAMI.2022.3165153 – ident: e_1_2_10_17_1 doi: 10.1175/JAMC‐D‐16‐0300.1 – start-page: 27179 volume-title: Proceedings of Machine Learning Research year: 2022 ident: e_1_2_10_56_1 – ident: e_1_2_10_7_1 doi: 10.1002/2016MS000892 – ident: e_1_2_10_20_1 doi: 10.1175/2009BAMS2755.1 – ident: e_1_2_10_36_1 doi: 10.1038/s41612‐023‐00391‐6 |
SSID | ssj0003320807 |
Score | 2.2580352 |
Snippet | Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
SubjectTerms | deep learning precipitation remote sensing satellite image |
Title | Improving Tropical Cyclone Precipitation Forecasting With Deep Learning and Satellite Image Sequencing |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000175 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjyqDzAgFBEajtuMqLSUioVVbQV3So_zoBU0qotAwu_nXMSojKAxJIhOVnJxfZ9d777jpBzY2MVGhsFXDMTCCXrQSKZC7RBgyG1qYPz8Y7eg-yMRHccjYuAm6-FyfkhyoCbXxnZfu0XuNLLgmzAc2Si1y66nYzwJdokW7661s9zJvpljIVzFuYV08ynqaGlCovcdxzien2AH1ZpHaVmZqa9S3YKfEhv8h-6RzYg3SeudP3pcDGbe73S5oeZzlKgfU9PMS-YtqnvtGnU0ucy06fX1Qu9BZjTgkT1marU0oHKSDhXQO_fcDOhgzyZGh8fkFG7NWx2gqJBQmAQhbBAxQAKnBQxehFcKh2F3BqH-xuzdeu4dmiQGyA5hCDBxMrZJHG4RmPLZUMbfkgqKb7qEaFSmEg4hNoQGsEMxGB9Wx6TRELHCAGq5OpbQRNTfJNvYjGdZKfYLJmsq7NKLkrpec6a8YvcZabrP4Um3btHRIXH_5A9Idv-bp7SdUoqq8U7nCF4WOlaNkNqmeuN195n6ws8q728 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLAgECC-8QADQhGp7bjJiAqlLW1V0VZ0ixz7DEgljUoY-PfYiYnKABJzTlZyyd09X87vIXQuVSh8qQKPJkR6TPC6F3GivUSagsETWQdt-x39AW9PWHcaTJ3OqT0LU_JDVA03GxlFvrYBbhvSjm3AkmSabTvrtgvGl2AVrTFOGla7gbBh1WShlPjlkWli59RMqfLd8LtZ4np5gR9laRmmFnWmtYU2HUDEN-Ub3UYrkO4gXe398Xgxz6xjcfNTzuYp4KHlp8gc1Ta2UptSvNthZvz0mr_gW4AMOxbVZyxShUeiYOHMAXfeTDbBo3Ka2lzeRZPW3bjZ9pxCgicNDCGeCAEEaM5Cs42gXCSBT5XUJsERVVeaJtpU5AZwCj5wkKHQKoq0CdJQUd5IJN1DtdTc6j7CnMmAaYO1wZeMSAhBWV0eGQUsCQ0GOEBX3w6KpXsmq2Ixi4vf2CSKl915gC4q66ykzfjF7rLw9Z9Gcff-0cDCw3_YnqH19rjfi3udwcMR2rAW5XzXMarliw84MUgiT06Lr-ULnvi_Ag |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QXwRRcX5Mw_6IFLskjRrH2VzblPHcBvuraTJRYXZlVkf_O9N2ljmg4LPPUJ7zd19d7l8h9CZVKHwpQo8mhDpMcEbXsSJ9hJpAgZPZAO0rXc8DHh3wvrTYOoKbvYuTMkPURXcrGUU_toaeKa0IxuwHJkma2f9bkH4EqyiNXveZ3c4YcOqxkIp8csb08S2qZlI5bved7PE1fICP6LSMkotwkxnC206fIivyx-6jVYg3UG6Sv3xeDHPrF5x61PO5ingoaWnyBzTNraTNqV4t73M-Ok1f8FtgAw7EtVnLFKFR6Ig4cwB996MM8GjspnaPN5Fk87NuNX13IAETxoUQjwRAgjQnIUmi6BcJIFPldTGvxHVUJom2gTkJnAKPnCQodAqirSx0VBR3kwk3UO11LzqPsKcyYBpA7XBl4xICEHZsTwyClgSGghQR5ffCoql-yY7xGIWF6fYJIqX1VlH55V0VrJm_CJ3Uej6T6G4f_toUOHBP2RP0fqw3Ynve4O7Q7RhBcruriNUyxcfcGxwRJ6cFJvlC7QJvjQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Tropical+Cyclone+Precipitation+Forecasting+With+Deep+Learning+and+Satellite+Image+Sequencing&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Yang%2C+Nan&rft.au=Wang%2C+Chong&rft.au=Li%2C+Xiaofeng&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000175&rft.externalDBID=10.1029%252F2024JH000175&rft.externalDocID=JGR112 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |