Improving Tropical Cyclone Precipitation Forecasting With Deep Learning and Satellite Image Sequencing

Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 2
Main Authors Yang, Nan, Wang, Chong, Li, Xiaofeng
Format Journal Article
LanguageEnglish
Published 01.06.2024
Subjects
Online AccessGet full text
ISSN2993-5210
2993-5210
DOI10.1029/2024JH000175

Cover

Loading…
Abstract Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing predictability. To the former, using the Global Precipitation Measurement, we establish a high‐accuracy regional and intensity forecasting method. Through an analysis of precipitation patterns and intensities, we have demonstrated the effectiveness, reliability, and robustness of forecasting TC precipitation. To the latter, we conduct predictability research, which covers different intensity categories and landfall versus non‐landfall TC precipitation. The conclusions are: (a) TC precipitation varies regionally with predictability differences among intensity categories; (b) Forecasting landfalling TC precipitation is less challenging than non‐landfalling, considering TC intensity and paths. The proposed method also demonstrates strong forecasting capabilities in handling extreme and accumulated precipitation within 0–120 min, achieving an accuracy rate of 87%. Plain Language Summary Tropical cyclones (TC) are commonly known for their strong winds, but the true dangers lie in associated rainfall and resulting floods. With a warming atmosphere due to global climate change, tropical cyclone precipitation is expected to rise. Accurate forecasts of where and how intense these TCs will produce precipitation become crucial. However, existing methods often struggle to meet this demand. Our new method, the Tropical Cyclone Precipitation Forecasting Model (TCPF), uses satellite image sequencing to forecast TC precipitation accurately within 0–120 min of a cyclone, even in extreme situations. By analyzing TCs by intensity and whether they make landfall, our predictability research enhances the understanding of TC precipitation, providing intelligent insights for improved forecasting models. Key Points We develop a tropical cyclone precipitation forecasting model (TCPF) using satellite image sequencing from Global Precipitation Measurement TCPF forecasts TC precipitation accurately within 0–120 min, including extreme and accumulated precipitation The research gives the predictability in different intensity categories and landfall versus non‐landfall TC precipitation
AbstractList Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing predictability. To the former, using the Global Precipitation Measurement, we establish a high‐accuracy regional and intensity forecasting method. Through an analysis of precipitation patterns and intensities, we have demonstrated the effectiveness, reliability, and robustness of forecasting TC precipitation. To the latter, we conduct predictability research, which covers different intensity categories and landfall versus non‐landfall TC precipitation. The conclusions are: (a) TC precipitation varies regionally with predictability differences among intensity categories; (b) Forecasting landfalling TC precipitation is less challenging than non‐landfalling, considering TC intensity and paths. The proposed method also demonstrates strong forecasting capabilities in handling extreme and accumulated precipitation within 0–120 min, achieving an accuracy rate of 87%. Tropical cyclones (TC) are commonly known for their strong winds, but the true dangers lie in associated rainfall and resulting floods. With a warming atmosphere due to global climate change, tropical cyclone precipitation is expected to rise. Accurate forecasts of where and how intense these TCs will produce precipitation become crucial. However, existing methods often struggle to meet this demand. Our new method, the Tropical Cyclone Precipitation Forecasting Model (TCPF), uses satellite image sequencing to forecast TC precipitation accurately within 0–120 min of a cyclone, even in extreme situations. By analyzing TCs by intensity and whether they make landfall, our predictability research enhances the understanding of TC precipitation, providing intelligent insights for improved forecasting models. We develop a tropical cyclone precipitation forecasting model (TCPF) using satellite image sequencing from Global Precipitation Measurement TCPF forecasts TC precipitation accurately within 0–120 min, including extreme and accumulated precipitation The research gives the predictability in different intensity categories and landfall versus non‐landfall TC precipitation
Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show promise in this domain. Here, we investigate two aspects of AI forecasting for TC precipitation: modeling satellite image sequencing and analyzing predictability. To the former, using the Global Precipitation Measurement, we establish a high‐accuracy regional and intensity forecasting method. Through an analysis of precipitation patterns and intensities, we have demonstrated the effectiveness, reliability, and robustness of forecasting TC precipitation. To the latter, we conduct predictability research, which covers different intensity categories and landfall versus non‐landfall TC precipitation. The conclusions are: (a) TC precipitation varies regionally with predictability differences among intensity categories; (b) Forecasting landfalling TC precipitation is less challenging than non‐landfalling, considering TC intensity and paths. The proposed method also demonstrates strong forecasting capabilities in handling extreme and accumulated precipitation within 0–120 min, achieving an accuracy rate of 87%. Plain Language Summary Tropical cyclones (TC) are commonly known for their strong winds, but the true dangers lie in associated rainfall and resulting floods. With a warming atmosphere due to global climate change, tropical cyclone precipitation is expected to rise. Accurate forecasts of where and how intense these TCs will produce precipitation become crucial. However, existing methods often struggle to meet this demand. Our new method, the Tropical Cyclone Precipitation Forecasting Model (TCPF), uses satellite image sequencing to forecast TC precipitation accurately within 0–120 min of a cyclone, even in extreme situations. By analyzing TCs by intensity and whether they make landfall, our predictability research enhances the understanding of TC precipitation, providing intelligent insights for improved forecasting models. Key Points We develop a tropical cyclone precipitation forecasting model (TCPF) using satellite image sequencing from Global Precipitation Measurement TCPF forecasts TC precipitation accurately within 0–120 min, including extreme and accumulated precipitation The research gives the predictability in different intensity categories and landfall versus non‐landfall TC precipitation
Author Yang, Nan
Wang, Chong
Li, Xiaofeng
Author_xml – sequence: 1
  givenname: Nan
  orcidid: 0000-0002-3864-1191
  surname: Yang
  fullname: Yang, Nan
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: Chong
  orcidid: 0000-0002-8275-8450
  surname: Wang
  fullname: Wang, Chong
  organization: Chinese Academy of Sciences
– sequence: 3
  givenname: Xiaofeng
  orcidid: 0000-0001-7038-5119
  surname: Li
  fullname: Li, Xiaofeng
  email: lixf@qdio.ac.cn
  organization: Chinese Academy of Sciences
BookMark eNp9kMtKAzEUhoNUsNbufIA8gKO5dDKZpVR7o6DYisshzZzUSJoZM6nSt3dKuyiCrs7t-38O_yXq-MoDQteU3FLC8jtG2GA2IYTQLD1DXZbnPEkZJZ2T_gL1m-ajZThnRJKsi8x0U4fqy_o1Xoaqtlo5PNxp13rj5wDa1jaqaCuPR1U7qibu0Tcb3_EDQI3noILfr5Qv8UJFcM5GwNONWgNewOcWvG7PV-jcKNdA_1h76HX0uBxOkvnTeDq8nyeapjlLlARQYMRAigHjQq1SwkttMsFYSUvDV4ZxmYHgQECAlsqUeW7STMqSi2yleQ-xg68OVdMEMIU-_h-Dsq6gpNiHVZyG1YpufonqYDcq7P7CyQH_tg52_7LFbPxCKeM_Dr97pw
CitedBy_id crossref_primary_10_1088_1748_9326_ad661f
Cites_doi 10.1007/s13131‐021‐1880‐5
10.1109/TGRS.2021.3126460
10.1175/MWR‐D‐15‐0404.1
10.1038/s41612‐022‐00270‐6
10.1109/MGRS.2023.3343623
10.1029/2022EA002362
10.5772/2036
10.1038/s41586‐021‐03854‐z
10.1016/j.asoc.2022.109003
10.1175/1520‐0493(2003)131〈0749:HTPUAS〉2.0.CO;2
10.1175/MWR‐D‐19‐0199.1
10.3390/atmos13010126
10.1038/273287a0
10.1016/j.atmosres.2022.106037
10.1093/NSR/NWAA047
10.1007/978-3-642-04474-8_21
10.1175/MWR‐D‐16‐0438.1
10.1109/TIP.2003.819861
10.1109/JSTARS.2022.3203398
10.1175/WAF‐D‐15‐0016.1
10.25921/82ty‐9e16
10.1016/j.ocemod.2023.102176
10.1175/JCLI‐D‐16‐0150.1
10.1002/met.1842
10.1175/MWR‐D‐22‐0166.1
10.1109/TGRS.2023.3328945
10.1109/TGRS.2021.3103251
10.1175/WAF‐D‐14‐00037.1
10.1029/2022JD038163
10.1007/s13351‐017‐6007‐8
10.1126/sciadv.aba1482
10.3390/jmse7100336
10.34133/olar.0012
10.1109/CVPR42600.2020.01149
10.1038/s41612‐022‐00320‐z
10.5067/GPM/IMERG/3B‐HH/07
10.1038/nature12855
10.1109/TGRS.2022.3177600
10.1029/2018MS001597
10.1093/nsr/nwac044
10.1109/TGRS.2023.3279089
10.1029/2023GL104347
10.1175/JCLI‐D‐16‐0289.1
10.1109/CVPR52688.2022.00317
10.1256/qj.05.149
10.1109/TPAMI.2022.3165153
10.1175/JAMC‐D‐16‐0300.1
10.1002/2016MS000892
10.1175/2009BAMS2755.1
10.1038/s41612‐023‐00391‐6
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000175
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000175
JGR112
Genre researchArticle
GrantInformation_xml – fundername: Shandong Province Postdoctoral Innovative Talents Support Program
  funderid: SDBX2022026
– fundername: Strategic Priority Research Program of the Chinese Academy of Sciences
  funderid: XDB42000000
– fundername: National Science Foundation of China
  funderid: 42306214
– fundername: China Postdoctoral Science Foundation
  funderid: 2023M733533
– fundername: Major Scientific and Technological Innovation Projects in Shandong Province
  funderid: 2019JZZY010102
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAYXX
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1592-a8eeaef64864236ab503dcf7622d1df3bf2387e63e0e6ec8afd99f5788d367bc3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Thu Apr 24 23:00:48 EDT 2025
Tue Jul 01 03:43:13 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1592-a8eeaef64864236ab503dcf7622d1df3bf2387e63e0e6ec8afd99f5788d367bc3
ORCID 0000-0002-8275-8450
0000-0002-3864-1191
0000-0001-7038-5119
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000175
PageCount 19
ParticipantIDs crossref_citationtrail_10_1029_2024JH000175
crossref_primary_10_1029_2024JH000175
wiley_primary_10_1029_2024JH000175_JGR112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References 2023; 182
2023; 36
2023; 6
2019; 11
2015; 30
2016; 31
2016; 144
2006; 131
2023; 2
2017; 9
2018; 7
2017; 31
2020; 6
2017; 30
2022; 162
2021; 597
2015; 612
2022; 124
2019; 7
2021; 7
2022; 270
2012
2002; 31
2013; 504
2020; 148
2023; 128
1978; 273
2022; 41
2024; 12
2023; 61
2003; 131
2009; 5735
2022; 2022
2023; 45
2022; 60
2022; 5
2021
2023; 151
2020
2022; 9
2017; 56
2004; 13
2015; 2015
2022; 13
2020; 27
2018
2022; 15
2016
2016; 29
2010; 91
2017; 145
2023; 50
e_1_2_10_46_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Zhou J. (e_1_2_10_56_1) 2022
Leroux M.‐D. (e_1_2_10_23_1) 2018; 7
Hon W. Y. (e_1_2_10_13_1) 2016
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Tan C. (e_1_2_10_38_1) 2023; 36
Lee S. (e_1_2_10_21_1) 2021
e_1_2_10_29_1
e_1_2_10_27_1
Shi X. (e_1_2_10_35_1) 2015; 2015
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
Pietrafesa L. J. (e_1_2_10_26_1) 2002; 31
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_47_1
References_xml – volume: 5
  start-page: 93
  issue: 1
  year: 2022
  article-title: Uncertainties in tropical cyclone landfall decay
  publication-title: npj Climate and Atmospheric Science
– volume: 30
  start-page: 217
  issue: 1
  year: 2015
  end-page: 237
  article-title: Ensemble typhoon quantitative precipitation forecasts model in Taiwan
  publication-title: Weather and Forecasting
– volume: 13
  issue: 1
  year: 2022
  article-title: The use of composite GOES‐R satellite imagery to evaluate a TC intensity and vortex structure forecast by an FV3GFS‐based hurricane forecast model
  publication-title: Atmosphere
– start-page: 11471
  year: 2020
  end-page: 11481
– volume: 31
  start-page: 747
  issue: 4
  year: 2017
  end-page: 766
  article-title: Improving the extreme rainfall forecast of Typhoon Morakot (2009) by assimilating radar data from Taiwan Island and mainland China
  publication-title: Journal of Meteorological Research
– volume: 29
  start-page: 6127
  issue: 17
  year: 2016
  end-page: 6135
  article-title: On the link between tropical cyclones and daily rainfall extremes derived from global satellite observations
  publication-title: Journal of Climate
– volume: 597
  start-page: 672
  issue: 7878
  year: 2021
  end-page: 677
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
– start-page: 3053
  year: 2021
  end-page: 3062
– volume: 50
  issue: 17
  year: 2023
  article-title: Subseasonal prediction of regional Antarctic sea ice by a deep learning model
  publication-title: Geophysical Research Letters
– volume: 5735
  start-page: 250
  year: 2009
  end-page: 261
– volume: 61
  year: 2023
  article-title: Predicting the daily sea ice concentration on a subseasonal scale of the pan‐Arctic during the melting season by a deep learning model
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 145
  start-page: 3969
  issue: 10
  year: 2017
  end-page: 3987
  article-title: Improving the stable surface layer in the NCEP global forecast system
  publication-title: Monthly Weather Review
– volume: 162
  start-page: 27179
  year: 2022
  end-page: 27202
– volume: 612
  issue: 47
  year: 2015
– year: 2018
– volume: 61
  start-page: 1
  year: 2023
  end-page: 19
  article-title: LPT‐QPN: A lightweight physics‐informed transformer for quantitative precipitation nowcasting
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 6
  start-page: 60
  issue: 1
  year: 2023
  article-title: Global tropical cyclone precipitation scaling with sea surface temperature
  publication-title: npj Climate and Atmospheric Science
– volume: 182
  year: 2023
  article-title: Extreme cooling of 12.5°C triggered by Typhoon Fungwong (2008)
  publication-title: Ocean Modelling
– volume: 27
  issue: 1
  year: 2020
  article-title: Benchmark rainfall verification of landfall tropical cyclone forecasts by operational ACCESS‐TC over China
  publication-title: Meteorological Applications
– volume: 31
  start-page: 627
  issue: 2
  year: 2016
  end-page: 645
  article-title: Numerical simulations of Typhoon Morakot (2009) using a multiply nested tropical cyclone prediction model
  publication-title: Weather and Forecasting
– volume: 45
  start-page: 2208
  issue: 2
  year: 2023
  end-page: 2225
  article-title: PredRNN: A recurrent neural network for spatiotemporal predictive learning
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 56
  start-page: 1383
  issue: 5
  year: 2017
  end-page: 1404
  article-title: The ice water paths of small and large ice species in Hurricanes Arthur (2014) and Irene (2011)
  publication-title: Journal of Applied Meteorology and Climatology
– volume: 5
  start-page: 46
  issue: 1
  year: 2022
  article-title: An analytic model of the tropical cyclone outer size
  publication-title: npj Climate and Atmospheric Science
– start-page: 20
  year: 2016
  end-page: 22
– volume: 7
  start-page: 1584
  issue: 10
  year: 2021
  end-page: 1605
  article-title: Deep‐learning‐based information mining from ocean remote‐sensing imagery
  publication-title: National Science Review
– volume: 12
  start-page: 138
  issue: 1
  year: 2024
  end-page: 161
  article-title: DeepBlue: Advanced convolutional neural network applications for ocean remote sensing
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 13
  start-page: 600
  issue: 4
  year: 2004
  end-page: 612
  article-title: Image quality assessment: From error visibility to structural similarity
  publication-title: IEEE Transactions on Image Processing
– volume: 2
  year: 2023
  article-title: An interpretable deep learning ENSO forecasting model
  publication-title: Ocean‐Land‐Atmosphere Research
– volume: 9
  start-page: 1150
  issue: 2
  year: 2017
  end-page: 1166
  article-title: Improvements to the snow melting process in a partially double moment microphysics parameterization
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 7
  issue: 10
  year: 2019
  article-title: Coastal flooding and inundation and inland flooding due to downstream blocking
  publication-title: Journal of Marine Science and Engineering
– volume: 36
  start-page: 69819
  year: 2023
  end-page: 69831
  article-title: OpenSTL: A comprehensive benchmark of spatio‐temporal predictive learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  article-title: Vertical structure‐based classification of oceanic eddy using 3‐D convolutional neural network
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 504
  start-page: 44
  issue: 7478
  year: 2013
  end-page: 52
  article-title: Coastal flooding by tropical cyclones and sea‐level rise
  publication-title: Nature
– volume: 2022
  start-page: 3160
  year: 2022
  end-page: 3170
– volume: 41
  start-page: 41
  issue: 2
  year: 2022
  end-page: 50
  article-title: Bias correction of sea surface temperature retrospective forecasts in the South China Sea
  publication-title: Acta Oceanologica Sinica
– volume: 6
  issue: 29
  year: 2020
  article-title: Purely satellite data‐driven deep learning forecast of complicated tropical instability waves
  publication-title: Science Advances
– volume: 60
  start-page: 1
  year: 2022
  end-page: 11
  article-title: Multilayer fusion recurrent neural network for sea surface height anomaly field prediction
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 128
  issue: 10
  year: 2023
  article-title: Deep learning for downscaling tropical cyclone rainfall to hazard‐relevant spatial scales
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 2015
  start-page: 802
  year: 2015
  end-page: 810
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– volume: 30
  start-page: 3621
  issue: 10
  year: 2017
  end-page: 3633
  article-title: Contribution of tropical cyclones to rainfall in the Philippines
  publication-title: Journal of Climate
– volume: 60
  start-page: 1
  year: 2022
  end-page: 19
  article-title: A data‐driven deep learning model for weekly sea ice concentration prediction of the pan‐Arctic during the melting season
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 31
  start-page: 561
  year: 2002
  end-page: 572
  article-title: The need for a coastal estuary/inland flood risk damage potential index
  publication-title: Management Information Systems
– volume: 148
  start-page: 783
  issue: 2
  year: 2020
  end-page: 808
  article-title: Non‐Gaussian deterministic assimilation of radar‐derived precipitation accumulations
  publication-title: Monthly Weather Review
– year: 2012
– volume: 11
  start-page: 1402
  issue: 5
  year: 2019
  end-page: 1417
  article-title: Applying machine learning to improve simulations of a chaotic dynamical system using empirical error correction
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 131
  start-page: 3439
  issue: 613
  year: 2006
  end-page: 3463
  article-title: Convective‐scale assimilation of radar data: Progress and challenges
  publication-title: Quarterly Journal of the Royal Meteorological Society
– volume: 273
  start-page: 287
  issue: 5660
  year: 1978
  end-page: 289
  article-title: Three‐dimensional storm motion detection by conventional weather radar
  publication-title: Nature
– volume: 144
  start-page: 4081
  issue: 11
  year: 2016
  end-page: 4099
  article-title: Regionalizing rainfall at very high resolution over La Réunion Island: A case study for Tropical Cyclone Ando
  publication-title: Monthly Weather Review
– volume: 9
  issue: 8
  year: 2022
  article-title: Physics‐informed deep‐learning parameterization of ocean vertical mixing improves climate simulations
  publication-title: National Science Review
– volume: 124
  year: 2022
  article-title: A spatio‐temporal graph‐guided convolutional LSTM for tropical cyclones precipitation nowcasting
  publication-title: Applied Soft Computing
– volume: 270
  year: 2022
  article-title: Near real‐time hurricane rainfall forecasting using convolutional neural network models with Integrated Multi‐satellitE Retrievals for GPM (IMERG) product
  publication-title: Atmospheric Research
– volume: 7
  start-page: 85
  issue: 2
  year: 2018
  end-page: 105
  article-title: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall
  publication-title: Tropical Cyclone Research and Review
– volume: 9
  issue: 9
  year: 2022
  article-title: Improving numerical model predicted float trajectories by deep learning
  publication-title: Earth and Space Science
– volume: 91
  start-page: 363
  issue: 3
  year: 2010
  end-page: 376
  article-title: The international best track archive for climate stewardship (IBTrACS)
  publication-title: Bulletin of the American Meteorological Society
– volume: 151
  start-page: 403
  issue: 2
  year: 2023
  end-page: 417
  article-title: A deep learning model for estimating tropical cyclone wind radius from geostationary satellite infrared imagery
  publication-title: Monthly Weather Review
– volume: 15
  start-page: 7400
  year: 2022
  end-page: 7413
  article-title: An improved deep learning model for high‐impact weather nowcasting
  publication-title: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
– volume: 131
  start-page: 749
  issue: 5
  year: 2003
  end-page: 770
  article-title: Hurricane track prediction using a statistical ensemble of numerical models
  publication-title: Monthly Weather Review
– ident: e_1_2_10_11_1
  doi: 10.1007/s13131‐021‐1880‐5
– ident: e_1_2_10_57_1
  doi: 10.1109/TGRS.2021.3126460
– ident: e_1_2_10_28_1
  doi: 10.1175/MWR‐D‐15‐0404.1
– ident: e_1_2_10_43_1
  doi: 10.1038/s41612‐022‐00270‐6
– ident: e_1_2_10_42_1
  doi: 10.1109/MGRS.2023.3343623
– start-page: 20
  volume-title: The 30th Guangdong‐Hong Kong‐Macau Seminar on Meteorological Technology, Guangzhou
  year: 2016
  ident: e_1_2_10_13_1
– ident: e_1_2_10_34_1
  doi: 10.1029/2022EA002362
– ident: e_1_2_10_6_1
  doi: 10.5772/2036
– ident: e_1_2_10_30_1
  doi: 10.1038/s41586‐021‐03854‐z
– ident: e_1_2_10_50_1
  doi: 10.1016/j.asoc.2022.109003
– ident: e_1_2_10_48_1
  doi: 10.1175/1520‐0493(2003)131〈0749:HTPUAS〉2.0.CO;2
– ident: e_1_2_10_8_1
  doi: 10.1175/MWR‐D‐19‐0199.1
– ident: e_1_2_10_4_1
  doi: 10.3390/atmos13010126
– ident: e_1_2_10_33_1
  doi: 10.1038/273287a0
– ident: e_1_2_10_18_1
  doi: 10.1016/j.atmosres.2022.106037
– volume: 31
  start-page: 561
  year: 2002
  ident: e_1_2_10_26_1
  article-title: The need for a coastal estuary/inland flood risk damage potential index
  publication-title: Management Information Systems
– volume: 2015
  start-page: 802
  year: 2015
  ident: e_1_2_10_35_1
  article-title: Convolutional LSTM network: A machine learning approach for precipitation nowcasting
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_25_1
  doi: 10.1093/NSR/NWAA047
– ident: e_1_2_10_2_1
  doi: 10.1007/978-3-642-04474-8_21
– ident: e_1_2_10_54_1
  doi: 10.1175/MWR‐D‐16‐0438.1
– volume: 36
  start-page: 69819
  year: 2023
  ident: e_1_2_10_38_1
  article-title: OpenSTL: A comprehensive benchmark of spatio‐temporal predictive learning
  publication-title: Advances in Neural Information Processing Systems
– ident: e_1_2_10_46_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_10_51_1
  doi: 10.1109/JSTARS.2022.3203398
– ident: e_1_2_10_12_1
  doi: 10.1175/WAF‐D‐15‐0016.1
– ident: e_1_2_10_19_1
  doi: 10.25921/82ty‐9e16
– ident: e_1_2_10_55_1
  doi: 10.1016/j.ocemod.2023.102176
– ident: e_1_2_10_3_1
  doi: 10.1175/JCLI‐D‐16‐0150.1
– ident: e_1_2_10_52_1
  doi: 10.1002/met.1842
– ident: e_1_2_10_40_1
  doi: 10.1175/MWR‐D‐22‐0166.1
– ident: e_1_2_10_24_1
  doi: 10.1109/TGRS.2023.3328945
– ident: e_1_2_10_15_1
  doi: 10.1109/TGRS.2021.3103251
– ident: e_1_2_10_14_1
  doi: 10.1175/WAF‐D‐14‐00037.1
– volume: 7
  start-page: 85
  issue: 2
  year: 2018
  ident: e_1_2_10_23_1
  article-title: Recent advances in research and forecasting of tropical cyclone track, intensity, and structure at landfall
  publication-title: Tropical Cyclone Research and Review
– ident: e_1_2_10_39_1
  doi: 10.1029/2022JD038163
– ident: e_1_2_10_5_1
  doi: 10.1007/s13351‐017‐6007‐8
– ident: e_1_2_10_53_1
  doi: 10.1126/sciadv.aba1482
– ident: e_1_2_10_27_1
  doi: 10.3390/jmse7100336
– ident: e_1_2_10_41_1
  doi: 10.34133/olar.0012
– ident: e_1_2_10_22_1
  doi: 10.1109/CVPR42600.2020.01149
– ident: e_1_2_10_9_1
  doi: 10.1038/s41612‐022‐00320‐z
– ident: e_1_2_10_16_1
  doi: 10.5067/GPM/IMERG/3B‐HH/07
– ident: e_1_2_10_49_1
  doi: 10.1038/nature12855
– ident: e_1_2_10_32_1
  doi: 10.1109/TGRS.2022.3177600
– ident: e_1_2_10_47_1
  doi: 10.1029/2018MS001597
– start-page: 3053
  volume-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
  year: 2021
  ident: e_1_2_10_21_1
– ident: e_1_2_10_58_1
  doi: 10.1093/nsr/nwac044
– ident: e_1_2_10_31_1
  doi: 10.1109/TGRS.2023.3279089
– ident: e_1_2_10_45_1
  doi: 10.1029/2023GL104347
– ident: e_1_2_10_29_1
  doi: 10.1175/JCLI‐D‐16‐0289.1
– ident: e_1_2_10_10_1
  doi: 10.1109/CVPR52688.2022.00317
– ident: e_1_2_10_37_1
  doi: 10.1256/qj.05.149
– ident: e_1_2_10_44_1
  doi: 10.1109/TPAMI.2022.3165153
– ident: e_1_2_10_17_1
  doi: 10.1175/JAMC‐D‐16‐0300.1
– start-page: 27179
  volume-title: Proceedings of Machine Learning Research
  year: 2022
  ident: e_1_2_10_56_1
– ident: e_1_2_10_7_1
  doi: 10.1002/2016MS000892
– ident: e_1_2_10_20_1
  doi: 10.1175/2009BAMS2755.1
– ident: e_1_2_10_36_1
  doi: 10.1038/s41612‐023‐00391‐6
SSID ssj0003320807
Score 2.2580352
Snippet Precipitation forecasting in tropical cyclones (TC) is vital for warning systems and disaster management. Artificial intelligence (AI)‐based methods show...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
SubjectTerms deep learning
precipitation
remote sensing
satellite image
Title Improving Tropical Cyclone Precipitation Forecasting With Deep Learning and Satellite Image Sequencing
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000175
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagLCwIBIjyqDzAgFBEajtuMqLSUioVVbQV3So_zoBU0qotAwu_nXMSojKAxJIhOVnJxfZ9d777jpBzY2MVGhsFXDMTCCXrQSKZC7RBgyG1qYPz8Y7eg-yMRHccjYuAm6-FyfkhyoCbXxnZfu0XuNLLgmzAc2Si1y66nYzwJdokW7661s9zJvpljIVzFuYV08ynqaGlCovcdxzien2AH1ZpHaVmZqa9S3YKfEhv8h-6RzYg3SeudP3pcDGbe73S5oeZzlKgfU9PMS-YtqnvtGnU0ucy06fX1Qu9BZjTgkT1marU0oHKSDhXQO_fcDOhgzyZGh8fkFG7NWx2gqJBQmAQhbBAxQAKnBQxehFcKh2F3BqH-xuzdeu4dmiQGyA5hCDBxMrZJHG4RmPLZUMbfkgqKb7qEaFSmEg4hNoQGsEMxGB9Wx6TRELHCAGq5OpbQRNTfJNvYjGdZKfYLJmsq7NKLkrpec6a8YvcZabrP4Um3btHRIXH_5A9Idv-bp7SdUoqq8U7nCF4WOlaNkNqmeuN195n6ws8q728
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgDLAgECC-8QADQhGp7bjJiAqlLW1V0VZ0ixz7DEgljUoY-PfYiYnKABJzTlZyyd09X87vIXQuVSh8qQKPJkR6TPC6F3GivUSagsETWQdt-x39AW9PWHcaTJ3OqT0LU_JDVA03GxlFvrYBbhvSjm3AkmSabTvrtgvGl2AVrTFOGla7gbBh1WShlPjlkWli59RMqfLd8LtZ4np5gR9laRmmFnWmtYU2HUDEN-Ub3UYrkO4gXe398Xgxz6xjcfNTzuYp4KHlp8gc1Ta2UptSvNthZvz0mr_gW4AMOxbVZyxShUeiYOHMAXfeTDbBo3Ka2lzeRZPW3bjZ9pxCgicNDCGeCAEEaM5Cs42gXCSBT5XUJsERVVeaJtpU5AZwCj5wkKHQKoq0CdJQUd5IJN1DtdTc6j7CnMmAaYO1wZeMSAhBWV0eGQUsCQ0GOEBX3w6KpXsmq2Ixi4vf2CSKl915gC4q66ykzfjF7rLw9Z9Gcff-0cDCw3_YnqH19rjfi3udwcMR2rAW5XzXMarliw84MUgiT06Lr-ULnvi_Ag
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA46QXwRRcX5Mw_6IFLskjRrH2VzblPHcBvuraTJRYXZlVkf_O9N2ljmg4LPPUJ7zd19d7l8h9CZVKHwpQo8mhDpMcEbXsSJ9hJpAgZPZAO0rXc8DHh3wvrTYOoKbvYuTMkPURXcrGUU_toaeKa0IxuwHJkma2f9bkH4EqyiNXveZ3c4YcOqxkIp8csb08S2qZlI5bved7PE1fICP6LSMkotwkxnC206fIivyx-6jVYg3UG6Sv3xeDHPrF5x61PO5ingoaWnyBzTNraTNqV4t73M-Ok1f8FtgAw7EtVnLFKFR6Ig4cwB996MM8GjspnaPN5Fk87NuNX13IAETxoUQjwRAgjQnIUmi6BcJIFPldTGvxHVUJom2gTkJnAKPnCQodAqirSx0VBR3kwk3UO11LzqPsKcyYBpA7XBl4xICEHZsTwyClgSGghQR5ffCoql-yY7xGIWF6fYJIqX1VlH55V0VrJm_CJ3Uej6T6G4f_toUOHBP2RP0fqw3Ynve4O7Q7RhBcruriNUyxcfcGxwRJ6cFJvlC7QJvjQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Tropical+Cyclone+Precipitation+Forecasting+With+Deep+Learning+and+Satellite+Image+Sequencing&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Yang%2C+Nan&rft.au=Wang%2C+Chong&rft.au=Li%2C+Xiaofeng&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000175&rft.externalDBID=10.1029%252F2024JH000175&rft.externalDocID=JGR112
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon