Atmospheric Chemistry Surrogate Modeling With Sparse Identification of Nonlinear Dynamics
Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to acceler...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.06.2024
|
Online Access | Get full text |
Cover
Loading…
Abstract | Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to accelerate air quality model simulations but has suffered from numerical instability during long‐term simulations. This may be because previous ML‐based efforts have relied on explicit Euler time integration—which is known to be unstable for stiff systems—and have used neural networks which are prone to overfitting. We hypothesize that parsimonious models combined with modern numerical integration techniques can overcome this limitation. Using a small‐scale mechanism to explore the potential of these methods, we have created a machine‐learned surrogate by (a) reducing dimensionality using singular value decomposition to create an interpretably‐compressed low‐dimensional latent space and (b) using Sparse Identification of Nonlinear Dynamics (SINDy) to create a differential‐equation‐based representation of the underlying dynamics in the compressed latent space with reduced stiffness. The root mean square error of ML model prediction for ozone concentration over 9 days is 37.8% of the root mean square concentration across all simulations in our testing data set. The surrogate model is 10× faster with 12× fewer integration timesteps compared to reference model and is numerically stable in all tested simulations. Overall, we find that SINDy can be used to create fast, stable, and accurate surrogates of a simple photochemical mechanism. In future work, we will explore the application of this method to more detailed mechanisms and their use in large‐scale simulations.
Plain Language Summary
Atmospheric chemistry modeling is computationally expensive due to complex dynamic processes among numerous chemical species. Machine learning techniques have the potential to accelerate these models. We mathematically group the chemical species to reduce their number and apply a machine‐learning algorithm based on sparse regression (SINDy) to create a fast, stable, and accurate surrogate model for a simplified photochemical mechanism. The machine‐learned surrogate model is 10× faster than the reference model and is numerically stable in all tested nine‐day simulation cases.
Key Points
We apply the sparse identification of nonlinear dynamics to create a machine‐learned surrogate model for an atmospheric chemical mechanism
We train the model to learn the chemical dynamics in a compressed latent space with 10× speedup overall
The surrogate model can make stable predictions for all modeled chemical species without noticeable error accumulation |
---|---|
AbstractList | Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to accelerate air quality model simulations but has suffered from numerical instability during long‐term simulations. This may be because previous ML‐based efforts have relied on explicit Euler time integration—which is known to be unstable for stiff systems—and have used neural networks which are prone to overfitting. We hypothesize that parsimonious models combined with modern numerical integration techniques can overcome this limitation. Using a small‐scale mechanism to explore the potential of these methods, we have created a machine‐learned surrogate by (a) reducing dimensionality using singular value decomposition to create an interpretably‐compressed low‐dimensional latent space and (b) using Sparse Identification of Nonlinear Dynamics (SINDy) to create a differential‐equation‐based representation of the underlying dynamics in the compressed latent space with reduced stiffness. The root mean square error of ML model prediction for ozone concentration over 9 days is 37.8% of the root mean square concentration across all simulations in our testing data set. The surrogate model is 10× faster with 12× fewer integration timesteps compared to reference model and is numerically stable in all tested simulations. Overall, we find that SINDy can be used to create fast, stable, and accurate surrogates of a simple photochemical mechanism. In future work, we will explore the application of this method to more detailed mechanisms and their use in large‐scale simulations.
Atmospheric chemistry modeling is computationally expensive due to complex dynamic processes among numerous chemical species. Machine learning techniques have the potential to accelerate these models. We mathematically group the chemical species to reduce their number and apply a machine‐learning algorithm based on sparse regression (SINDy) to create a fast, stable, and accurate surrogate model for a simplified photochemical mechanism. The machine‐learned surrogate model is 10× faster than the reference model and is numerically stable in all tested nine‐day simulation cases.
We apply the sparse identification of nonlinear dynamics to create a machine‐learned surrogate model for an atmospheric chemical mechanism
We train the model to learn the chemical dynamics in a compressed latent space with 10× speedup overall
The surrogate model can make stable predictions for all modeled chemical species without noticeable error accumulation Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to accelerate air quality model simulations but has suffered from numerical instability during long‐term simulations. This may be because previous ML‐based efforts have relied on explicit Euler time integration—which is known to be unstable for stiff systems—and have used neural networks which are prone to overfitting. We hypothesize that parsimonious models combined with modern numerical integration techniques can overcome this limitation. Using a small‐scale mechanism to explore the potential of these methods, we have created a machine‐learned surrogate by (a) reducing dimensionality using singular value decomposition to create an interpretably‐compressed low‐dimensional latent space and (b) using Sparse Identification of Nonlinear Dynamics (SINDy) to create a differential‐equation‐based representation of the underlying dynamics in the compressed latent space with reduced stiffness. The root mean square error of ML model prediction for ozone concentration over 9 days is 37.8% of the root mean square concentration across all simulations in our testing data set. The surrogate model is 10× faster with 12× fewer integration timesteps compared to reference model and is numerically stable in all tested simulations. Overall, we find that SINDy can be used to create fast, stable, and accurate surrogates of a simple photochemical mechanism. In future work, we will explore the application of this method to more detailed mechanisms and their use in large‐scale simulations. Plain Language Summary Atmospheric chemistry modeling is computationally expensive due to complex dynamic processes among numerous chemical species. Machine learning techniques have the potential to accelerate these models. We mathematically group the chemical species to reduce their number and apply a machine‐learning algorithm based on sparse regression (SINDy) to create a fast, stable, and accurate surrogate model for a simplified photochemical mechanism. The machine‐learned surrogate model is 10× faster than the reference model and is numerically stable in all tested nine‐day simulation cases. Key Points We apply the sparse identification of nonlinear dynamics to create a machine‐learned surrogate model for an atmospheric chemical mechanism We train the model to learn the chemical dynamics in a compressed latent space with 10× speedup overall The surrogate model can make stable predictions for all modeled chemical species without noticeable error accumulation |
Author | Zheng, Zhonghua Tessum, Christopher W. Yang, Xiaokai Riemer, Nicole Guo, Lin |
Author_xml | – sequence: 1 givenname: Xiaokai orcidid: 0000-0001-8815-8571 surname: Yang fullname: Yang, Xiaokai organization: University of Illinois Urbana‐Champaign – sequence: 2 givenname: Lin orcidid: 0009-0008-6286-4441 surname: Guo fullname: Guo, Lin organization: University of Illinois Urbana‐Champaign – sequence: 3 givenname: Zhonghua orcidid: 0000-0002-0642-650X surname: Zheng fullname: Zheng, Zhonghua organization: The University of Manchester – sequence: 4 givenname: Nicole orcidid: 0000-0002-3220-3457 surname: Riemer fullname: Riemer, Nicole organization: University of Illinois Urbana‐Champaign – sequence: 5 givenname: Christopher W. orcidid: 0000-0002-8864-7436 surname: Tessum fullname: Tessum, Christopher W. email: ctessum@illinois.edu organization: University of Illinois Urbana‐Champaign |
BookMark | eNp90E1LAzEQBuAgFay1N39AfoCrk6S7mz2Wqv2gKlhFPC3Z7KSN7EdJIrL_3mo9FEFPM4fnHYb3lPSatkFCzhlcMuDZFQc-WswAgAl-RPo8y0QUcwa9g_2EDL1_2xkhOEhI--R1HOrWbzforKaTDdbWB9fR1btz7VoFpHdtiZVt1vTFhg1dbZXzSOclNsEaq1WwbUNbQ-_bZqdQOXrdNaq22p-RY6Mqj8OfOSDPtzdPk1m0fJjOJ-NlpFmcQaRlUWJqykwmpWSJ4GmcljHKDJXRRhZFApIXUAhhkkRyiUmqUjXigIkopGJiQPj-rnat9w5Nrm34_is4ZaucQf7VT37Yzy508Su0dbZWrvuLw55_2Aq7f22-mD4yBuITu112gw |
CitedBy_id | crossref_primary_10_1021_acsestair_4c00220 crossref_primary_10_1029_2024JH000358 |
Cites_doi | 10.1109/WSC.2005.1574316 10.1109/BigData.2017.8258500 10.1098/rsta.2015.0202 10.1098/rspa.2023.0422 10.1007/s11071‐021‐06707‐6 10.3847/1538‐4357/ac5624 10.1016/j.envsoft.2005.12.002 10.1002/aic.690370209 10.5194/gmd‐15‐3417‐2022 10.5281/zenodo.10465784 10.1073/pnas.1517384113 10.1098/rspa.2021.0904 10.5334/jors.151 10.1016/j.jmps.2021.104474 10.5194/gmd‐12‐1209‐2019 10.1162/neco.1997.9.8.1735 10.1016/S0304‐3800(01)00434‐3 10.1021/acs.est.1c07648 10.1063/5.0060697 10.1029/2001JD000807 10.1016/0957‐1272(93)90007‐S 10.1137/S1064827594276424 10.1146/annurev‐fluid‐010719‐060214 10.1029/2021MS002974 10.1016/0960‐1686(90)90005‐8 10.1016/S1352‐2310(97)00447‐0 10.1016/j.advengsoft.2019.03.009 10.1613/jair.731 10.1016/j.jcp.2021.110743 10.1016/0098‐3004(93)90090‐R 10.1016/j.envsoft.2019.06.014 10.1137/141000671 10.1073/pnas.1906995116 10.1063/1.5066099 10.1016/0893‐6080(89)90020‐8 10.1029/JC086iC08p07210 10.1016/S1352‐2310(96)00105‐7 10.1111/cogs.12724 10.1029/2008JD011073 10.5281/zenodo.8356369 10.1038/s41612‐023‐00353‐y 10.5194/acp‐3‐161‐2003 10.1289/ehp.9256 10.5555/2188385.2188395 10.5194/gmd‐13‐4435‐2020 10.1016/j.camwa.2011.06.002 10.1017/9781316544754 10.1016/j.ymssp.2018.08.033 10.1038/s42254‐021‐00314‐5 10.1038/s41598‐023‐34931‐0 10.1103/PhysRevE.101.010203 10.1029/97JD00849 10.1103/physreve.109.l023301 10.1038/s41586‐019‐0912‐1 10.24963/ijcai.2022/405 10.1016/0168‐9274(95)00068‐6 10.1016/0364‐0213(90)90002‐E 10.1126/science.153.3731.34 10.1101/2022.07.30.502135 10.1007/s11071‐021‐07118‐3 10.1016/j.inffus.2020.01.005 10.1029/2021MS002926 10.1029/JD094iD10p12925 10.1016/S0169‐2070(97)00044‐7 10.1016/S0378‐4754(96)00068‐7 10.1038/s41467‐017‐00030‐8 10.1016/j.neucom.2006.06.015 10.1103/PhysRevFluids.6.094401 10.1103/PhysRevE.94.012214 10.1109/4235.585893 10.1016/j.cma.2023.116072 10.2514/6.2017-4430 10.1029/2020JD032759 10.1029/1999JD900876 |
ContentType | Journal Article |
Copyright | 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
Copyright_xml | – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union. |
DBID | 24P AAYXX CITATION |
DOI | 10.1029/2024JH000132 |
DatabaseName | Wiley Online Library Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | 10_1029_2024JH000132 JGR110 |
Genre | researchArticle |
GrantInformation_xml | – fundername: U.S. Environmental Protection Agency funderid: R840012 – fundername: National Aeronautics and Space Administration funderid: 80NSSC21K1813 |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAYXX CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c1590-c8bde7fd986d81632757d5e89eafcf8bb6082b0b33f66828e67a7a420e63b8a13 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Tue Jul 01 03:43:13 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Wed Jan 22 17:18:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1590-c8bde7fd986d81632757d5e89eafcf8bb6082b0b33f66828e67a7a420e63b8a13 |
ORCID | 0009-0008-6286-4441 0000-0002-0642-650X 0000-0001-8815-8571 0000-0002-8864-7436 0000-0002-3220-3457 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000132 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1029_2024JH000132 crossref_primary_10_1029_2024JH000132 wiley_primary_10_1029_2024JH000132_JGR110 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
References | 2017; 5 1966; 153 2017; 8 1993; 27 1990; 14 1997; 43 2023; 6 2019; 12 2024; 109 2011; 62 2019; 566 2020; 59 2007; 70 2020; 13 1997; 1 2020; 125 2024 2012; 13 1997; 9 2009; 114 1981; 86 2022; 930 2001; 106 1997; 102 2021; 31 2001 2020; 52 2000; 12 2016; 113 2019; 116 2003; 3 1997; 18 2014; 15 2002; 148 2023; 411 2019; 119 2021; 153 2019; 117 2007; 22 2019; 150 2022; 448 1998; 14 1989; 2 2021; 6 2023; 13 2021; 3 1991; 37 2010 2021; 105 2005 2016; 94 2020; 101 1995; 18 1999; 104 2022; 478 2006; 114 1989; 94 1993; 19 1990; 24 2017; 59 2023 2022 1997; 31 2019; 43 2022; 56 2023; 479 2019 2018 2022; 14 2017 2016; 374 2022; 15 2016 1998; 32 2022; 107 2019; 132 Yarwood G. (e_1_2_8_82_1) 2010 Srivastava N. (e_1_2_8_70_1) 2014; 15 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 Bhatt N. (e_1_2_8_9_1) 2023 Glynn P. W. (e_1_2_8_28_1) 2005 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_84_1 e_1_2_8_40_1 Kolen J. F. (e_1_2_8_46_1) 2001 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_79_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 106 start-page: 23073 issue: D19 year: 2001 end-page: 23095 article-title: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation publication-title: Journal of Geophysical Research – volume: 107 start-page: 1801 issue: 3 year: 2022 end-page: 1817 article-title: Parsimony as the ultimate regularizer for physics‐informed machine learning publication-title: Nonlinear Dynamics – volume: 14 start-page: 35 issue: 1 year: 1998 end-page: 62 article-title: Forecasting with artificial neural networks: The state of the art publication-title: International Journal of Forecasting – volume: 119 start-page: 285 year: 2019 end-page: 304 article-title: A review of artificial neural network models for ambient air pollution prediction publication-title: Environmental Modelling & Software – year: 2005 – volume: 479 issue: 2276 year: 2023 article-title: Discovering governing equations from partial measurements with deep delay autoencoders publication-title: Proceedings of the Royal Society A – volume: 14 issue: 6 year: 2022 article-title: An online‐learned neural network chemical solver for stable long‐term global simulations of atmospheric chemistry publication-title: Journal of Advances in Modeling Earth Systems – start-page: 4570 year: 2017 end-page: 4576 – volume: 566 start-page: 195 issue: 7743 year: 2019 end-page: 204 article-title: Deep learning and process understanding for data‐driven Earth system science publication-title: Nature – year: 2024 – volume: 113 start-page: 3932 issue: 15 year: 2016 end-page: 3937 article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems publication-title: Proceedings of the National Academy of Sciences – volume: 153 year: 2021 article-title: Inference of deformation mechanisms and constitutive response of soft material surrogates of biological tissue by full‐field characterization and data‐driven variational system identification publication-title: Journal of the Mechanics and Physics of Solids – volume: 43 issue: 3 year: 2019 article-title: Do additional features help or hurt category learning? The curse of dimensionality in human learners publication-title: Cognitive Science – volume: 148 start-page: 27 issue: 1 year: 2002 end-page: 46 article-title: Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia publication-title: Ecological Modelling – start-page: 11 year: 2010 end-page: 13 – year: 2018 – volume: 101 issue: 1 year: 2020 article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics publication-title: Physical Review E – volume: 59 start-page: 65 issue: 1 year: 2017 end-page: 98 article-title: Julia: A fresh approach to numerical computing publication-title: SIAM Review – volume: 14 issue: 10 year: 2022 article-title: Neural network emulation of the formation of organic aerosols based on the explicit GECKO‐A chemistry model publication-title: Journal of Advances in Modeling Earth Systems – volume: 8 start-page: 19 issue: 1 year: 2017 article-title: Chaos as an intermittently forced linear system publication-title: Nature Communications – volume: 114 issue: D9 year: 2009 article-title: Simulating the evolution of soot mixing state with a particle‐resolved aerosol model publication-title: Journal of Geophysical Research – volume: 70 start-page: 2861 issue: 16 year: 2007 end-page: 2869 article-title: Methodology for long‐term prediction of time series publication-title: Neurocomputing – volume: 52 start-page: 477 issue: 1 year: 2020 end-page: 508 article-title: Machine learning for fluid mechanics publication-title: Annual Review of Fluid Mechanics – volume: 117 start-page: 813 year: 2019 end-page: 842 article-title: Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behavior publication-title: Mechanical Systems and Signal Processing – volume: 27 start-page: 221 issue: 2 year: 1993 end-page: 230 article-title: A neural network‐based method for short‐term predictions of ambient SO concentrations in highly polluted industrial areas of complex terrain publication-title: Atmospheric Environment. Part B. Urban Atmosphere – volume: 43 start-page: 209 issue: 2 year: 1997 end-page: 221 article-title: The effect of initial transient on the steady‐state simulation harmonic analysis gradient estimators publication-title: Mathematics and Computers in Simulation – volume: 31 start-page: 81 issue: 1 year: 1997 end-page: 104 article-title: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development publication-title: Atmospheric Environment – volume: 94 start-page: 12925 issue: D10 year: 1989 end-page: 12956 article-title: A photochemical kinetics mechanism for urban and regional scale computer modeling publication-title: Journal of Geophysical Research – volume: 32 start-page: 2627 issue: 14 year: 1998 end-page: 2636 article-title: Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences publication-title: Atmospheric Environment – year: 2022 – volume: 31 issue: 9 year: 2021 article-title: Stiff neural ordinary differential equations publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science – volume: 105 start-page: 2775 issue: 3 year: 2021 end-page: 2794 article-title: Modeling and prediction of the transmission dynamics of COVID‐19 based on the SINDy‐LM method publication-title: Nonlinear Dynamics – year: 2022 article-title: Catalyst: Fast biochemical modeling with Julia publication-title: bioRxiv – volume: 19 start-page: 303 issue: 3 year: 1993 end-page: 342 article-title: Principal components analysis (PCA) publication-title: Computers & Geosciences – volume: 6 start-page: 28 issue: 1 year: 2023 article-title: Physics informed deep neural network embedded in a chemical transport model for the Amazon rainforest publication-title: npj Climate and Atmospheric Science – volume: 12 start-page: 1209 issue: 3 year: 2019 end-page: 1225 article-title: Application of random forest regression to the calculation of gas‐phase chemistry within the GEOS‐Chem chemistry model v10 publication-title: Geoscientific Model Development – volume: 5 start-page: 15 issue: 1 year: 2017 article-title: DifferentialEquations.jl–A performant and feature‐rich ecosystem for solving differential equations in Julia publication-title: Journal of Open Research Software – year: 2019 – volume: 18 start-page: 413 issue: 1 year: 1995 end-page: 430 article-title: Explicit methods for stiff ODEs from atmospheric chemistry publication-title: Applied Numerical Mathematics – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Computation – volume: 15 start-page: 3417 issue: 8 year: 2022 end-page: 3431 article-title: Conservation laws in a neural network architecture: Enforcing the atom balance of a Julia‐based photochemical model (v0.2.0) publication-title: Geoscientific Model Development – volume: 150 issue: 2 year: 2019 article-title: Reactive SINDy: Discovering governing reactions from concentration data publication-title: The Journal of Chemical Physics – volume: 132 start-page: 1 year: 2019 end-page: 6 article-title: Confederated modular differential equation APIs for accelerated algorithm development and benchmarking publication-title: Advances in Engineering Software – volume: 448 year: 2022 article-title: Data‐driven discovery of multiscale chemical reactions governed by the law of mass action publication-title: Journal of Computational Physics – volume: 930 start-page: 161 issue: 2 year: 2022 article-title: Sparse identification of variable star dynamics publication-title: The Astrophysical Journal – volume: 116 start-page: 22445 issue: 45 year: 2019 end-page: 22451 article-title: Data‐driven discovery of coordinates and governing equations publication-title: Proceedings of the National Academy of Sciences – volume: 86 start-page: 7210 issue: C8 year: 1981 end-page: 7254 article-title: Tropospheric chemistry: A global perspective publication-title: Journal of Geophysical Research – volume: 114 start-page: 1489 issue: 10 year: 2006 end-page: 1496 article-title: Ozone’s impact on public health: Contributions from indoor exposures to ozone and products of ozone‐initiated chemistry publication-title: Environmental Health Perspectives – volume: 13 start-page: 281 issue: 2 year: 2012 end-page: 305 article-title: Random search for hyper‐parameter optimization publication-title: Journal of Machine Learning Research – volume: 153 start-page: 34 issue: 3731 year: 1966 end-page: 37 article-title: Dynamic programming publication-title: Science – volume: 12 start-page: 149 year: 2000 end-page: 198 article-title: A model of inductive bias learning publication-title: Journal of Artificial Intelligence Research – volume: 102 start-page: 25847 issue: D22 year: 1997 end-page: 25879 article-title: A new mechanism for regional atmospheric chemistry modeling publication-title: Journal of Geophysical Research – volume: 13 start-page: 4435 issue: 9 year: 2020 end-page: 4442 article-title: A mass‐ and energy‐conserving framework for using machine learning to speed computations: A photochemistry example publication-title: Geoscientific Model Development – volume: 125 issue: 23 year: 2020 article-title: Toward stable, general machine‐learned models of the atmospheric chemical system publication-title: Journal of Geophysical Research: Atmospheres – volume: 2 start-page: 359 issue: 5 year: 1989 end-page: 366 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – volume: 62 start-page: 770 issue: 2 year: 2011 end-page: 775 article-title: Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption publication-title: Computers & Mathematics with Applications – year: 2016 – volume: 109 issue: 2 year: 2024 article-title: Interpretable conservation laws as sparse invariants publication-title: Physical Review E – volume: 94 issue: 1 year: 2016 article-title: Prediction of dynamical systems by symbolic regression publication-title: Physical Review E – volume: 59 start-page: 44 year: 2020 end-page: 58 article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data publication-title: Information Fusion – volume: 24 start-page: 481 issue: 3 year: 1990 end-page: 518 article-title: A detailed mechanism for the gas‐phase atmospheric reactions of organic compounds publication-title: Atmospheric Environment. Part A. General Topics – volume: 13 issue: 1 year: 2023 article-title: Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method publication-title: Scientific Reports – volume: 104 start-page: 30387 issue: D23 year: 1999 end-page: 30415 article-title: A new lumped structure photochemical mechanism for large‐scale applications publication-title: Journal of Geophysical Research – volume: 56 start-page: 4676 issue: 7 year: 2022 end-page: 4685 article-title: A neural network‐assisted euler integrator for stiff kinetics in atmospheric chemistry publication-title: Environmental Science & Technology – volume: 18 start-page: 1 issue: 1 year: 1997 end-page: 22 article-title: The MATLAB ODE suite publication-title: SIAM Journal on Scientific Computing – volume: 1 start-page: 67 issue: 1 year: 1997 end-page: 82 article-title: No free lunch theorems for optimization publication-title: IEEE Transactions on Evolutionary Computation – volume: 15 start-page: 1929 issue: 56 year: 2014 end-page: 1958 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – volume: 374 issue: 2065 year: 2016 article-title: Principal component analysis: A review and recent developments publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – start-page: 237 year: 2001 end-page: 243 – volume: 411 year: 2023 article-title: Reduced order modeling of parametrized systems through autoencoders and SINDy approach: Continuation of periodic solutions publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 22 start-page: 97 issue: 1 year: 2007 end-page: 103 article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations publication-title: Environmental Modelling & Software – volume: 6 issue: 9 year: 2021 article-title: Promoting global stability in data‐driven models of quadratic nonlinear dynamics publication-title: Physical Review Fluids – volume: 3 start-page: 161 issue: 1 year: 2003 end-page: 180 article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non‐aromatic volatile organic compounds publication-title: Atmospheric Chemistry and Physics – year: 2023 – volume: 14 start-page: 179 issue: 2 year: 1990 end-page: 211 article-title: Finding structure in time publication-title: Cognitive Science – year: 2017 – volume: 478 issue: 2260 year: 2022 article-title: Ensemble‐SINDy: Robust sparse model discovery in the low‐data, high‐noise limit, with active learning and control publication-title: Proceedings of the Royal Society A – volume: 3 start-page: 422 issue: 6 year: 2021 end-page: 440 article-title: Physics‐informed machine learning publication-title: Nature Reviews Physics – volume: 37 start-page: 233 issue: 2 year: 1991 end-page: 243 article-title: Nonlinear principal component analysis using autoassociative neural networks publication-title: AIChE Journal – volume-title: Initial transient problem for steady‐state output analysis year: 2005 ident: e_1_2_8_28_1 doi: 10.1109/WSC.2005.1574316 – ident: e_1_2_8_41_1 doi: 10.1109/BigData.2017.8258500 – volume: 15 start-page: 1929 issue: 56 year: 2014 ident: e_1_2_8_70_1 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: Journal of Machine Learning Research – ident: e_1_2_8_37_1 doi: 10.1098/rsta.2015.0202 – ident: e_1_2_8_3_1 doi: 10.1098/rspa.2023.0422 – ident: e_1_2_8_36_1 doi: 10.1007/s11071‐021‐06707‐6 – ident: e_1_2_8_56_1 doi: 10.3847/1538‐4357/ac5624 – ident: e_1_2_8_69_1 doi: 10.1016/j.envsoft.2005.12.002 – ident: e_1_2_8_47_1 doi: 10.1002/aic.690370209 – ident: e_1_2_8_73_1 doi: 10.5194/gmd‐15‐3417‐2022 – ident: e_1_2_8_81_1 doi: 10.5281/zenodo.10465784 – ident: e_1_2_8_14_1 doi: 10.1073/pnas.1517384113 – ident: e_1_2_8_24_1 doi: 10.1098/rspa.2021.0904 – ident: e_1_2_8_59_1 doi: 10.5334/jors.151 – ident: e_1_2_8_78_1 doi: 10.1016/j.jmps.2021.104474 – ident: e_1_2_8_40_1 doi: 10.5194/gmd‐12‐1209‐2019 – ident: e_1_2_8_29_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_8_44_1 – ident: e_1_2_8_76_1 doi: 10.1016/S0304‐3800(01)00434‐3 – ident: e_1_2_8_33_1 doi: 10.1021/acs.est.1c07648 – ident: e_1_2_8_45_1 doi: 10.1063/5.0060697 – ident: e_1_2_8_7_1 doi: 10.1029/2001JD000807 – ident: e_1_2_8_10_1 doi: 10.1016/0957‐1272(93)90007‐S – ident: e_1_2_8_66_1 doi: 10.1137/S1064827594276424 – ident: e_1_2_8_13_1 doi: 10.1146/annurev‐fluid‐010719‐060214 – ident: e_1_2_8_65_1 doi: 10.1029/2021MS002974 – ident: e_1_2_8_17_1 doi: 10.1016/0960‐1686(90)90005‐8 – ident: e_1_2_8_26_1 doi: 10.1016/S1352‐2310(97)00447‐0 – ident: e_1_2_8_60_1 doi: 10.1016/j.advengsoft.2019.03.009 – ident: e_1_2_8_4_1 doi: 10.1613/jair.731 – ident: e_1_2_8_32_1 doi: 10.1016/j.jcp.2021.110743 – ident: e_1_2_8_54_1 doi: 10.1016/0098‐3004(93)90090‐R – ident: e_1_2_8_15_1 doi: 10.1016/j.envsoft.2019.06.014 – ident: e_1_2_8_8_1 doi: 10.1137/141000671 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.1906995116 – ident: e_1_2_8_30_1 doi: 10.1063/1.5066099 – ident: e_1_2_8_53_1 – ident: e_1_2_8_31_1 doi: 10.1016/0893‐6080(89)90020‐8 – ident: e_1_2_8_51_1 doi: 10.1029/JC086iC08p07210 – ident: e_1_2_8_35_1 doi: 10.1016/S1352‐2310(96)00105‐7 – ident: e_1_2_8_77_1 doi: 10.1111/cogs.12724 – ident: e_1_2_8_63_1 doi: 10.1029/2008JD011073 – ident: e_1_2_8_55_1 doi: 10.5281/zenodo.8356369 – ident: e_1_2_8_20_1 – ident: e_1_2_8_67_1 doi: 10.1038/s41612‐023‐00353‐y – start-page: 237 volume-title: A field guide to dynamical recurrent networks year: 2001 ident: e_1_2_8_46_1 – ident: e_1_2_8_64_1 doi: 10.5194/acp‐3‐161‐2003 – ident: e_1_2_8_79_1 doi: 10.1289/ehp.9256 – ident: e_1_2_8_6_1 doi: 10.5555/2188385.2188395 – ident: e_1_2_8_72_1 doi: 10.5194/gmd‐13‐4435‐2020 – ident: e_1_2_8_74_1 doi: 10.1016/j.camwa.2011.06.002 – ident: e_1_2_8_11_1 doi: 10.1017/9781316544754 – ident: e_1_2_8_49_1 doi: 10.1016/j.ymssp.2018.08.033 – ident: e_1_2_8_39_1 doi: 10.1038/s42254‐021‐00314‐5 – ident: e_1_2_8_57_1 doi: 10.1038/s41598‐023‐34931‐0 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevE.101.010203 – ident: e_1_2_8_71_1 doi: 10.1029/97JD00849 – ident: e_1_2_8_50_1 doi: 10.1103/physreve.109.l023301 – ident: e_1_2_8_61_1 doi: 10.1038/s41586‐019‐0912‐1 – ident: e_1_2_8_22_1 doi: 10.24963/ijcai.2022/405 – volume-title: SINDy‐CRN: Sparse identification of chemical reaction networks from data year: 2023 ident: e_1_2_8_9_1 – ident: e_1_2_8_75_1 doi: 10.1016/0168‐9274(95)00068‐6 – ident: e_1_2_8_16_1 – ident: e_1_2_8_23_1 doi: 10.1016/0364‐0213(90)90002‐E – ident: e_1_2_8_5_1 doi: 10.1126/science.153.3731.34 – ident: e_1_2_8_52_1 doi: 10.1101/2022.07.30.502135 – ident: e_1_2_8_48_1 doi: 10.1007/s11071‐021‐07118‐3 – ident: e_1_2_8_2_1 doi: 10.1016/j.inffus.2020.01.005 – ident: e_1_2_8_43_1 doi: 10.1029/2021MS002926 – ident: e_1_2_8_19_1 – ident: e_1_2_8_27_1 doi: 10.1029/JD094iD10p12925 – ident: e_1_2_8_84_1 doi: 10.1016/S0169‐2070(97)00044‐7 – ident: e_1_2_8_34_1 doi: 10.1016/S0378‐4754(96)00068‐7 – ident: e_1_2_8_12_1 doi: 10.1038/s41467‐017‐00030‐8 – ident: e_1_2_8_68_1 doi: 10.1016/j.neucom.2006.06.015 – ident: e_1_2_8_38_1 doi: 10.1103/PhysRevFluids.6.094401 – ident: e_1_2_8_58_1 doi: 10.1103/PhysRevE.94.012214 – ident: e_1_2_8_80_1 doi: 10.1109/4235.585893 – ident: e_1_2_8_21_1 doi: 10.1016/j.cma.2023.116072 – ident: e_1_2_8_25_1 doi: 10.2514/6.2017-4430 – start-page: 11 volume-title: 9th Annual CMAS Conference year: 2010 ident: e_1_2_8_82_1 – ident: e_1_2_8_42_1 doi: 10.1029/2020JD032759 – ident: e_1_2_8_83_1 doi: 10.1029/1999JD900876 |
SSID | ssj0003320807 |
Score | 2.2582512 |
Snippet | Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from... |
SourceID | crossref wiley |
SourceType | Enrichment Source Index Database Publisher |
Title | Atmospheric Chemistry Surrogate Modeling With Sparse Identification of Nonlinear Dynamics |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000132 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yL15EUXH-GDnoQaTYJWmaHsfcHIMNcQ7nqSRpigNdR9dd_dvNS-qYBwUvPZRHoK9J3vte8n0PoSuaWCAtCQ9srMwDFgFZWcegjJixmDMlpTsxHY35YMqGs2hWF9yAC-P1ITYFN1gZbr-GBS7VqhYbAI1Mi9rZcOByGLsF7wK7FrTzCXvc1FgoJaFnTBO4pmYjVVjffbdD3G0P8CMqbWepLsz0D9B-nR_ijv-hh2jHLI7Qa6f6KFYgADDXuPvdog1P1mVZQBkMQ0cz4JXjl3n1hidLi1YN9hzcvC7K4SLHY__dssT3vhH96hhN-73n7iCoeyIEug2O1EJlJs6zRPBM2FyKxFGcRUYkRuY6F0pxG9NVqCjNObdoyvBYxpKR0HCqhGzTE9RYFAtzinBGk0jLELizhFnYJamJLFzUkVDCGCWa6PbbJ6muBcOhb8V76g6uSZJue7CJrjfWSy-U8YvdjXPvn0bp8OHJ5iVn_7A9R3vw1t_iukCNqlybS5svVKrlJkXLoW37HH32vgAvorcw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD3oRRcX5Mwc9iBS7JE3S45jOObchbsN5Kkmb4kDX0XX_v3lNHfOg4P0R6EuT9yPv-z6ELmloC2lFuGdjZeqxAMDKsQBmxIQJzrRS5Ytpf8A7Y9adBJNK5xSwMI4fYtVwg5NR3tdwwKEhXbENAEmmLdtZt1MmMfYO3mScCDiZhD2vmiyUEt9BpgnMqdlQ5VfD73aJ2_UFfoSl9TS1jDPtXbRTJYi46XZ0D22Y2T56axaf2QIYAKYxbn1rtOHhMs8z6INhkDQDYDl-nRbveDi35arBDoSbVl05nKV44D5c5fjOKdEvDtC4fT9qdbxKFMGLG-DJWOrEiDQJJU-kTaaICEQSGBkalcap1JrboK59TWnKuS2nDBdKKEZ8w6mWqkEPUW2WzcwRwgkNg1j5AJ4lzNZdiprA1otxILU0Rss6uvn2SRRXjOEgXPERlS_XJIzWPVhHVyvruWPK-MXuunTvn0ZR9-HFJibH_7C9QFudUb8X9R4HTydoGyzcSNcpqhX50pzZ5KHQ5-UP8gWJ_Lh2 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yQXwRRcX5Mw_6IFLsmjRNH8fmnFPHcA7nU0nSBAe6jq77_82l3ZgPCr4fgV6a3Hd3-b5D6JLENpEWAfNsrDQeDYGsrCJQRkxpxKgUwnVMn_usO6K9cTiuCm7AhSn1IVYFNzgZ7r6GAz5LTSU2ABqZNmunva7DMPYK3nT9PlB2poNVjYWQwC8Z0wE8U7ORyq_evtslbtcX-BGV1lGqCzOdXbRT4UPcLDd0D23o6T56bxZf2RwEACYKt5Yj2vBwkecZlMEwTDQDXjl-mxQfeDiz2arGJQfXVEU5nBncL79b5LhdDqKfH6BR5-611fWqmQieaoAjFZepjkwac5Zyi6WCKIzSUPNYC6MMl5LZmC59SYhhzGZTmkUiEjTwNSOSiwY5RLVpNtVHCKckDpXwgTsbUJt2CaJDmy6qkEuuteR1dLP0SaIqwXCYW_GZuMZ1ECfrHqyjq5X1rBTK-MXu2rn3T6Okd_9iccnxP2wv0Nag3UmeHvqPJ2gbDMoHXaeoVuQLfWahQyHP3f_xDay8t6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Chemistry+Surrogate+Modeling+With+Sparse+Identification+of+Nonlinear+Dynamics&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Yang%2C+Xiaokai&rft.au=Guo%2C+Lin&rft.au=Zheng%2C+Zhonghua&rft.au=Riemer%2C+Nicole&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000132&rft.externalDBID=10.1029%252F2024JH000132&rft.externalDocID=JGR110 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |