New tailored organic semiconductors thin films for optoelectronic applications

In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin films are suit...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal. Applied physics Vol. 95; no. 1; p. 10201
Main Authors Pathak, Dinesh, Kumar, Sanjay, Andotra, Sonali, Thomas, Jibin, Kaur, Navneet, Kumar, Praveen, Kumar, Vaneet
Format Journal Article
LanguageEnglish
Published 01.07.2021
Online AccessGet full text

Cover

Loading…
Abstract In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin films are suitable and cheaper than inorganic thin-film. The bandgap of organic semiconductors materials can be tuned and mostly lies between 2.0 eV and 4 eV and the optical absorption edge of organic semiconductors typically lies in between 1.7 eV and 3 eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the bandgap to harness the solar spectrum. In this work, with new tailored organic semiconductors, the solution route is explored which is a low-cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine; 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt.% and 0.08 wt.%. Thin films of organic semiconductors were prepared on the glass substrate and annealed at 55 °C. The structural and optical behavior of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one, and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible spectroscopy technique. The XRD data of the synthesized sample suggests the nano crystallinity of the organic layers. And, the SEM micrographs show the dense packing when we increase the wt.% 0.05 to 0.08. Additionally, analysis of the optical absorption measurements found that the engineered bandgap of synthesized thin films are 2.18 eV, 2.35 eV, 2.36eV, 2.52eV, and 2.65eV which suggest suitability for applications of optoelectronic devices such as solar cell. Such lightweight, eco-friendly and disposable new carbon-based materials seem to have the potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics.
AbstractList In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based organic semiconductor material has promising advantages in organic thin-film form. Moreover, due to its low cost, organic thin films are suitable and cheaper than inorganic thin-film. The bandgap of organic semiconductors materials can be tuned and mostly lies between 2.0 eV and 4 eV and the optical absorption edge of organic semiconductors typically lies in between 1.7 eV and 3 eV. They can be easily tailored by modifying the carbon chain and legends and looks promising for engineering the bandgap to harness the solar spectrum. In this work, with new tailored organic semiconductors, the solution route is explored which is a low-cost processing method. (Anthracen-9-yl) methylene naphthalene-1-amine; 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline thin-films are processed by spin coating method with changing concentration such as 0.05 wt.% and 0.08 wt.%. Thin films of organic semiconductors were prepared on the glass substrate and annealed at 55 °C. The structural and optical behavior of (Anthracen-9-yl) methylene naphthalene-1-amine, 4-(anthracen-9-ylmethyleneamino)-1,5dimethyl-2-phenyl-1H-pyrazol-3-one, and N-(anthracen-9-ylmethyl)-3, 4-dimethoxyaniline organic semiconductors thin films is studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and UV-Visible spectroscopy technique. The XRD data of the synthesized sample suggests the nano crystallinity of the organic layers. And, the SEM micrographs show the dense packing when we increase the wt.% 0.05 to 0.08. Additionally, analysis of the optical absorption measurements found that the engineered bandgap of synthesized thin films are 2.18 eV, 2.35 eV, 2.36eV, 2.52eV, and 2.65eV which suggest suitability for applications of optoelectronic devices such as solar cell. Such lightweight, eco-friendly and disposable new carbon-based materials seem to have the potential to replace other traditional hazardous heavy materials for future eco-friendly flat fast electronics.
Author Kaur, Navneet
Kumar, Sanjay
Kumar, Praveen
Andotra, Sonali
Pathak, Dinesh
Thomas, Jibin
Kumar, Vaneet
Author_xml – sequence: 1
  givenname: Dinesh
  surname: Pathak
  fullname: Pathak, Dinesh
– sequence: 2
  givenname: Sanjay
  surname: Kumar
  fullname: Kumar, Sanjay
– sequence: 3
  givenname: Sonali
  surname: Andotra
  fullname: Andotra, Sonali
– sequence: 4
  givenname: Jibin
  surname: Thomas
  fullname: Thomas, Jibin
– sequence: 5
  givenname: Navneet
  surname: Kaur
  fullname: Kaur, Navneet
– sequence: 6
  givenname: Praveen
  surname: Kumar
  fullname: Kumar, Praveen
– sequence: 7
  givenname: Vaneet
  surname: Kumar
  fullname: Kumar, Vaneet
BookMark eNp1kE1LAzEQhoNUsK3ePeYPrJ0km2xylOIXlHrR85LNh6ZsN0sSEf-92yoKgqeZwzzD-z4LNBvi4BC6JHBFgJOVG3d6XFGghBIABSdoTqgUFQCH2c9e0zO0yHkHAERIPkfbrXvHRYc-JmdxTC96CAZntw8mDvbNlJgyLq9hwD70-4x9TDiOJbremZLi4ViPYx-MLiEO-Rydet1nd_E9l-j59uZpfV9tHu8e1tebyhAuS9Vx7oXySk0ZmkZZyVRjuqZ2HSjKtfYWNK-lsbWUTHSCUcqck55xOfVRli2R-PprUsw5Od-aUI4RSprKtATag5X2aKX9tTKB8AccU9jr9PE_8gljPWkm
CitedBy_id crossref_primary_10_3390_ijms222413631
crossref_primary_10_1016_j_matpr_2022_07_347
crossref_primary_10_1007_s11082_024_07358_8
crossref_primary_10_1051_epjap_2022220201
crossref_primary_10_1142_S0217979224500632
crossref_primary_10_1051_epjap_2022210218
crossref_primary_10_1002_crat_202400012
crossref_primary_10_1016_j_diamond_2023_109703
crossref_primary_10_1016_j_ceramint_2025_01_569
crossref_primary_10_1007_s11082_024_07997_x
crossref_primary_10_1016_j_optmat_2024_115087
crossref_primary_10_1051_epjap_2023230023
crossref_primary_10_1021_acs_jpcc_1c09494
crossref_primary_10_3390_coatings12091310
crossref_primary_10_3390_coatings12111734
crossref_primary_10_1007_s00339_024_07287_z
crossref_primary_10_1007_s10948_024_06738_1
crossref_primary_10_1051_epjap_2023220283
crossref_primary_10_1016_j_optmat_2022_112923
crossref_primary_10_1002_masy_202300037
crossref_primary_10_1016_j_aej_2021_11_020
Cites_doi 10.1109/55.644085
10.1038/nenergy.2016.89
10.1038/nature08003
10.1039/C7EE01109A
10.1021/cm0496117
10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
10.1063/1.1604193
10.1016/j.synthmet.2014.11.015
10.1063/1.1467706
10.1103/RevModPhys.60.781
10.1063/1.1637949
10.1016/j.materresbull.2004.03.007
10.1007/978-94-017-1952-0_12
10.1051/epjap/2018180194
10.1016/j.saa.2012.02.028
10.1016/j.orgel.2017.06.008
10.1007/s11426-019-9457-5
10.1007/s13391-015-4496-0
10.1016/j.orgel.2017.07.001
10.1116/1.582399
10.1016/j.orgel.2015.05.038
10.1002/adma.201702415
10.1063/1.3070574
10.1346/CCMN.1997.0450315
10.1016/j.solmat.2010.08.004
10.1116/1.581115
10.1063/1.1471378
10.1051/epjap/2017160491
10.1002/adma.200800735
10.1016/S1369-7021(04)00398-0
10.1016/B978-0-12-813357-6.00017-6
10.1038/nature11687
10.1063/1.4751981
10.1063/1.343409
10.1063/1.440214
10.1002/adma.200400392
10.1016/j.orgel.2016.04.025
10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
10.1021/ja043189d
10.1109/16.605476
10.1109/55.556089
10.1039/C4EE00688G
10.1016/j.orgel.2017.11.007
10.1021/ja9727629
10.1016/j.synthmet.2014.01.022
10.1016/j.matchemphys.2010.02.021
10.1109/2944.669475
10.1002/advs.201900240
10.1103/PhysRevB.88.125202
10.1016/j.jcrysgro.2005.01.052
10.1016/j.optmat.2017.04.059
10.1038/35015037
10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
10.1016/j.snb.2018.11.076
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1051/epjap/2021210090
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1286-0050
ExternalDocumentID 10_1051_epjap_2021210090
GroupedDBID -E.
.4S
.DC
.FH
0E1
123
4.4
5VS
74X
74Y
7~V
8FE
8FG
AAOGA
AAOTM
AAYXX
ABGDZ
ABGRX
ABJNI
ABKKG
ABNSH
ABUBZ
ABZDU
ACACO
ACGFS
ACIMK
ACQPF
ACRPL
ADMLS
ADNMO
AEMTW
AFUTZ
AGQPQ
AI.
AJPFC
ALMA_UNASSIGNED_HOLDINGS
ARABE
ARCSS
AZPVJ
C0O
CITATION
DC4
EBS
EJD
HG-
HST
HZ~
I.6
IL9
I~P
J36
J38
J3A
L98
M-V
O9-
P62
RCA
RED
RR0
S6-
TUS
VH1
WQ3
WXU
ZE2
ID FETCH-LOGICAL-c158t-b55f69f99685779d8397cb74eb0925aafd0a548cd48836b63223ee8f3580059d3
ISSN 1286-0042
IngestDate Tue Jul 01 02:08:47 EDT 2025
Thu Apr 24 22:52:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://www.edpsciences.org/en/authors/copyright-and-licensing
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c158t-b55f69f99685779d8397cb74eb0925aafd0a548cd48836b63223ee8f3580059d3
ParticipantIDs crossref_citationtrail_10_1051_epjap_2021210090
crossref_primary_10_1051_epjap_2021210090
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-7-00
PublicationDateYYYYMMDD 2021-07-01
PublicationDate_xml – month: 07
  year: 2021
  text: 2021-7-00
PublicationDecade 2020
PublicationTitle European physical journal. Applied physics
PublicationYear 2021
References Ubale (R48) 2010; 121
Fan (R39) 2019; 62
Pathak (R37) 2015; 199
Adhikari (R27) 2017; 69
Park (R32) 1980; 73
Yuan (R59) 2019; 6
Adhikari (R10) 2018; 53
Kumar (R41) 2018; 84
Chong (R44) 1998; 16
Ling (R4) 2004; 16
Meng (R21) 2005; 127
Kaur (R36) 2014; 190
Drits (R54) 1997; 45
Gu (R40) 2004; 39
Gross (R29) 2000; 405
Gundlach (R19) 1997; 18
R7
Bernius (R33) 2000; 12
R8
Reese (R5) 2004; 7
Shinde (R55) 2012; 50
Tang (R14) 1989; 65
Xu (R57) 2005; 277
Liu (R12) 2016; 1
Janaa (R53) 2012; 92
Jackson (R24) 1998; 4
Wang (R42) 2015; 24
Yang (R1) 2018; 30
Dimitrakopoulos (R9) 2002; 14
Yim (R30) 2008; 20
Chua (R51) 2004; 16
Gu (R43) 1997; 22
Horowitz (R6) 1998; 10
Adhikari (R11) 2016; 34
Biederman (R46) 2002; 18
R49
Khan (R56) 2011; 2
Malenfant (R17) 2002; 80
Wang (R60) 2017; 10
Liao (R28) 2004; 84
Reineke (R25) 2009; 459
Jabeen (R38) 2017; 78
Heeger (R31) 1988; 60
Kundu (R52) 2019; 282
Adhikari (R26) 2017; 48
Adhikari (R13) 2017; 49
Gundlach (R45) 2002; 80
Neupane (R3) 2015; 11
Qiu (R20) 2003; 83
Park (R47) 2010; 94
Bao (R16) 1998; 120
R58
Lee (R2) 2012; 101
Tsutsui (R15) 1993; 246
Lin (R18) 1997; 18
Diao (R50) 2014; 7
Schulz (R34) 2009; 94
Lin (R22) 1997; 44
Fishchuk (R35) 2013; 88
Uoyama (R23) 2012; 492
References_xml – volume: 18
  start-page: 606
  year: 1997
  ident: R18
  publication-title: IEEE Electr. Device Lett.
  doi: 10.1109/55.644085
– volume: 1
  start-page: 16089
  year: 2016
  ident: R12
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.89
– volume: 459
  start-page: 234
  year: 2009
  ident: R25
  publication-title: Nature
  doi: 10.1038/nature08003
– volume: 2
  start-page: 340
  year: 2011
  ident: R56
  publication-title: Mater. Sci. Applicat.
– volume: 10
  start-page: 1643
  year: 2017
  ident: R60
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE01109A
– volume: 16
  start-page: 4824
  year: 2004
  ident: R4
  publication-title: Chem. Mater.
  doi: 10.1021/cm0496117
– volume: 14
  start-page: 99
  year: 2002
  ident: R9
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
– volume: 83
  start-page: 1644
  year: 2003
  ident: R20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1604193
– volume: 199
  start-page: 87
  year: 2015
  ident: R37
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2014.11.015
– volume: 50
  start-page: 657
  year: 2012
  ident: R55
  publication-title: Indian J. Pure Appl. Phys.
– volume: 80
  start-page: 2517
  year: 2002
  ident: R17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1467706
– volume: 60
  start-page: 781
  year: 1988
  ident: R31
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.60.781
– volume: 84
  start-page: 4
  year: 2004
  ident: R28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1637949
– volume: 39
  start-page: 1037
  year: 2004
  ident: R40
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2004.03.007
– volume: 246
  start-page: 123
  year: 1993
  ident: R15
  publication-title: Intrinsically Conducting Polymers: An Emerging Technology
  doi: 10.1007/978-94-017-1952-0_12
– volume: 84
  start-page: 20301
  year: 2018
  ident: R41
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2018180194
– volume: 92
  start-page: 131
  year: 2012
  ident: R53
  publication-title: Spectrochim. Acta Part A
  doi: 10.1016/j.saa.2012.02.028
– volume: 48
  start-page: 230
  year: 2017
  ident: R26
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.06.008
– volume: 62
  start-page: 746
  year: 2019
  ident: R39
  publication-title: Science China Chem.
  doi: 10.1007/s11426-019-9457-5
– volume: 11
  start-page: 741
  year: 2015
  ident: R3
  publication-title: Electron. Mater. Lett.
  doi: 10.1007/s13391-015-4496-0
– volume: 49
  start-page: 382
  year: 2017
  ident: R13
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.07.001
– volume: 18
  start-page: 1642
  year: 2002
  ident: R46
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.582399
– volume: 24
  start-page: 170
  year: 2015
  ident: R42
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2015.05.038
– volume: 30
  start-page: 1702415
  year: 2018
  ident: R1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702415
– volume: 94
  start-page: 023302
  year: 2009
  ident: R34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3070574
– volume: 45
  start-page: 461
  year: 1997
  ident: R54
  publication-title: Clays Clay Miner.
  doi: 10.1346/CCMN.1997.0450315
– volume: 22
  start-page: 173
  year: 1997
  ident: R43
  publication-title: Opt. Lett.
– volume: 94
  start-page: 2332
  year: 2010
  ident: R47
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2010.08.004
– volume: 16
  start-page: 1838
  year: 1998
  ident: R44
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.581115
– volume: 80
  start-page: 2925
  year: 2002
  ident: R45
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1471378
– volume: 78
  start-page: 34809
  year: 2017
  ident: R38
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2017160491
– volume: 20
  start-page: 3319
  year: 2008
  ident: R30
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200800735
– volume: 7
  start-page: 20
  year: 2004
  ident: R5
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(04)00398-0
– ident: R49
  doi: 10.1016/B978-0-12-813357-6.00017-6
– volume: 492
  start-page: 234
  year: 2012
  ident: R23
  publication-title: Nature
  doi: 10.1038/nature11687
– volume: 101
  start-page: 113103
  year: 2012
  ident: R2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4751981
– ident: R7
– volume: 65
  start-page: 3610
  year: 1989
  ident: R14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.343409
– volume: 73
  start-page: 946
  year: 1980
  ident: R32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.440214
– volume: 16
  start-page: 1609
  year: 2004
  ident: R51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200400392
– volume: 34
  start-page: 146
  year: 2016
  ident: R11
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2016.04.025
– volume: 10
  start-page: 365
  year: 1998
  ident: R6
  publication-title: Adv. Mater.
  doi: 10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
– volume: 127
  start-page: 2406
  year: 2005
  ident: R21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja043189d
– ident: R58
– volume: 44
  start-page: 1325
  year: 1997
  ident: R22
  publication-title: IEEE Trans. Electr. Dev.
  doi: 10.1109/16.605476
– volume: 18
  start-page: 87
  year: 1997
  ident: R19
  publication-title: IEEE Electr. Device Lett.
  doi: 10.1109/55.556089
– volume: 7
  start-page: 2145
  year: 2014
  ident: R50
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00688G
– volume: 53
  start-page: 74
  year: 2018
  ident: R10
  publication-title: Org. Electron.
  doi: 10.1016/j.orgel.2017.11.007
– volume: 120
  start-page: 207
  year: 1998
  ident: R16
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9727629
– volume: 190
  start-page: 20
  year: 2014
  ident: R36
  publication-title: Synth. Met.
  doi: 10.1016/j.synthmet.2014.01.022
– volume: 121
  start-page: 555
  year: 2010
  ident: R48
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.02.021
– volume: 4
  start-page: 100
  year: 1998
  ident: R24
  publication-title: IEEE J. Selected Top. Quant. Electr.
  doi: 10.1109/2944.669475
– volume: 6
  start-page: 1900240
  year: 2019
  ident: R59
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201900240
– volume: 88
  start-page: 125202
  year: 2013
  ident: R35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.125202
– volume: 277
  start-page: 330
  year: 2005
  ident: R57
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2005.01.052
– volume: 69
  start-page: 312
  year: 2017
  ident: R27
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2017.04.059
– volume: 405
  start-page: 661
  year: 2000
  ident: R29
  publication-title: Nature
  doi: 10.1038/35015037
– volume: 12
  start-page: 1737
  year: 2000
  ident: R33
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(200012)12:23<1737::AID-ADMA1737>3.0.CO;2-N
– volume: 282
  start-page: 347
  year: 2019
  ident: R52
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.11.076
– ident: R8
SSID ssj0001685
Score 2.3702815
Snippet In this study, we have investigated new tailored organic semiconductor materials for optoelectronic application, such as organic solar cells. The carbon-based...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 10201
Title New tailored organic semiconductors thin films for optoelectronic applications
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF6qIuhBtCq-2YMXKbFJarLpsfhAREVoC72V3SSLFUmCxos_wN_tTHaz3foA6yWEbTK0_YbZb3a_nSHk2JMRQx7iAPvgkKBIbPOSuI6fJr7PpEglx9PId_fh9fDsZhSMGo0PS7X0VorT-P3HcyX_QRXGAFc8JTsHssYoDMA94AtXQBiuf8IYxYmoAM1RRK76M8WtV5S75xnWccVGOuXjJMPqS6rwQisvytxqfWPvX_-4SF_UOOovdGp4q_rEUPIHXISvQusFKunNKrPRcPd59jRV7PQySIerHkeo1oFkwFao6ENmE6HLgutVCd8zCtY6kPpR6GBEUPOMPaYKzdbRV7XYnPEyFUqB-SiD34I8xBGEu3jiBZ5nwSL1HlBFdzql1dv4X2Y6oz-sdt4Db1zZGE8tLJAlH9INiJdLvYu7276Z072wau5qfpXe8AYb7cpGe2rDIjgWUxmskzWdYtCe8pcN0kizJlm1Ck82yfKDAm-T3IMP0dqHqPYhOutDFH2IVj5EwYforA9R24e2yPDqcnB-7egeG07sBVHpiCCQYVdC1hsFjHUT4MssFuwsFW7XDziXicshqY0TCPSdUIQQ_ztpGkncPQdmnnS2yWKWZ-kOoZDJCwHZAecR5AmxJ4IusFvJXAa0OmbJLmnXf8w41gXosQ_K8_g3OHbJiXmjUMVXfn12b45n98mKWqJH3eoBWSxf3tJD4JalONLAfwK7lnuf
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+tailored+organic+semiconductors+thin+films+for+optoelectronic+applications&rft.jtitle=European+physical+journal.+Applied+physics&rft.au=Pathak%2C+Dinesh&rft.au=Kumar%2C+Sanjay&rft.au=Andotra%2C+Sonali&rft.au=Thomas%2C+Jibin&rft.date=2021-07-01&rft.issn=1286-0042&rft.eissn=1286-0050&rft.volume=95&rft.issue=1&rft.spage=10201&rft_id=info:doi/10.1051%2Fepjap%2F2021210090&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_epjap_2021210090
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1286-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1286-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1286-0042&client=summon