Designing Plastrons for Underwater Bubble Capture: From Model Microstructures to Stochastic Nanostructures

Abstract Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical‐free and energy‐passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When i...

Full description

Saved in:
Bibliographic Details
Published inAdvanced science p. e2403366
Main Authors Wong, William S. Y., Naga, Abhinav, Armstrong, Tobias, Karunakaran, Bhuvaneshwari, Poulikakos, Dimos, Ras, Robin H. A.
Format Journal Article
LanguageEnglish
Published 02.07.2024
Online AccessGet full text

Cover

Loading…
Abstract Abstract Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical‐free and energy‐passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When immersed, super‐liquid‐repellent surfaces form plastrons, which are textured solid topographies with interconnected gas domains. Plastrons exhibit the remarkable ability of capturing bubbles through coalescence. However, the two‐step mechanics of plastron‐induced bubble coalescence, namely, rupture (initiation and location) and subsequent absorption (propagation and drainage) are not well understood. Here, the influence of 1) topographical feature size and 2) gas fraction on bubble capture dynamics is investigated. Smaller feature sizes accelerate rupture while larger gas fractions markedly improve absorption. Rupture is initiated solely on solid domains and is more probable near the edges of solid features. Yet, rupture time becomes longer as solid fraction increases. This counterintuitive behavior represents unexpected complexities. Upon rupture, the bubble's moving liquid‐solid contact line influences its absorption rate and equilibrium state. These findings show the importance of rationally minimizing surface feature sizes and contact line interactions for rapid bubble rupture and absorption. This work provides key design principles for plastron‐induced bubble coalescence, inspiring future development of industrially‐relevant surfaces for underwater bubble capture.
AbstractList Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical-free and energy-passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When immersed, super-liquid-repellent surfaces form plastrons, which are textured solid topographies with interconnected gas domains. Plastrons exhibit the remarkable ability of capturing bubbles through coalescence. However, the two-step mechanics of plastron-induced bubble coalescence, namely, rupture (initiation and location) and subsequent absorption (propagation and drainage) are not well understood. Here, the influence of 1) topographical feature size and 2) gas fraction on bubble capture dynamics is investigated. Smaller feature sizes accelerate rupture while larger gas fractions markedly improve absorption. Rupture is initiated solely on solid domains and is more probable near the edges of solid features. Yet, rupture time becomes longer as solid fraction increases. This counterintuitive behavior represents unexpected complexities. Upon rupture, the bubble's moving liquid-solid contact line influences its absorption rate and equilibrium state. These findings show the importance of rationally minimizing surface feature sizes and contact line interactions for rapid bubble rupture and absorption. This work provides key design principles for plastron-induced bubble coalescence, inspiring future development of industrially-relevant surfaces for underwater bubble capture.Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical-free and energy-passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When immersed, super-liquid-repellent surfaces form plastrons, which are textured solid topographies with interconnected gas domains. Plastrons exhibit the remarkable ability of capturing bubbles through coalescence. However, the two-step mechanics of plastron-induced bubble coalescence, namely, rupture (initiation and location) and subsequent absorption (propagation and drainage) are not well understood. Here, the influence of 1) topographical feature size and 2) gas fraction on bubble capture dynamics is investigated. Smaller feature sizes accelerate rupture while larger gas fractions markedly improve absorption. Rupture is initiated solely on solid domains and is more probable near the edges of solid features. Yet, rupture time becomes longer as solid fraction increases. This counterintuitive behavior represents unexpected complexities. Upon rupture, the bubble's moving liquid-solid contact line influences its absorption rate and equilibrium state. These findings show the importance of rationally minimizing surface feature sizes and contact line interactions for rapid bubble rupture and absorption. This work provides key design principles for plastron-induced bubble coalescence, inspiring future development of industrially-relevant surfaces for underwater bubble capture.
Abstract Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical‐free and energy‐passive bubble capture is desirable for numerous industrial processes, including mineral flotation, wastewater treatment, and electrolysis. When immersed, super‐liquid‐repellent surfaces form plastrons, which are textured solid topographies with interconnected gas domains. Plastrons exhibit the remarkable ability of capturing bubbles through coalescence. However, the two‐step mechanics of plastron‐induced bubble coalescence, namely, rupture (initiation and location) and subsequent absorption (propagation and drainage) are not well understood. Here, the influence of 1) topographical feature size and 2) gas fraction on bubble capture dynamics is investigated. Smaller feature sizes accelerate rupture while larger gas fractions markedly improve absorption. Rupture is initiated solely on solid domains and is more probable near the edges of solid features. Yet, rupture time becomes longer as solid fraction increases. This counterintuitive behavior represents unexpected complexities. Upon rupture, the bubble's moving liquid‐solid contact line influences its absorption rate and equilibrium state. These findings show the importance of rationally minimizing surface feature sizes and contact line interactions for rapid bubble rupture and absorption. This work provides key design principles for plastron‐induced bubble coalescence, inspiring future development of industrially‐relevant surfaces for underwater bubble capture.
Author Armstrong, Tobias
Ras, Robin H. A.
Karunakaran, Bhuvaneshwari
Wong, William S. Y.
Naga, Abhinav
Poulikakos, Dimos
Author_xml – sequence: 1
  givenname: William S. Y.
  orcidid: 0000-0002-5389-5018
  surname: Wong
  fullname: Wong, William S. Y.
  organization: Department of Applied Physics School of Science Aalto University Espoo FI‐02150 Finland
– sequence: 2
  givenname: Abhinav
  orcidid: 0000-0001-7158-622X
  surname: Naga
  fullname: Naga, Abhinav
  organization: Department of Physics Durham University Durham DH1 3LE United Kingdom, Institute for Multiscale Thermofluids, School of Engineering University of Edinburgh Edinburgh EH9 3FD United Kingdom
– sequence: 3
  givenname: Tobias
  orcidid: 0009-0001-2309-3911
  surname: Armstrong
  fullname: Armstrong, Tobias
  organization: Laboratory for Multiphase Thermofluidics and Surface Nanoengineering Department of Mechanical and Process Engineering ETH Zurich Zurich 8092 Switzerland
– sequence: 4
  givenname: Bhuvaneshwari
  orcidid: 0000-0002-4229-4890
  surname: Karunakaran
  fullname: Karunakaran, Bhuvaneshwari
  organization: Department of Applied Physics School of Science Aalto University Espoo FI‐02150 Finland
– sequence: 5
  givenname: Dimos
  orcidid: 0000-0001-5733-6478
  surname: Poulikakos
  fullname: Poulikakos, Dimos
  organization: Laboratory of Thermodynamics in Emerging Technologies Department of Mechanical and Process Engineering ETH Zurich Zurich 8092 Switzerland
– sequence: 6
  givenname: Robin H. A.
  orcidid: 0000-0002-2076-242X
  surname: Ras
  fullname: Ras, Robin H. A.
  organization: Department of Applied Physics School of Science Aalto University Espoo FI‐02150 Finland
BookMark eNpNkM1LwzAYxoNMcM5dPefopTNfTVNvOp0KTgXduaTp29nRJTNJFf97Wyay0_vC8wHP7xSNrLOA0DklM0oIu9TVV5gxwgThXMojNGY0VwlXQowO_hM0DWFDCKEpzwRVY7S5hdCsbWPX-LXVIXpnA66dxytbgf_WETy-6cqyBTzXu9h5uMIL77Z46Spo8bIx3vWpzgxSwNHht-jMR9_UGPys7YF4ho5r3QaY_t0JWi3u3ucPydPL_eP8-ikxNM1iUorMKKZEmQkwlIpcpkCIzCmhUFaiVAoIkyYDgDJnMpWyqvtkKnlNpVCET9DFvnfn3WcHIRbbJhhoW23BdaHgJOvXszzPeutsbx1WBA91sfPNVvufgpJi4FoMXIt_rvwXDipugw
Cites_doi 10.1038/s41467-023-41918-y
10.1016/S0031-8914(37)80203-7
10.1557/mrs2008.161
10.1039/C2SM27016A
10.1016/B978-0-08-036364-6.50031-4
10.1017/S0022112074002126
10.1038/s41467-021-25556-w
10.1016/j.cocis.2015.03.005
10.1098/rstl.1886.0005
10.1017/CBO9780511800955
10.1038/s41467-022-33424-4
10.1021/acsnano.9b08211
10.1103/PhysRevLett.116.096101
10.1098/rspa.1969.0169
10.1039/C4LC00197D
10.1081/SS-120028444
10.1021/acs.langmuir.5b01157
10.1021/la981727s
10.1021/acsnano.9b04771
10.1002/anie.201006552
10.1021/la7011167
10.1038/nphys4305
10.1103/RevModPhys.81.739
10.1016/j.cis.2017.05.019
10.1002/adma.202101855
10.1073/pnas.1218673110
10.1021/acs.jpclett.1c00760
10.1103/PhysRevLett.117.094501
10.1146/annurev-fluid-011212-140734
10.1002/adfm.202113374
10.1209/0295-5075/79/56005
10.1021/acsami.7b13713
10.1002/anie.201101008
10.1002/adma.202300306
10.1016/j.ces.2018.11.002
10.1039/C0SM00812E
10.1002/adma.202110085
10.1016/j.jcis.2005.05.051
10.1039/tf9444000546
10.1017/jfm.2011.211
10.1021/acs.nanolett.0c02091
10.1103/PhysRevLett.122.194501
10.1039/C9SM01348B
10.1038/ncomms4182
10.1021/acs.langmuir.2c00941
10.1021/la062634a
10.1021/la061372
10.1016/0301-7516(82)90002-3
10.1103/RevModPhys.57.827
10.1016/0301-7516(82)90003-5
10.1021/acs.langmuir.6b03792
10.1126/science.1207115
10.1021/la802667b
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
Copyright_xml – notice: 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.
DBID AAYXX
CITATION
7X8
DOI 10.1002/advs.202403366
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2198-3844
ExternalDocumentID 10_1002_advs_202403366
GroupedDBID 0R~
1OC
24P
53G
5VS
88I
8G5
AAFWJ
AAHHS
AAYXX
AAZKR
ABDBF
ABUWG
ACCFJ
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFBPY
AFKRA
AFPKN
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
AZQEC
BCNDV
BENPR
BPHCQ
BRXPI
CCPQU
CITATION
DWQXO
EBS
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
HCIFZ
HYE
IAO
KQ8
M2O
M2P
O9-
OK1
PIMPY
PQQKQ
PROAC
ROL
RPM
WIN
7X8
ID FETCH-LOGICAL-c157t-b47c8284b74ec114965e0069101ebd4b88e026c7eeeb926566dfc15563f164803
ISSN 2198-3844
IngestDate Wed Jul 03 17:00:54 EDT 2024
Thu Aug 22 15:15:21 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c157t-b47c8284b74ec114965e0069101ebd4b88e026c7eeeb926566dfc15563f164803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-2309-3911
0000-0002-4229-4890
0000-0002-2076-242X
0000-0001-7158-622X
0000-0002-5389-5018
0000-0001-5733-6478
PQID 3075372997
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3075372997
crossref_primary_10_1002_advs_202403366
PublicationCentury 2000
PublicationDate 2024-07-02
20240702
PublicationDateYYYYMMDD 2024-07-02
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-02
  day: 02
PublicationDecade 2020
PublicationTitle Advanced science
PublicationYear 2024
References e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_54_1
Derjaguin B. V. (e_1_2_9_51_1) 1946; 51
Shah M. S. (e_1_2_9_30_1) 2021; 6
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
Lifshitz E. M. (e_1_2_9_35_1) 1992
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_53_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
Reynolds O. (e_1_2_9_29_1) 1997; 177
Israelachvili J. N. (e_1_2_9_33_1) 2011
e_1_2_9_15_1
e_1_2_9_38_1
Wong W. S. Y. (e_1_2_9_48_1) 2023
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_44_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_1_1
Kappl M. (e_1_2_9_23_1) 2018
e_1_2_9_9_1
e_1_2_9_25_1
Ishino C. (e_1_2_9_59_1) 2007; 79
e_1_2_9_27_1
References_xml – ident: e_1_2_9_11_1
  doi: 10.1038/s41467-023-41918-y
– ident: e_1_2_9_24_1
  doi: 10.1016/S0031-8914(37)80203-7
– ident: e_1_2_9_32_1
  doi: 10.1557/mrs2008.161
– ident: e_1_2_9_37_1
  doi: 10.1039/C2SM27016A
– start-page: 329
  volume-title: Perspectives in theoretical physics
  year: 1992
  ident: e_1_2_9_35_1
  doi: 10.1016/B978-0-08-036364-6.50031-4
  contributor:
    fullname: Lifshitz E. M.
– ident: e_1_2_9_50_1
  doi: 10.1017/S0022112074002126
– ident: e_1_2_9_18_1
  doi: 10.1038/s41467-021-25556-w
– ident: e_1_2_9_5_1
  doi: 10.1016/j.cocis.2015.03.005
– ident: e_1_2_9_28_1
  doi: 10.1098/rstl.1886.0005
– ident: e_1_2_9_27_1
  doi: 10.1017/CBO9780511800955
– volume: 177
  start-page: 157
  year: 1997
  ident: e_1_2_9_29_1
  publication-title: Philos. Trans. R. Soc.
  contributor:
    fullname: Reynolds O.
– volume: 51
  start-page: 517
  year: 1946
  ident: e_1_2_9_51_1
  publication-title: Dok. Akad. Nauk SSSR
  contributor:
    fullname: Derjaguin B. V.
– ident: e_1_2_9_12_1
  doi: 10.1038/s41467-022-33424-4
– ident: e_1_2_9_52_1
  doi: 10.1021/acsnano.9b08211
– ident: e_1_2_9_31_1
  doi: 10.1103/PhysRevLett.116.096101
– ident: e_1_2_9_34_1
  doi: 10.1098/rspa.1969.0169
– ident: e_1_2_9_25_1
  doi: 10.1039/C4LC00197D
– ident: e_1_2_9_13_1
  doi: 10.1081/SS-120028444
– ident: e_1_2_9_21_1
  doi: 10.1021/acs.langmuir.5b01157
– ident: e_1_2_9_38_1
  doi: 10.1021/la981727s
– ident: e_1_2_9_9_1
  doi: 10.1021/acsnano.9b04771
– ident: e_1_2_9_14_1
  doi: 10.1002/anie.201006552
– ident: e_1_2_9_41_1
  doi: 10.1021/la7011167
– ident: e_1_2_9_57_1
  doi: 10.1038/nphys4305
– ident: e_1_2_9_43_1
  doi: 10.1103/RevModPhys.81.739
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cis.2017.05.019
– ident: e_1_2_9_17_1
  doi: 10.1002/adma.202101855
– ident: e_1_2_9_36_1
  doi: 10.1073/pnas.1218673110
– ident: e_1_2_9_54_1
  doi: 10.1021/acs.jpclett.1c00760
– ident: e_1_2_9_22_1
  doi: 10.1103/PhysRevLett.117.094501
– ident: e_1_2_9_45_1
  doi: 10.1146/annurev-fluid-011212-140734
– ident: e_1_2_9_7_1
  doi: 10.1002/adfm.202113374
– volume: 6
  year: 2021
  ident: e_1_2_9_30_1
  publication-title: Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top.
  contributor:
    fullname: Shah M. S.
– volume-title: Surface and interfacial forces
  year: 2018
  ident: e_1_2_9_23_1
  contributor:
    fullname: Kappl M.
– volume: 79
  year: 2007
  ident: e_1_2_9_59_1
  publication-title: EPL
  doi: 10.1209/0295-5075/79/56005
  contributor:
    fullname: Ishino C.
– ident: e_1_2_9_53_1
  doi: 10.1021/acsami.7b13713
– ident: e_1_2_9_55_1
  doi: 10.1002/anie.201101008
– year: 2023
  ident: e_1_2_9_48_1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300306
  contributor:
    fullname: Wong W. S. Y.
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ces.2018.11.002
– ident: e_1_2_9_1_1
  doi: 10.1039/C0SM00812E
– ident: e_1_2_9_10_1
  doi: 10.1002/adma.202110085
– ident: e_1_2_9_19_1
  doi: 10.1002/adma.202101855
– ident: e_1_2_9_39_1
  doi: 10.1016/j.jcis.2005.05.051
– ident: e_1_2_9_20_1
  doi: 10.1039/tf9444000546
– ident: e_1_2_9_46_1
  doi: 10.1017/jfm.2011.211
– ident: e_1_2_9_8_1
  doi: 10.1021/acs.nanolett.0c02091
– ident: e_1_2_9_16_1
  doi: 10.1103/PhysRevLett.122.194501
– ident: e_1_2_9_58_1
  doi: 10.1039/C9SM01348B
– ident: e_1_2_9_4_1
  doi: 10.1038/ncomms4182
– ident: e_1_2_9_49_1
  doi: 10.1021/acs.langmuir.2c00941
– ident: e_1_2_9_42_1
  doi: 10.1021/la062634a
– ident: e_1_2_9_26_1
  doi: 10.1021/la061372
– ident: e_1_2_9_3_1
  doi: 10.1016/0301-7516(82)90002-3
– ident: e_1_2_9_44_1
  doi: 10.1103/RevModPhys.57.827
– ident: e_1_2_9_2_1
  doi: 10.1016/0301-7516(82)90003-5
– start-page: 253
  volume-title: Intermolecular and surface forces (third edition)
  year: 2011
  ident: e_1_2_9_33_1
  contributor:
    fullname: Israelachvili J. N.
– ident: e_1_2_9_47_1
  doi: 10.1021/acs.langmuir.6b03792
– ident: e_1_2_9_56_1
  doi: 10.1126/science.1207115
– ident: e_1_2_9_40_1
  doi: 10.1021/la802667b
SSID ssj0001537418
Score 2.3362236
Snippet Abstract Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical‐free and...
Bubbles and foams are often removed via chemical defoamers and/or mechanical agitation. Designing surfaces that promote chemical-free and energy-passive bubble...
SourceID proquest
crossref
SourceType Aggregation Database
StartPage e2403366
Title Designing Plastrons for Underwater Bubble Capture: From Model Microstructures to Stochastic Nanostructures
URI https://www.proquest.com/docview/3075372997/abstract/
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELYGvPCCBhsaMJCRkLapSkkTO05446fQpCE0isSeIttxVDbUVDQFib-eO8dJU-gD7CWqHDm1fJ_O_u58nwnZiyVwnV7se7mRgceynvGkSKTHpOJKioyHBquRf11E59fs5w2_aWVMsbqkVF39NLeu5H-sCm1gV6ySfYdlm49CA_wG-8ITLAzPN9n4xB6_QLJ_CZtgDGpbdYWOvczoUVr9w4nC2qhjOcJUAfL_MywowSvQ7vDMPBZ9oIIsvLRaD1dloQcSxZvR8bZetnexh_XBAbd-Np7dne91QZzOVbfzp9uEm6WL4Sq8svuhhTQ7ctuxX6hbOU0vyfvJUP6T91WQ9mgwgb8148Ej8Pt2tCJg9mRrK4AJDjL2wrjSfOya122vXHolESuzBxRXR_XAMJqjnf1iTWtOGlaqzEGK_dOm_wJZCkTCRYuCV1XlIYr54H2E9ZBqnU8_2J8dwuw-ZnYZt3uT_key4kgFPawQsko-mOEaWXVue0y_O23xH5_I3wYytIEMBcjQKWRoBRnqIHNAETDUAoa-AAwtCzoFDJ0FzGdyfXbaPz733HUbnu5xUXqKCQ38mynBjAaanETcoJA1OG2jMqbi2ABh18IYo5IAeUCWQ08ehTlw7tgP18nisBiaL4TqJPdz3oswDc50zuMgU37I8xDoaxJkeoN8qycvHVWqKul8S22Q3XpuU3B8mM0CpBWTcQqLE8eccyI23_y1LbI8BeVXsghTYrZhU1mqHbJ0dHpx-XvHIuIZgS98Aw
link.rule.ids 315,786,790,870,27957,27958,33780
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Designing+Plastrons+for+Underwater+Bubble+Capture%3A+From+Model+Microstructures+to+Stochastic+Nanostructures&rft.jtitle=Advanced+science&rft.au=Wong%2C+William+S.+Y.&rft.au=Naga%2C+Abhinav&rft.au=Armstrong%2C+Tobias&rft.au=Karunakaran%2C+Bhuvaneshwari&rft.date=2024-07-02&rft.issn=2198-3844&rft.eissn=2198-3844&rft_id=info:doi/10.1002%2Fadvs.202403366&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_advs_202403366
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2198-3844&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2198-3844&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2198-3844&client=summon