Atmospheric Chemistry Surrogate Modeling With Sparse Identification of Nonlinear Dynamics

Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to acceler...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 2
Main Authors Yang, Xiaokai, Guo, Lin, Zheng, Zhonghua, Riemer, Nicole, Tessum, Christopher W.
Format Journal Article
LanguageEnglish
Published 01.06.2024
Online AccessGet full text

Cover

Loading…
Abstract Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to accelerate air quality model simulations but has suffered from numerical instability during long‐term simulations. This may be because previous ML‐based efforts have relied on explicit Euler time integration—which is known to be unstable for stiff systems—and have used neural networks which are prone to overfitting. We hypothesize that parsimonious models combined with modern numerical integration techniques can overcome this limitation. Using a small‐scale mechanism to explore the potential of these methods, we have created a machine‐learned surrogate by (a) reducing dimensionality using singular value decomposition to create an interpretably‐compressed low‐dimensional latent space and (b) using Sparse Identification of Nonlinear Dynamics (SINDy) to create a differential‐equation‐based representation of the underlying dynamics in the compressed latent space with reduced stiffness. The root mean square error of ML model prediction for ozone concentration over 9 days is 37.8% of the root mean square concentration across all simulations in our testing data set. The surrogate model is 10× faster with 12× fewer integration timesteps compared to reference model and is numerically stable in all tested simulations. Overall, we find that SINDy can be used to create fast, stable, and accurate surrogates of a simple photochemical mechanism. In future work, we will explore the application of this method to more detailed mechanisms and their use in large‐scale simulations. Plain Language Summary Atmospheric chemistry modeling is computationally expensive due to complex dynamic processes among numerous chemical species. Machine learning techniques have the potential to accelerate these models. We mathematically group the chemical species to reduce their number and apply a machine‐learning algorithm based on sparse regression (SINDy) to create a fast, stable, and accurate surrogate model for a simplified photochemical mechanism. The machine‐learned surrogate model is 10× faster than the reference model and is numerically stable in all tested nine‐day simulation cases. Key Points We apply the sparse identification of nonlinear dynamics to create a machine‐learned surrogate model for an atmospheric chemical mechanism We train the model to learn the chemical dynamics in a compressed latent space with 10× speedup overall The surrogate model can make stable predictions for all modeled chemical species without noticeable error accumulation
AbstractList Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to accelerate air quality model simulations but has suffered from numerical instability during long‐term simulations. This may be because previous ML‐based efforts have relied on explicit Euler time integration—which is known to be unstable for stiff systems—and have used neural networks which are prone to overfitting. We hypothesize that parsimonious models combined with modern numerical integration techniques can overcome this limitation. Using a small‐scale mechanism to explore the potential of these methods, we have created a machine‐learned surrogate by (a) reducing dimensionality using singular value decomposition to create an interpretably‐compressed low‐dimensional latent space and (b) using Sparse Identification of Nonlinear Dynamics (SINDy) to create a differential‐equation‐based representation of the underlying dynamics in the compressed latent space with reduced stiffness. The root mean square error of ML model prediction for ozone concentration over 9 days is 37.8% of the root mean square concentration across all simulations in our testing data set. The surrogate model is 10× faster with 12× fewer integration timesteps compared to reference model and is numerically stable in all tested simulations. Overall, we find that SINDy can be used to create fast, stable, and accurate surrogates of a simple photochemical mechanism. In future work, we will explore the application of this method to more detailed mechanisms and their use in large‐scale simulations. Atmospheric chemistry modeling is computationally expensive due to complex dynamic processes among numerous chemical species. Machine learning techniques have the potential to accelerate these models. We mathematically group the chemical species to reduce their number and apply a machine‐learning algorithm based on sparse regression (SINDy) to create a fast, stable, and accurate surrogate model for a simplified photochemical mechanism. The machine‐learned surrogate model is 10× faster than the reference model and is numerically stable in all tested nine‐day simulation cases. We apply the sparse identification of nonlinear dynamics to create a machine‐learned surrogate model for an atmospheric chemical mechanism We train the model to learn the chemical dynamics in a compressed latent space with 10× speedup overall The surrogate model can make stable predictions for all modeled chemical species without noticeable error accumulation
Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from solving high‐dimensional systems of stiff differential equations. Previous work has demonstrated the promise of machine learning (ML) to accelerate air quality model simulations but has suffered from numerical instability during long‐term simulations. This may be because previous ML‐based efforts have relied on explicit Euler time integration—which is known to be unstable for stiff systems—and have used neural networks which are prone to overfitting. We hypothesize that parsimonious models combined with modern numerical integration techniques can overcome this limitation. Using a small‐scale mechanism to explore the potential of these methods, we have created a machine‐learned surrogate by (a) reducing dimensionality using singular value decomposition to create an interpretably‐compressed low‐dimensional latent space and (b) using Sparse Identification of Nonlinear Dynamics (SINDy) to create a differential‐equation‐based representation of the underlying dynamics in the compressed latent space with reduced stiffness. The root mean square error of ML model prediction for ozone concentration over 9 days is 37.8% of the root mean square concentration across all simulations in our testing data set. The surrogate model is 10× faster with 12× fewer integration timesteps compared to reference model and is numerically stable in all tested simulations. Overall, we find that SINDy can be used to create fast, stable, and accurate surrogates of a simple photochemical mechanism. In future work, we will explore the application of this method to more detailed mechanisms and their use in large‐scale simulations. Plain Language Summary Atmospheric chemistry modeling is computationally expensive due to complex dynamic processes among numerous chemical species. Machine learning techniques have the potential to accelerate these models. We mathematically group the chemical species to reduce their number and apply a machine‐learning algorithm based on sparse regression (SINDy) to create a fast, stable, and accurate surrogate model for a simplified photochemical mechanism. The machine‐learned surrogate model is 10× faster than the reference model and is numerically stable in all tested nine‐day simulation cases. Key Points We apply the sparse identification of nonlinear dynamics to create a machine‐learned surrogate model for an atmospheric chemical mechanism We train the model to learn the chemical dynamics in a compressed latent space with 10× speedup overall The surrogate model can make stable predictions for all modeled chemical species without noticeable error accumulation
Author Zheng, Zhonghua
Tessum, Christopher W.
Yang, Xiaokai
Riemer, Nicole
Guo, Lin
Author_xml – sequence: 1
  givenname: Xiaokai
  orcidid: 0000-0001-8815-8571
  surname: Yang
  fullname: Yang, Xiaokai
  organization: University of Illinois Urbana‐Champaign
– sequence: 2
  givenname: Lin
  orcidid: 0009-0008-6286-4441
  surname: Guo
  fullname: Guo, Lin
  organization: University of Illinois Urbana‐Champaign
– sequence: 3
  givenname: Zhonghua
  orcidid: 0000-0002-0642-650X
  surname: Zheng
  fullname: Zheng, Zhonghua
  organization: The University of Manchester
– sequence: 4
  givenname: Nicole
  orcidid: 0000-0002-3220-3457
  surname: Riemer
  fullname: Riemer, Nicole
  organization: University of Illinois Urbana‐Champaign
– sequence: 5
  givenname: Christopher W.
  orcidid: 0000-0002-8864-7436
  surname: Tessum
  fullname: Tessum, Christopher W.
  email: ctessum@illinois.edu
  organization: University of Illinois Urbana‐Champaign
BookMark eNp90E1LAzEQBuAgFay1N39AfoCrk6S7mz2Wqv2gKlhFPC3Z7KSN7EdJIrL_3mo9FEFPM4fnHYb3lPSatkFCzhlcMuDZFQc-WswAgAl-RPo8y0QUcwa9g_2EDL1_2xkhOEhI--R1HOrWbzforKaTDdbWB9fR1btz7VoFpHdtiZVt1vTFhg1dbZXzSOclNsEaq1WwbUNbQ-_bZqdQOXrdNaq22p-RY6Mqj8OfOSDPtzdPk1m0fJjOJ-NlpFmcQaRlUWJqykwmpWSJ4GmcljHKDJXRRhZFApIXUAhhkkRyiUmqUjXigIkopGJiQPj-rnat9w5Nrm34_is4ZaucQf7VT37Yzy508Su0dbZWrvuLw55_2Aq7f22-mD4yBuITu112gw
CitedBy_id crossref_primary_10_1021_acsestair_4c00220
crossref_primary_10_1029_2024JH000358
Cites_doi 10.1109/WSC.2005.1574316
10.1109/BigData.2017.8258500
10.1098/rsta.2015.0202
10.1098/rspa.2023.0422
10.1007/s11071‐021‐06707‐6
10.3847/1538‐4357/ac5624
10.1016/j.envsoft.2005.12.002
10.1002/aic.690370209
10.5194/gmd‐15‐3417‐2022
10.5281/zenodo.10465784
10.1073/pnas.1517384113
10.1098/rspa.2021.0904
10.5334/jors.151
10.1016/j.jmps.2021.104474
10.5194/gmd‐12‐1209‐2019
10.1162/neco.1997.9.8.1735
10.1016/S0304‐3800(01)00434‐3
10.1021/acs.est.1c07648
10.1063/5.0060697
10.1029/2001JD000807
10.1016/0957‐1272(93)90007‐S
10.1137/S1064827594276424
10.1146/annurev‐fluid‐010719‐060214
10.1029/2021MS002974
10.1016/0960‐1686(90)90005‐8
10.1016/S1352‐2310(97)00447‐0
10.1016/j.advengsoft.2019.03.009
10.1613/jair.731
10.1016/j.jcp.2021.110743
10.1016/0098‐3004(93)90090‐R
10.1016/j.envsoft.2019.06.014
10.1137/141000671
10.1073/pnas.1906995116
10.1063/1.5066099
10.1016/0893‐6080(89)90020‐8
10.1029/JC086iC08p07210
10.1016/S1352‐2310(96)00105‐7
10.1111/cogs.12724
10.1029/2008JD011073
10.5281/zenodo.8356369
10.1038/s41612‐023‐00353‐y
10.5194/acp‐3‐161‐2003
10.1289/ehp.9256
10.5555/2188385.2188395
10.5194/gmd‐13‐4435‐2020
10.1016/j.camwa.2011.06.002
10.1017/9781316544754
10.1016/j.ymssp.2018.08.033
10.1038/s42254‐021‐00314‐5
10.1038/s41598‐023‐34931‐0
10.1103/PhysRevE.101.010203
10.1029/97JD00849
10.1103/physreve.109.l023301
10.1038/s41586‐019‐0912‐1
10.24963/ijcai.2022/405
10.1016/0168‐9274(95)00068‐6
10.1016/0364‐0213(90)90002‐E
10.1126/science.153.3731.34
10.1101/2022.07.30.502135
10.1007/s11071‐021‐07118‐3
10.1016/j.inffus.2020.01.005
10.1029/2021MS002926
10.1029/JD094iD10p12925
10.1016/S0169‐2070(97)00044‐7
10.1016/S0378‐4754(96)00068‐7
10.1038/s41467‐017‐00030‐8
10.1016/j.neucom.2006.06.015
10.1103/PhysRevFluids.6.094401
10.1103/PhysRevE.94.012214
10.1109/4235.585893
10.1016/j.cma.2023.116072
10.2514/6.2017-4430
10.1029/2020JD032759
10.1029/1999JD900876
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of American Geophysical Union.
DBID 24P
AAYXX
CITATION
DOI 10.1029/2024JH000132
DatabaseName Wiley Online Library Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID 10_1029_2024JH000132
JGR110
Genre researchArticle
GrantInformation_xml – fundername: U.S. Environmental Protection Agency
  funderid: R840012
– fundername: National Aeronautics and Space Administration
  funderid: 80NSSC21K1813
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAYXX
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1590-c8bde7fd986d81632757d5e89eafcf8bb6082b0b33f66828e67a7a420e63b8a13
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Tue Jul 01 03:43:13 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1590-c8bde7fd986d81632757d5e89eafcf8bb6082b0b33f66828e67a7a420e63b8a13
ORCID 0009-0008-6286-4441
0000-0002-0642-650X
0000-0001-8815-8571
0000-0002-8864-7436
0000-0002-3220-3457
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000132
PageCount 14
ParticipantIDs crossref_citationtrail_10_1029_2024JH000132
crossref_primary_10_1029_2024JH000132
wiley_primary_10_1029_2024JH000132_JGR110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
References 2017; 5
1966; 153
2017; 8
1993; 27
1990; 14
1997; 43
2023; 6
2019; 12
2024; 109
2011; 62
2019; 566
2020; 59
2007; 70
2020; 13
1997; 1
2020; 125
2024
2012; 13
1997; 9
2009; 114
1981; 86
2022; 930
2001; 106
1997; 102
2021; 31
2001
2020; 52
2000; 12
2016; 113
2019; 116
2003; 3
1997; 18
2014; 15
2002; 148
2023; 411
2019; 119
2021; 153
2019; 117
2007; 22
2019; 150
2022; 448
1998; 14
1989; 2
2021; 6
2023; 13
2021; 3
1991; 37
2010
2021; 105
2005
2016; 94
2020; 101
1995; 18
1999; 104
2022; 478
2006; 114
1989; 94
1993; 19
1990; 24
2017; 59
2023
2022
1997; 31
2019; 43
2022; 56
2023; 479
2019
2018
2022; 14
2017
2016; 374
2022; 15
2016
1998; 32
2022; 107
2019; 132
Yarwood G. (e_1_2_8_82_1) 2010
Srivastava N. (e_1_2_8_70_1) 2014; 15
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
e_1_2_8_3_1
e_1_2_8_81_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
Bhatt N. (e_1_2_8_9_1) 2023
Glynn P. W. (e_1_2_8_28_1) 2005
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_69_1
e_1_2_8_2_1
e_1_2_8_80_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_65_1
e_1_2_8_63_1
e_1_2_8_84_1
e_1_2_8_40_1
Kolen J. F. (e_1_2_8_46_1) 2001
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_79_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_77_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_75_1
e_1_2_8_52_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 106
  start-page: 23073
  issue: D19
  year: 2001
  end-page: 23095
  article-title: Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation
  publication-title: Journal of Geophysical Research
– volume: 107
  start-page: 1801
  issue: 3
  year: 2022
  end-page: 1817
  article-title: Parsimony as the ultimate regularizer for physics‐informed machine learning
  publication-title: Nonlinear Dynamics
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  end-page: 62
  article-title: Forecasting with artificial neural networks: The state of the art
  publication-title: International Journal of Forecasting
– volume: 119
  start-page: 285
  year: 2019
  end-page: 304
  article-title: A review of artificial neural network models for ambient air pollution prediction
  publication-title: Environmental Modelling & Software
– year: 2005
– volume: 479
  issue: 2276
  year: 2023
  article-title: Discovering governing equations from partial measurements with deep delay autoencoders
  publication-title: Proceedings of the Royal Society A
– volume: 14
  issue: 6
  year: 2022
  article-title: An online‐learned neural network chemical solver for stable long‐term global simulations of atmospheric chemistry
  publication-title: Journal of Advances in Modeling Earth Systems
– start-page: 4570
  year: 2017
  end-page: 4576
– volume: 566
  start-page: 195
  issue: 7743
  year: 2019
  end-page: 204
  article-title: Deep learning and process understanding for data‐driven Earth system science
  publication-title: Nature
– year: 2024
– volume: 113
  start-page: 3932
  issue: 15
  year: 2016
  end-page: 3937
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proceedings of the National Academy of Sciences
– volume: 153
  year: 2021
  article-title: Inference of deformation mechanisms and constitutive response of soft material surrogates of biological tissue by full‐field characterization and data‐driven variational system identification
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 43
  issue: 3
  year: 2019
  article-title: Do additional features help or hurt category learning? The curse of dimensionality in human learners
  publication-title: Cognitive Science
– volume: 148
  start-page: 27
  issue: 1
  year: 2002
  end-page: 46
  article-title: Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
  publication-title: Ecological Modelling
– start-page: 11
  year: 2010
  end-page: 13
– year: 2018
– volume: 101
  issue: 1
  year: 2020
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Physical Review E
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  end-page: 98
  article-title: Julia: A fresh approach to numerical computing
  publication-title: SIAM Review
– volume: 14
  issue: 10
  year: 2022
  article-title: Neural network emulation of the formation of organic aerosols based on the explicit GECKO‐A chemistry model
  publication-title: Journal of Advances in Modeling Earth Systems
– volume: 8
  start-page: 19
  issue: 1
  year: 2017
  article-title: Chaos as an intermittently forced linear system
  publication-title: Nature Communications
– volume: 114
  issue: D9
  year: 2009
  article-title: Simulating the evolution of soot mixing state with a particle‐resolved aerosol model
  publication-title: Journal of Geophysical Research
– volume: 70
  start-page: 2861
  issue: 16
  year: 2007
  end-page: 2869
  article-title: Methodology for long‐term prediction of time series
  publication-title: Neurocomputing
– volume: 52
  start-page: 477
  issue: 1
  year: 2020
  end-page: 508
  article-title: Machine learning for fluid mechanics
  publication-title: Annual Review of Fluid Mechanics
– volume: 117
  start-page: 813
  year: 2019
  end-page: 842
  article-title: Sparse structural system identification method for nonlinear dynamic systems with hysteresis/inelastic behavior
  publication-title: Mechanical Systems and Signal Processing
– volume: 27
  start-page: 221
  issue: 2
  year: 1993
  end-page: 230
  article-title: A neural network‐based method for short‐term predictions of ambient SO concentrations in highly polluted industrial areas of complex terrain
  publication-title: Atmospheric Environment. Part B. Urban Atmosphere
– volume: 43
  start-page: 209
  issue: 2
  year: 1997
  end-page: 221
  article-title: The effect of initial transient on the steady‐state simulation harmonic analysis gradient estimators
  publication-title: Mathematics and Computers in Simulation
– volume: 31
  start-page: 81
  issue: 1
  year: 1997
  end-page: 104
  article-title: The tropospheric degradation of volatile organic compounds: A protocol for mechanism development
  publication-title: Atmospheric Environment
– volume: 94
  start-page: 12925
  issue: D10
  year: 1989
  end-page: 12956
  article-title: A photochemical kinetics mechanism for urban and regional scale computer modeling
  publication-title: Journal of Geophysical Research
– volume: 32
  start-page: 2627
  issue: 14
  year: 1998
  end-page: 2636
  article-title: Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric sciences
  publication-title: Atmospheric Environment
– year: 2022
– volume: 31
  issue: 9
  year: 2021
  article-title: Stiff neural ordinary differential equations
  publication-title: Chaos: An Interdisciplinary Journal of Nonlinear Science
– volume: 105
  start-page: 2775
  issue: 3
  year: 2021
  end-page: 2794
  article-title: Modeling and prediction of the transmission dynamics of COVID‐19 based on the SINDy‐LM method
  publication-title: Nonlinear Dynamics
– year: 2022
  article-title: Catalyst: Fast biochemical modeling with Julia
  publication-title: bioRxiv
– volume: 19
  start-page: 303
  issue: 3
  year: 1993
  end-page: 342
  article-title: Principal components analysis (PCA)
  publication-title: Computers & Geosciences
– volume: 6
  start-page: 28
  issue: 1
  year: 2023
  article-title: Physics informed deep neural network embedded in a chemical transport model for the Amazon rainforest
  publication-title: npj Climate and Atmospheric Science
– volume: 12
  start-page: 1209
  issue: 3
  year: 2019
  end-page: 1225
  article-title: Application of random forest regression to the calculation of gas‐phase chemistry within the GEOS‐Chem chemistry model v10
  publication-title: Geoscientific Model Development
– volume: 5
  start-page: 15
  issue: 1
  year: 2017
  article-title: DifferentialEquations.jl–A performant and feature‐rich ecosystem for solving differential equations in Julia
  publication-title: Journal of Open Research Software
– year: 2019
– volume: 18
  start-page: 413
  issue: 1
  year: 1995
  end-page: 430
  article-title: Explicit methods for stiff ODEs from atmospheric chemistry
  publication-title: Applied Numerical Mathematics
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation
– volume: 15
  start-page: 3417
  issue: 8
  year: 2022
  end-page: 3431
  article-title: Conservation laws in a neural network architecture: Enforcing the atom balance of a Julia‐based photochemical model (v0.2.0)
  publication-title: Geoscientific Model Development
– volume: 150
  issue: 2
  year: 2019
  article-title: Reactive SINDy: Discovering governing reactions from concentration data
  publication-title: The Journal of Chemical Physics
– volume: 132
  start-page: 1
  year: 2019
  end-page: 6
  article-title: Confederated modular differential equation APIs for accelerated algorithm development and benchmarking
  publication-title: Advances in Engineering Software
– volume: 448
  year: 2022
  article-title: Data‐driven discovery of multiscale chemical reactions governed by the law of mass action
  publication-title: Journal of Computational Physics
– volume: 930
  start-page: 161
  issue: 2
  year: 2022
  article-title: Sparse identification of variable star dynamics
  publication-title: The Astrophysical Journal
– volume: 116
  start-page: 22445
  issue: 45
  year: 2019
  end-page: 22451
  article-title: Data‐driven discovery of coordinates and governing equations
  publication-title: Proceedings of the National Academy of Sciences
– volume: 86
  start-page: 7210
  issue: C8
  year: 1981
  end-page: 7254
  article-title: Tropospheric chemistry: A global perspective
  publication-title: Journal of Geophysical Research
– volume: 114
  start-page: 1489
  issue: 10
  year: 2006
  end-page: 1496
  article-title: Ozone’s impact on public health: Contributions from indoor exposures to ozone and products of ozone‐initiated chemistry
  publication-title: Environmental Health Perspectives
– volume: 13
  start-page: 281
  issue: 2
  year: 2012
  end-page: 305
  article-title: Random search for hyper‐parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: 153
  start-page: 34
  issue: 3731
  year: 1966
  end-page: 37
  article-title: Dynamic programming
  publication-title: Science
– volume: 12
  start-page: 149
  year: 2000
  end-page: 198
  article-title: A model of inductive bias learning
  publication-title: Journal of Artificial Intelligence Research
– volume: 102
  start-page: 25847
  issue: D22
  year: 1997
  end-page: 25879
  article-title: A new mechanism for regional atmospheric chemistry modeling
  publication-title: Journal of Geophysical Research
– volume: 13
  start-page: 4435
  issue: 9
  year: 2020
  end-page: 4442
  article-title: A mass‐ and energy‐conserving framework for using machine learning to speed computations: A photochemistry example
  publication-title: Geoscientific Model Development
– volume: 125
  issue: 23
  year: 2020
  article-title: Toward stable, general machine‐learned models of the atmospheric chemical system
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 62
  start-page: 770
  issue: 2
  year: 2011
  end-page: 775
  article-title: Runge–Kutta pairs of order 5(4) satisfying only the first column simplifying assumption
  publication-title: Computers & Mathematics with Applications
– year: 2016
– volume: 109
  issue: 2
  year: 2024
  article-title: Interpretable conservation laws as sparse invariants
  publication-title: Physical Review E
– volume: 94
  issue: 1
  year: 2016
  article-title: Prediction of dynamical systems by symbolic regression
  publication-title: Physical Review E
– volume: 59
  start-page: 44
  year: 2020
  end-page: 58
  article-title: Overview and comparative study of dimensionality reduction techniques for high dimensional data
  publication-title: Information Fusion
– volume: 24
  start-page: 481
  issue: 3
  year: 1990
  end-page: 518
  article-title: A detailed mechanism for the gas‐phase atmospheric reactions of organic compounds
  publication-title: Atmospheric Environment. Part A. General Topics
– volume: 13
  issue: 1
  year: 2023
  article-title: Sparse identification of Lagrangian for nonlinear dynamical systems via proximal gradient method
  publication-title: Scientific Reports
– volume: 104
  start-page: 30387
  issue: D23
  year: 1999
  end-page: 30415
  article-title: A new lumped structure photochemical mechanism for large‐scale applications
  publication-title: Journal of Geophysical Research
– volume: 56
  start-page: 4676
  issue: 7
  year: 2022
  end-page: 4685
  article-title: A neural network‐assisted euler integrator for stiff kinetics in atmospheric chemistry
  publication-title: Environmental Science & Technology
– volume: 18
  start-page: 1
  issue: 1
  year: 1997
  end-page: 22
  article-title: The MATLAB ODE suite
  publication-title: SIAM Journal on Scientific Computing
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  end-page: 82
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  end-page: 1958
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 374
  issue: 2065
  year: 2016
  article-title: Principal component analysis: A review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– start-page: 237
  year: 2001
  end-page: 243
– volume: 411
  year: 2023
  article-title: Reduced order modeling of parametrized systems through autoencoders and SINDy approach: Continuation of periodic solutions
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 22
  start-page: 97
  issue: 1
  year: 2007
  end-page: 103
  article-title: Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
  publication-title: Environmental Modelling & Software
– volume: 6
  issue: 9
  year: 2021
  article-title: Promoting global stability in data‐driven models of quadratic nonlinear dynamics
  publication-title: Physical Review Fluids
– volume: 3
  start-page: 161
  issue: 1
  year: 2003
  end-page: 180
  article-title: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): Tropospheric degradation of non‐aromatic volatile organic compounds
  publication-title: Atmospheric Chemistry and Physics
– year: 2023
– volume: 14
  start-page: 179
  issue: 2
  year: 1990
  end-page: 211
  article-title: Finding structure in time
  publication-title: Cognitive Science
– year: 2017
– volume: 478
  issue: 2260
  year: 2022
  article-title: Ensemble‐SINDy: Robust sparse model discovery in the low‐data, high‐noise limit, with active learning and control
  publication-title: Proceedings of the Royal Society A
– volume: 3
  start-page: 422
  issue: 6
  year: 2021
  end-page: 440
  article-title: Physics‐informed machine learning
  publication-title: Nature Reviews Physics
– volume: 37
  start-page: 233
  issue: 2
  year: 1991
  end-page: 243
  article-title: Nonlinear principal component analysis using autoassociative neural networks
  publication-title: AIChE Journal
– volume-title: Initial transient problem for steady‐state output analysis
  year: 2005
  ident: e_1_2_8_28_1
  doi: 10.1109/WSC.2005.1574316
– ident: e_1_2_8_41_1
  doi: 10.1109/BigData.2017.8258500
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: e_1_2_8_70_1
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_37_1
  doi: 10.1098/rsta.2015.0202
– ident: e_1_2_8_3_1
  doi: 10.1098/rspa.2023.0422
– ident: e_1_2_8_36_1
  doi: 10.1007/s11071‐021‐06707‐6
– ident: e_1_2_8_56_1
  doi: 10.3847/1538‐4357/ac5624
– ident: e_1_2_8_69_1
  doi: 10.1016/j.envsoft.2005.12.002
– ident: e_1_2_8_47_1
  doi: 10.1002/aic.690370209
– ident: e_1_2_8_73_1
  doi: 10.5194/gmd‐15‐3417‐2022
– ident: e_1_2_8_81_1
  doi: 10.5281/zenodo.10465784
– ident: e_1_2_8_14_1
  doi: 10.1073/pnas.1517384113
– ident: e_1_2_8_24_1
  doi: 10.1098/rspa.2021.0904
– ident: e_1_2_8_59_1
  doi: 10.5334/jors.151
– ident: e_1_2_8_78_1
  doi: 10.1016/j.jmps.2021.104474
– ident: e_1_2_8_40_1
  doi: 10.5194/gmd‐12‐1209‐2019
– ident: e_1_2_8_29_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_8_44_1
– ident: e_1_2_8_76_1
  doi: 10.1016/S0304‐3800(01)00434‐3
– ident: e_1_2_8_33_1
  doi: 10.1021/acs.est.1c07648
– ident: e_1_2_8_45_1
  doi: 10.1063/5.0060697
– ident: e_1_2_8_7_1
  doi: 10.1029/2001JD000807
– ident: e_1_2_8_10_1
  doi: 10.1016/0957‐1272(93)90007‐S
– ident: e_1_2_8_66_1
  doi: 10.1137/S1064827594276424
– ident: e_1_2_8_13_1
  doi: 10.1146/annurev‐fluid‐010719‐060214
– ident: e_1_2_8_65_1
  doi: 10.1029/2021MS002974
– ident: e_1_2_8_17_1
  doi: 10.1016/0960‐1686(90)90005‐8
– ident: e_1_2_8_26_1
  doi: 10.1016/S1352‐2310(97)00447‐0
– ident: e_1_2_8_60_1
  doi: 10.1016/j.advengsoft.2019.03.009
– ident: e_1_2_8_4_1
  doi: 10.1613/jair.731
– ident: e_1_2_8_32_1
  doi: 10.1016/j.jcp.2021.110743
– ident: e_1_2_8_54_1
  doi: 10.1016/0098‐3004(93)90090‐R
– ident: e_1_2_8_15_1
  doi: 10.1016/j.envsoft.2019.06.014
– ident: e_1_2_8_8_1
  doi: 10.1137/141000671
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1906995116
– ident: e_1_2_8_30_1
  doi: 10.1063/1.5066099
– ident: e_1_2_8_53_1
– ident: e_1_2_8_31_1
  doi: 10.1016/0893‐6080(89)90020‐8
– ident: e_1_2_8_51_1
  doi: 10.1029/JC086iC08p07210
– ident: e_1_2_8_35_1
  doi: 10.1016/S1352‐2310(96)00105‐7
– ident: e_1_2_8_77_1
  doi: 10.1111/cogs.12724
– ident: e_1_2_8_63_1
  doi: 10.1029/2008JD011073
– ident: e_1_2_8_55_1
  doi: 10.5281/zenodo.8356369
– ident: e_1_2_8_20_1
– ident: e_1_2_8_67_1
  doi: 10.1038/s41612‐023‐00353‐y
– start-page: 237
  volume-title: A field guide to dynamical recurrent networks
  year: 2001
  ident: e_1_2_8_46_1
– ident: e_1_2_8_64_1
  doi: 10.5194/acp‐3‐161‐2003
– ident: e_1_2_8_79_1
  doi: 10.1289/ehp.9256
– ident: e_1_2_8_6_1
  doi: 10.5555/2188385.2188395
– ident: e_1_2_8_72_1
  doi: 10.5194/gmd‐13‐4435‐2020
– ident: e_1_2_8_74_1
  doi: 10.1016/j.camwa.2011.06.002
– ident: e_1_2_8_11_1
  doi: 10.1017/9781316544754
– ident: e_1_2_8_49_1
  doi: 10.1016/j.ymssp.2018.08.033
– ident: e_1_2_8_39_1
  doi: 10.1038/s42254‐021‐00314‐5
– ident: e_1_2_8_57_1
  doi: 10.1038/s41598‐023‐34931‐0
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevE.101.010203
– ident: e_1_2_8_71_1
  doi: 10.1029/97JD00849
– ident: e_1_2_8_50_1
  doi: 10.1103/physreve.109.l023301
– ident: e_1_2_8_61_1
  doi: 10.1038/s41586‐019‐0912‐1
– ident: e_1_2_8_22_1
  doi: 10.24963/ijcai.2022/405
– volume-title: SINDy‐CRN: Sparse identification of chemical reaction networks from data
  year: 2023
  ident: e_1_2_8_9_1
– ident: e_1_2_8_75_1
  doi: 10.1016/0168‐9274(95)00068‐6
– ident: e_1_2_8_16_1
– ident: e_1_2_8_23_1
  doi: 10.1016/0364‐0213(90)90002‐E
– ident: e_1_2_8_5_1
  doi: 10.1126/science.153.3731.34
– ident: e_1_2_8_52_1
  doi: 10.1101/2022.07.30.502135
– ident: e_1_2_8_48_1
  doi: 10.1007/s11071‐021‐07118‐3
– ident: e_1_2_8_2_1
  doi: 10.1016/j.inffus.2020.01.005
– ident: e_1_2_8_43_1
  doi: 10.1029/2021MS002926
– ident: e_1_2_8_19_1
– ident: e_1_2_8_27_1
  doi: 10.1029/JD094iD10p12925
– ident: e_1_2_8_84_1
  doi: 10.1016/S0169‐2070(97)00044‐7
– ident: e_1_2_8_34_1
  doi: 10.1016/S0378‐4754(96)00068‐7
– ident: e_1_2_8_12_1
  doi: 10.1038/s41467‐017‐00030‐8
– ident: e_1_2_8_68_1
  doi: 10.1016/j.neucom.2006.06.015
– ident: e_1_2_8_38_1
  doi: 10.1103/PhysRevFluids.6.094401
– ident: e_1_2_8_58_1
  doi: 10.1103/PhysRevE.94.012214
– ident: e_1_2_8_80_1
  doi: 10.1109/4235.585893
– ident: e_1_2_8_21_1
  doi: 10.1016/j.cma.2023.116072
– ident: e_1_2_8_25_1
  doi: 10.2514/6.2017-4430
– start-page: 11
  volume-title: 9th Annual CMAS Conference
  year: 2010
  ident: e_1_2_8_82_1
– ident: e_1_2_8_42_1
  doi: 10.1029/2020JD032759
– ident: e_1_2_8_83_1
  doi: 10.1029/1999JD900876
SSID ssj0003320807
Score 2.2582512
Snippet Modeling atmospheric chemistry is computationally expensive and limits the widespread use of chemical transport models. This computational cost arises from...
SourceID crossref
wiley
SourceType Enrichment Source
Index Database
Publisher
Title Atmospheric Chemistry Surrogate Modeling With Sparse Identification of Nonlinear Dynamics
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000132
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yL15EUXH-GDnoQaTYJWmaHsfcHIMNcQ7nqSRpigNdR9dd_dvNS-qYBwUvPZRHoK9J3vte8n0PoSuaWCAtCQ9srMwDFgFZWcegjJixmDMlpTsxHY35YMqGs2hWF9yAC-P1ITYFN1gZbr-GBS7VqhYbAI1Mi9rZcOByGLsF7wK7FrTzCXvc1FgoJaFnTBO4pmYjVVjffbdD3G0P8CMqbWepLsz0D9B-nR_ijv-hh2jHLI7Qa6f6KFYgADDXuPvdog1P1mVZQBkMQ0cz4JXjl3n1hidLi1YN9hzcvC7K4SLHY__dssT3vhH96hhN-73n7iCoeyIEug2O1EJlJs6zRPBM2FyKxFGcRUYkRuY6F0pxG9NVqCjNObdoyvBYxpKR0HCqhGzTE9RYFAtzinBGk0jLELizhFnYJamJLFzUkVDCGCWa6PbbJ6muBcOhb8V76g6uSZJue7CJrjfWSy-U8YvdjXPvn0bp8OHJ5iVn_7A9R3vw1t_iukCNqlybS5svVKrlJkXLoW37HH32vgAvorcw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA4yD3oRRcX5Mwc9iBS7JE3S45jOObchbsN5Kkmb4kDX0XX_v3lNHfOg4P0R6EuT9yPv-z6ELmloC2lFuGdjZeqxAMDKsQBmxIQJzrRS5Ytpf8A7Y9adBJNK5xSwMI4fYtVwg5NR3tdwwKEhXbENAEmmLdtZt1MmMfYO3mScCDiZhD2vmiyUEt9BpgnMqdlQ5VfD73aJ2_UFfoSl9TS1jDPtXbRTJYi46XZ0D22Y2T56axaf2QIYAKYxbn1rtOHhMs8z6INhkDQDYDl-nRbveDi35arBDoSbVl05nKV44D5c5fjOKdEvDtC4fT9qdbxKFMGLG-DJWOrEiDQJJU-kTaaICEQSGBkalcap1JrboK59TWnKuS2nDBdKKEZ8w6mWqkEPUW2WzcwRwgkNg1j5AJ4lzNZdiprA1otxILU0Rss6uvn2SRRXjOEgXPERlS_XJIzWPVhHVyvruWPK-MXuunTvn0ZR9-HFJibH_7C9QFudUb8X9R4HTydoGyzcSNcpqhX50pzZ5KHQ5-UP8gWJ_Lh2
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA4yQXwRRcX5Mw_6IFLsmjRNH8fmnFPHcA7nU0nSBAe6jq77_82l3ZgPCr4fgV6a3Hd3-b5D6JLENpEWAfNsrDQeDYGsrCJQRkxpxKgUwnVMn_usO6K9cTiuCm7AhSn1IVYFNzgZ7r6GAz5LTSU2ABqZNmunva7DMPYK3nT9PlB2poNVjYWQwC8Z0wE8U7ORyq_evtslbtcX-BGV1lGqCzOdXbRT4UPcLDd0D23o6T56bxZf2RwEACYKt5Yj2vBwkecZlMEwTDQDXjl-mxQfeDiz2arGJQfXVEU5nBncL79b5LhdDqKfH6BR5-611fWqmQieaoAjFZepjkwac5Zyi6WCKIzSUPNYC6MMl5LZmC59SYhhzGZTmkUiEjTwNSOSiwY5RLVpNtVHCKckDpXwgTsbUJt2CaJDmy6qkEuuteR1dLP0SaIqwXCYW_GZuMZ1ECfrHqyjq5X1rBTK-MXu2rn3T6Okd_9iccnxP2wv0Nag3UmeHvqPJ2gbDMoHXaeoVuQLfWahQyHP3f_xDay8t6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atmospheric+Chemistry+Surrogate+Modeling+With+Sparse+Identification+of+Nonlinear+Dynamics&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Yang%2C+Xiaokai&rft.au=Guo%2C+Lin&rft.au=Zheng%2C+Zhonghua&rft.au=Riemer%2C+Nicole&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1029%2F2024JH000132&rft.externalDBID=10.1029%252F2024JH000132&rft.externalDocID=JGR110
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon