New tailored organic semiconductors thin films for optoelectronic applications
In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin films are suit...
Saved in:
Published in | European physical journal. Applied physics Vol. 95; no. 1; p. 10201 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
01.07.2021
|
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin films are suitable and cheaper than inorganic thin-film. The bandgap of organic semiconductors materials can be tuned and mostly lies between 2.0 eV and 4 eV and the optical absorption edge of organic semiconductors typically lies in between 1.7 eV and 3 eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the bandgap to harness the solar spectrum. In this work, with new tailored organic semiconductors, the solution route is explored which is a low-cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine; 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt.% and 0.08 wt.%. Thin films of organic semiconductors were prepared on the glass substrate and annealed at 55 °C. The structural and optical behavior of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one, and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible spectroscopy technique. The XRD data of the synthesized sample suggests the nano crystallinity of the organic layers. And, the SEM micrographs show the dense packing when we increase the wt.% 0.05 to 0.08. Additionally, analysis of the optical absorption measurements found that the engineered bandgap of synthesized thin films are 2.18 eV, 2.35 eV, 2.36eV, 2.52eV, and 2.65eV which suggest suitability for applications of optoelectronic devices such as solar cell. Such lightweight, eco-friendly and disposable new carbon-based materials seem to have the potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. |
---|---|
AbstractList | In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin films are suitable and cheaper than inorganic thin-film. The bandgap of organic semiconductors materials can be tuned and mostly lies between 2.0 eV and 4 eV and the optical absorption edge of organic semiconductors typically lies in between 1.7 eV and 3 eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the bandgap to harness the solar spectrum. In this work, with new tailored organic semiconductors, the solution route is explored which is a low-cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine; 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt.% and 0.08 wt.%. Thin films of organic semiconductors were prepared on the glass substrate and annealed at 55 °C. The structural and optical behavior of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one, and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible spectroscopy technique. The XRD data of the synthesized sample suggests the nano crystallinity of the organic layers. And, the SEM micrographs show the dense packing when we increase the wt.% 0.05 to 0.08. Additionally, analysis of the optical absorption measurements found that the engineered bandgap of synthesized thin films are 2.18 eV, 2.35 eV, 2.36eV, 2.52eV, and 2.65eV which suggest suitability for applications of optoelectronic devices such as solar cell. Such lightweight, eco-friendly and disposable new carbon-based materials seem to have the potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics. |
Author | Kaur, Navneet Kumar, Sanjay Kumar, Praveen Andotra, Sonali Pathak, Dinesh Thomas, Jibin Kumar, Vaneet |
Author_xml | – sequence: 1 givenname: Dinesh surname: Pathak fullname: Pathak, Dinesh – sequence: 2 givenname: Sanjay surname: Kumar fullname: Kumar, Sanjay – sequence: 3 givenname: Sonali surname: Andotra fullname: Andotra, Sonali – sequence: 4 givenname: Jibin surname: Thomas fullname: Thomas, Jibin – sequence: 5 givenname: Navneet surname: Kaur fullname: Kaur, Navneet – sequence: 6 givenname: Praveen surname: Kumar fullname: Kumar, Praveen – sequence: 7 givenname: Vaneet surname: Kumar fullname: Kumar, Vaneet |
BookMark | eNp1kE1LAzEQhoNUsK3ePeYPrJ0km2xylOIXlHrR85LNh6ZsN0sSEf-92yoKgqeZwzzD-z4LNBvi4BC6JHBFgJOVG3d6XFGghBIABSdoTqgUFQCH2c9e0zO0yHkHAERIPkfbrXvHRYc-JmdxTC96CAZntw8mDvbNlJgyLq9hwD70-4x9TDiOJbremZLi4ViPYx-MLiEO-Rydet1nd_E9l-j59uZpfV9tHu8e1tebyhAuS9Vx7oXySk0ZmkZZyVRjuqZ2HSjKtfYWNK-lsbWUTHSCUcqck55xOfVRli2R-PprUsw5Od-aUI4RSprKtATag5X2aKX9tTKB8AccU9jr9PE_8gljPWkm |
CitedBy_id | crossref_primary_10_3390_ijms222413631 crossref_primary_10_1016_j_matpr_2022_07_347 crossref_primary_10_1007_s11082_024_07358_8 crossref_primary_10_1051_epjap_2022220201 crossref_primary_10_1142_S0217979224500632 crossref_primary_10_1051_epjap_2022210218 crossref_primary_10_1002_crat_202400012 crossref_primary_10_1016_j_diamond_2023_109703 crossref_primary_10_1016_j_ceramint_2025_01_569 crossref_primary_10_1007_s11082_024_07997_x crossref_primary_10_1016_j_optmat_2024_115087 crossref_primary_10_1051_epjap_2023230023 crossref_primary_10_1021_acs_jpcc_1c09494 crossref_primary_10_3390_coatings12091310 crossref_primary_10_3390_coatings12111734 crossref_primary_10_1007_s00339_024_07287_z crossref_primary_10_1007_s10948_024_06738_1 crossref_primary_10_1051_epjap_2023220283 crossref_primary_10_1016_j_optmat_2022_112923 crossref_primary_10_1002_masy_202300037 crossref_primary_10_1016_j_aej_2021_11_020 |
Cites_doi | 10.1109/55.644085 10.1038/nenergy.2016.89 10.1038/nature08003 10.1039/C7EE01109A 10.1021/cm0496117 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 10.1063/1.1604193 10.1016/j.synthmet.2014.11.015 10.1063/1.1467706 10.1103/RevModPhys.60.781 10.1063/1.1637949 10.1016/j.materresbull.2004.03.007 10.1007/978-94-017-1952-0_12 10.1051/epjap/2018180194 10.1016/j.saa.2012.02.028 10.1016/j.orgel.2017.06.008 10.1007/s11426-019-9457-5 10.1007/s13391-015-4496-0 10.1016/j.orgel.2017.07.001 10.1116/1.582399 10.1016/j.orgel.2015.05.038 10.1002/adma.201702415 10.1063/1.3070574 10.1346/CCMN.1997.0450315 10.1016/j.solmat.2010.08.004 10.1116/1.581115 10.1063/1.1471378 10.1051/epjap/2017160491 10.1002/adma.200800735 10.1016/S1369-7021(04)00398-0 10.1016/B978-0-12-813357-6.00017-6 10.1038/nature11687 10.1063/1.4751981 10.1063/1.343409 10.1063/1.440214 10.1002/adma.200400392 10.1016/j.orgel.2016.04.025 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U 10.1021/ja043189d 10.1109/16.605476 10.1109/55.556089 10.1039/C4EE00688G 10.1016/j.orgel.2017.11.007 10.1021/ja9727629 10.1016/j.synthmet.2014.01.022 10.1016/j.matchemphys.2010.02.021 10.1109/2944.669475 10.1002/advs.201900240 10.1103/PhysRevB.88.125202 10.1016/j.jcrysgro.2005.01.052 10.1016/j.optmat.2017.04.059 10.1038/35015037 10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N 10.1016/j.snb.2018.11.076 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1051/epjap/2021210090 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1286-0050 |
ExternalDocumentID | 10_1051_epjap_2021210090 |
GroupedDBID | -E. .4S .DC .FH 0E1 123 4.4 5VS 74X 74Y 7~V 8FE 8FG AAOGA AAOTM AAYXX ABGDZ ABGRX ABJNI ABKKG ABNSH ABUBZ ABZDU ACACO ACGFS ACIMK ACQPF ACRPL ADMLS ADNMO AEMTW AFUTZ AGQPQ AI. AJPFC ALMA_UNASSIGNED_HOLDINGS ARABE ARCSS AZPVJ C0O CITATION DC4 EBS EJD HG- HST HZ~ I.6 IL9 I~P J36 J38 J3A L98 M-V O9- P62 RCA RED RR0 S6- TUS VH1 WQ3 WXU ZE2 |
ID | FETCH-LOGICAL-c158t-b55f69f99685779d8397cb74eb0925aafd0a548cd48836b63223ee8f3580059d3 |
ISSN | 1286-0042 |
IngestDate | Tue Jul 01 02:08:47 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://www.edpsciences.org/en/authors/copyright-and-licensing |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c158t-b55f69f99685779d8397cb74eb0925aafd0a548cd48836b63223ee8f3580059d3 |
ParticipantIDs | crossref_citationtrail_10_1051_epjap_2021210090 crossref_primary_10_1051_epjap_2021210090 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-7-00 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-7-00 |
PublicationDecade | 2020 |
PublicationTitle | European physical journal. Applied physics |
PublicationYear | 2021 |
References | Ubale (R48) 2010; 121 Fan (R39) 2019; 62 Pathak (R37) 2015; 199 Adhikari (R27) 2017; 69 Park (R32) 1980; 73 Yuan (R59) 2019; 6 Adhikari (R10) 2018; 53 Kumar (R41) 2018; 84 Chong (R44) 1998; 16 Ling (R4) 2004; 16 Meng (R21) 2005; 127 Kaur (R36) 2014; 190 Drits (R54) 1997; 45 Gu (R40) 2004; 39 Gross (R29) 2000; 405 Gundlach (R19) 1997; 18 R7 Bernius (R33) 2000; 12 R8 Reese (R5) 2004; 7 Shinde (R55) 2012; 50 Tang (R14) 1989; 65 Xu (R57) 2005; 277 Liu (R12) 2016; 1 Janaa (R53) 2012; 92 Jackson (R24) 1998; 4 Wang (R42) 2015; 24 Yang (R1) 2018; 30 Dimitrakopoulos (R9) 2002; 14 Yim (R30) 2008; 20 Chua (R51) 2004; 16 Gu (R43) 1997; 22 Horowitz (R6) 1998; 10 Adhikari (R11) 2016; 34 Biederman (R46) 2002; 18 R49 Khan (R56) 2011; 2 Malenfant (R17) 2002; 80 Wang (R60) 2017; 10 Liao (R28) 2004; 84 Reineke (R25) 2009; 459 Jabeen (R38) 2017; 78 Heeger (R31) 1988; 60 Kundu (R52) 2019; 282 Adhikari (R26) 2017; 48 Adhikari (R13) 2017; 49 Gundlach (R45) 2002; 80 Neupane (R3) 2015; 11 Qiu (R20) 2003; 83 Park (R47) 2010; 94 Bao (R16) 1998; 120 R58 Lee (R2) 2012; 101 Tsutsui (R15) 1993; 246 Lin (R18) 1997; 18 Diao (R50) 2014; 7 Schulz (R34) 2009; 94 Lin (R22) 1997; 44 Fishchuk (R35) 2013; 88 Uoyama (R23) 2012; 492 |
References_xml | – volume: 18 start-page: 606 year: 1997 ident: R18 publication-title: IEEE Electr. Device Lett. doi: 10.1109/55.644085 – volume: 1 start-page: 16089 year: 2016 ident: R12 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.89 – volume: 459 start-page: 234 year: 2009 ident: R25 publication-title: Nature doi: 10.1038/nature08003 – volume: 2 start-page: 340 year: 2011 ident: R56 publication-title: Mater. Sci. Applicat. – volume: 10 start-page: 1643 year: 2017 ident: R60 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE01109A – volume: 16 start-page: 4824 year: 2004 ident: R4 publication-title: Chem. Mater. doi: 10.1021/cm0496117 – volume: 14 start-page: 99 year: 2002 ident: R9 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 – volume: 83 start-page: 1644 year: 2003 ident: R20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1604193 – volume: 199 start-page: 87 year: 2015 ident: R37 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2014.11.015 – volume: 50 start-page: 657 year: 2012 ident: R55 publication-title: Indian J. Pure Appl. Phys. – volume: 80 start-page: 2517 year: 2002 ident: R17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1467706 – volume: 60 start-page: 781 year: 1988 ident: R31 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.60.781 – volume: 84 start-page: 4 year: 2004 ident: R28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1637949 – volume: 39 start-page: 1037 year: 2004 ident: R40 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2004.03.007 – volume: 246 start-page: 123 year: 1993 ident: R15 publication-title: Intrinsically Conducting Polymers: An Emerging Technology doi: 10.1007/978-94-017-1952-0_12 – volume: 84 start-page: 20301 year: 2018 ident: R41 publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2018180194 – volume: 92 start-page: 131 year: 2012 ident: R53 publication-title: Spectrochim. Acta Part A doi: 10.1016/j.saa.2012.02.028 – volume: 48 start-page: 230 year: 2017 ident: R26 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.06.008 – volume: 62 start-page: 746 year: 2019 ident: R39 publication-title: Science China Chem. doi: 10.1007/s11426-019-9457-5 – volume: 11 start-page: 741 year: 2015 ident: R3 publication-title: Electron. Mater. Lett. doi: 10.1007/s13391-015-4496-0 – volume: 49 start-page: 382 year: 2017 ident: R13 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.07.001 – volume: 18 start-page: 1642 year: 2002 ident: R46 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.582399 – volume: 24 start-page: 170 year: 2015 ident: R42 publication-title: Org. Electron. doi: 10.1016/j.orgel.2015.05.038 – volume: 30 start-page: 1702415 year: 2018 ident: R1 publication-title: Adv. Mater. doi: 10.1002/adma.201702415 – volume: 94 start-page: 023302 year: 2009 ident: R34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3070574 – volume: 45 start-page: 461 year: 1997 ident: R54 publication-title: Clays Clay Miner. doi: 10.1346/CCMN.1997.0450315 – volume: 22 start-page: 173 year: 1997 ident: R43 publication-title: Opt. Lett. – volume: 94 start-page: 2332 year: 2010 ident: R47 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2010.08.004 – volume: 16 start-page: 1838 year: 1998 ident: R44 publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.581115 – volume: 80 start-page: 2925 year: 2002 ident: R45 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1471378 – volume: 78 start-page: 34809 year: 2017 ident: R38 publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2017160491 – volume: 20 start-page: 3319 year: 2008 ident: R30 publication-title: Adv. Mater. doi: 10.1002/adma.200800735 – volume: 7 start-page: 20 year: 2004 ident: R5 publication-title: Mater. Today doi: 10.1016/S1369-7021(04)00398-0 – ident: R49 doi: 10.1016/B978-0-12-813357-6.00017-6 – volume: 492 start-page: 234 year: 2012 ident: R23 publication-title: Nature doi: 10.1038/nature11687 – volume: 101 start-page: 113103 year: 2012 ident: R2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4751981 – ident: R7 – volume: 65 start-page: 3610 year: 1989 ident: R14 publication-title: J. Appl. Phys. doi: 10.1063/1.343409 – volume: 73 start-page: 946 year: 1980 ident: R32 publication-title: J. Chem. Phys. doi: 10.1063/1.440214 – volume: 16 start-page: 1609 year: 2004 ident: R51 publication-title: Adv. Mater. doi: 10.1002/adma.200400392 – volume: 34 start-page: 146 year: 2016 ident: R11 publication-title: Org. Electron. doi: 10.1016/j.orgel.2016.04.025 – volume: 10 start-page: 365 year: 1998 ident: R6 publication-title: Adv. Mater. doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U – volume: 127 start-page: 2406 year: 2005 ident: R21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja043189d – ident: R58 – volume: 44 start-page: 1325 year: 1997 ident: R22 publication-title: IEEE Trans. Electr. Dev. doi: 10.1109/16.605476 – volume: 18 start-page: 87 year: 1997 ident: R19 publication-title: IEEE Electr. Device Lett. doi: 10.1109/55.556089 – volume: 7 start-page: 2145 year: 2014 ident: R50 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00688G – volume: 53 start-page: 74 year: 2018 ident: R10 publication-title: Org. Electron. doi: 10.1016/j.orgel.2017.11.007 – volume: 120 start-page: 207 year: 1998 ident: R16 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja9727629 – volume: 190 start-page: 20 year: 2014 ident: R36 publication-title: Synth. Met. doi: 10.1016/j.synthmet.2014.01.022 – volume: 121 start-page: 555 year: 2010 ident: R48 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.02.021 – volume: 4 start-page: 100 year: 1998 ident: R24 publication-title: IEEE J. Selected Top. Quant. Electr. doi: 10.1109/2944.669475 – volume: 6 start-page: 1900240 year: 2019 ident: R59 publication-title: Adv. Sci. doi: 10.1002/advs.201900240 – volume: 88 start-page: 125202 year: 2013 ident: R35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.125202 – volume: 277 start-page: 330 year: 2005 ident: R57 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2005.01.052 – volume: 69 start-page: 312 year: 2017 ident: R27 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2017.04.059 – volume: 405 start-page: 661 year: 2000 ident: R29 publication-title: Nature doi: 10.1038/35015037 – volume: 12 start-page: 1737 year: 2000 ident: R33 publication-title: Adv. Mater. doi: 10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N – volume: 282 start-page: 347 year: 2019 ident: R52 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.11.076 – ident: R8 |
SSID | ssj0001685 |
Score | 2.3702815 |
Snippet | In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 10201 |
Title | New tailored organic semiconductors thin films for optoelectronic applications |
Volume | 95 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qIuhBtCq-2YMXKbFJarLpsfhAREVoC72V3SSLFUmCxos_wN_tTHaz3foA6yWEbTK0_YbZb3a_nSHk2JMRQx7iAPvgkKBIbPOSuI6fJr7PpEglx9PId_fh9fDsZhSMGo0PS7X0VorT-P3HcyX_QRXGAFc8JTsHssYoDMA94AtXQBiuf8IYxYmoAM1RRK76M8WtV5S75xnWccVGOuXjJMPqS6rwQisvytxqfWPvX_-4SF_UOOovdGp4q_rEUPIHXISvQusFKunNKrPRcPd59jRV7PQySIerHkeo1oFkwFao6ENmE6HLgutVCd8zCtY6kPpR6GBEUPOMPaYKzdbRV7XYnPEyFUqB-SiD34I8xBGEu3jiBZ5nwSL1HlBFdzql1dv4X2Y6oz-sdt4Db1zZGE8tLJAlH9INiJdLvYu7276Z072wau5qfpXe8AYb7cpGe2rDIjgWUxmskzWdYtCe8pcN0kizJlm1Ck82yfKDAm-T3IMP0dqHqPYhOutDFH2IVj5EwYforA9R24e2yPDqcnB-7egeG07sBVHpiCCQYVdC1hsFjHUT4MssFuwsFW7XDziXicshqY0TCPSdUIQQ_ztpGkncPQdmnnS2yWKWZ-kOoZDJCwHZAecR5AmxJ4IusFvJXAa0OmbJLmnXf8w41gXosQ_K8_g3OHbJiXmjUMVXfn12b45n98mKWqJH3eoBWSxf3tJD4JalONLAfwK7lnuf |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+tailored+organic+semiconductors+thin+films+for+optoelectronic+applications&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Pathak%2C+Dinesh&rft.au=Kumar%2C+Sanjay&rft.au=Andotra%2C+Sonali&rft.au=Thomas%2C+Jibin&rft.date=2021-07-01&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=95&rft.issue=1&rft.spage=10201&rft_id=info:doi/10.1051%2Fepjap%2F2021210090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjap_2021210090 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon |