L 1 adaptive output‐feedback control of multivariable nonlinear systems subject to constraints using online optimization
In this paper, an L 1 adaptive output‐feedback controller is developed for multivariable nonlinear systems subject to constraints using online optimization. In the L 1 adaptive architecture, an adaptive law will update the adaptive parameters that represent the nonlinear uncertainties such that the...
Saved in:
Published in | International journal of robust and nonlinear control Vol. 29; no. 12; pp. 4116 - 4134 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
01.08.2019
|
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, an
L
1
adaptive output‐feedback controller is developed for multivariable nonlinear systems subject to constraints using online optimization. In the
L
1
adaptive architecture, an adaptive law will update the adaptive parameters that represent the nonlinear uncertainties such that the estimation error between the predicted state and the real state is driven to zero at every integration time step. Of course, neglection of the unknowns for solving the error dynamic equations will introduce an estimation error in the adaptive parameters. The magnitude of this error can be lessened by choosing a proper sampling time step. A control law is designed to compensate the nonlinear uncertainties and deliver a good tracking performance with guaranteed robustness. Model predictive control is introduced to solve a receding horizon optimization problem with various constraints maintained. Numerical examples are given to illustrate the design procedures, and the simulation results demonstrate the availability and feasibility of the developed framework. |
---|---|
AbstractList | In this paper, an
L
1
adaptive output‐feedback controller is developed for multivariable nonlinear systems subject to constraints using online optimization. In the
L
1
adaptive architecture, an adaptive law will update the adaptive parameters that represent the nonlinear uncertainties such that the estimation error between the predicted state and the real state is driven to zero at every integration time step. Of course, neglection of the unknowns for solving the error dynamic equations will introduce an estimation error in the adaptive parameters. The magnitude of this error can be lessened by choosing a proper sampling time step. A control law is designed to compensate the nonlinear uncertainties and deliver a good tracking performance with guaranteed robustness. Model predictive control is introduced to solve a receding horizon optimization problem with various constraints maintained. Numerical examples are given to illustrate the design procedures, and the simulation results demonstrate the availability and feasibility of the developed framework. |
Author | Ma, Tong Cao, Chengyu |
Author_xml | – sequence: 1 givenname: Tong orcidid: 0000-0003-3419-8222 surname: Ma fullname: Ma, Tong organization: Mechanical Engineering Department University of Connecticut Storrs Connecticut – sequence: 2 givenname: Chengyu surname: Cao fullname: Cao, Chengyu organization: Mechanical Engineering Department University of Connecticut Storrs Connecticut |
BookMark | eNplkE1OwzAQhS1UJNqCxBG8ZJPiSdIkXqKKP6kSm-6jiTtGLold2Q5Su-IInJGTkFBWsJqR5nvznt6MTayzxNg1iAUIkd56qxb5UpZnbApCygTSTE7GPZdJJdPsgs1C2Akx3NJ8yo5rDhy3uI_mnbjr476PXx-fmmjboHrjytnoXcud5l3fDhB6g01LfLBtjSX0PBxCpC7w0Dc7UpFHN6pC9GhsDLwPxr7yE83d4NOZI0bj7CU719gGuvqdc7Z5uN-snpL1y-Pz6m6dKFiWMZEFiUpTASWmoBHzSjVS5nmRQ1GCREllU6HeZkrqlAAFgAZAqaDSKJtszhant8q7EDzpWpn4E2BM2NYg6rG4eiiuHosbBDd_BHtvOvSH_-g386l1pw |
CitedBy_id | crossref_primary_10_3390_act13050172 crossref_primary_10_1177_01423312221075470 crossref_primary_10_1002_rnc_5008 crossref_primary_10_1177_0954410020984098 crossref_primary_10_1002_rnc_5006 crossref_primary_10_1002_rnc_5149 crossref_primary_10_1080_00207179_2020_1769865 crossref_primary_10_1016_j_automatica_2019_108689 crossref_primary_10_1016_j_ejcon_2020_10_003 crossref_primary_10_1016_j_ejcon_2019_08_007 crossref_primary_10_1080_00207179_2020_1847328 crossref_primary_10_1142_S2301385023500103 crossref_primary_10_1080_00207179_2020_1847327 crossref_primary_10_1002_acs_3140 crossref_primary_10_1002_rnc_4993 crossref_primary_10_1002_rnc_5212 crossref_primary_10_1016_j_ejcon_2020_03_002 crossref_primary_10_1002_rnc_5001 |
Cites_doi | 10.1109/MCS.2007.338280 10.1080/00207721.2011.652222 10.1016/j.automatica.2009.06.005 10.1007/978-1-4612-0205-9 10.1016/j.automatica.2007.11.025 10.1016/j.ins.2010.08.034 10.1016/0005-1098(96)00063-5 10.1007/s10957-014-0615-6 10.1016/j.neucom.2012.04.006 10.1016/j.automatica.2011.08.044 10.1109/TNN.2010.2042611 10.1016/j.cnsns.2011.02.016 10.1016/j.fss.2013.11.006 10.1016/j.ijpe.2006.05.013 10.1109/ICARCV.2006.345187 10.1016/S0005-1098(99)00214-9 10.1109/CDC.2009.5400214 10.1049/iet-cta.2012.0565 10.1109/9.661611 10.1007/BFb0032146 10.1109/TCST.2008.2000981 10.1109/ACC.2010.5530504 10.1109/ICSMC.2009.5346115 10.1016/j.fss.2010.09.001 10.1007/s12555-012-0403-8 10.1109/TFUZZ.2011.2171189 10.1137/1.9780898719376 10.1109/TNN.2010.2047115 10.1016/j.cnsns.2009.09.022 10.1002/rnc.4360 10.1109/TAC.2011.2122730 10.1109/ISFA.2016.7790210 10.1016/j.automatica.2008.11.017 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1002/rnc.4597 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1099-1239 |
EndPage | 4134 |
ExternalDocumentID | 10_1002_rnc_4597 |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AI. AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMVHM AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA H.T H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WJL WLBEL WOHZO WQJ WXSBR WYISQ XG1 XV2 ZZTAW ~IA ~WT |
ID | FETCH-LOGICAL-c157t-96e08fe617a21faa48cb99446416719a9e7b8afd3c9f2e1a011f11a9c18fa9b3 |
ISSN | 1049-8923 |
IngestDate | Tue Jul 01 02:06:55 EDT 2025 Thu Apr 24 23:10:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c157t-96e08fe617a21faa48cb99446416719a9e7b8afd3c9f2e1a011f11a9c18fa9b3 |
ORCID | 0000-0003-3419-8222 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1002_rnc_4597 crossref_primary_10_1002_rnc_4597 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-00 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-00 |
PublicationDecade | 2010 |
PublicationTitle | International journal of robust and nonlinear control |
PublicationYear | 2019 |
References | e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 Ting C‐S (e_1_2_7_14_1) 2008; 10 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Camacho EF (e_1_2_7_30_1) 2013 Ma T (e_1_2_7_39_1) 2019 Backx T (e_1_2_7_33_1) 2001 Khalil HK (e_1_2_7_3_1) 1996 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 |
References_xml | – ident: e_1_2_7_37_1 doi: 10.1109/MCS.2007.338280 – ident: e_1_2_7_26_1 doi: 10.1080/00207721.2011.652222 – ident: e_1_2_7_32_1 doi: 10.1016/j.automatica.2009.06.005 – ident: e_1_2_7_20_1 doi: 10.1007/978-1-4612-0205-9 – ident: e_1_2_7_11_1 doi: 10.1016/j.automatica.2007.11.025 – ident: e_1_2_7_5_1 doi: 10.1016/j.ins.2010.08.034 – ident: e_1_2_7_22_1 – ident: e_1_2_7_31_1 doi: 10.1016/0005-1098(96)00063-5 – ident: e_1_2_7_2_1 doi: 10.1007/s10957-014-0615-6 – ident: e_1_2_7_8_1 doi: 10.1016/j.neucom.2012.04.006 – ident: e_1_2_7_27_1 doi: 10.1016/j.automatica.2011.08.044 – ident: e_1_2_7_15_1 doi: 10.1109/TNN.2010.2042611 – ident: e_1_2_7_4_1 doi: 10.1016/j.cnsns.2011.02.016 – volume-title: Nonlinear Systems year: 1996 ident: e_1_2_7_3_1 – start-page: 1 year: 2019 ident: e_1_2_7_39_1 article-title: L1 adaptive control for general partial differential equation (PDE) systems publication-title: Int J Gen Syst – ident: e_1_2_7_16_1 doi: 10.1016/j.fss.2013.11.006 – ident: e_1_2_7_34_1 doi: 10.1016/j.ijpe.2006.05.013 – ident: e_1_2_7_13_1 doi: 10.1109/ICARCV.2006.345187 – ident: e_1_2_7_17_1 doi: 10.1016/S0005-1098(99)00214-9 – ident: e_1_2_7_19_1 doi: 10.1109/CDC.2009.5400214 – ident: e_1_2_7_7_1 doi: 10.1049/iet-cta.2012.0565 – ident: e_1_2_7_18_1 doi: 10.1109/9.661611 – ident: e_1_2_7_21_1 doi: 10.1007/BFb0032146 – ident: e_1_2_7_25_1 doi: 10.1109/TCST.2008.2000981 – ident: e_1_2_7_36_1 doi: 10.1109/ACC.2010.5530504 – volume-title: Model Predictive Control year: 2013 ident: e_1_2_7_30_1 – ident: e_1_2_7_35_1 doi: 10.1109/ICSMC.2009.5346115 – start-page: 249 volume-title: Advanced Control of Chemical Processes 2000 year: 2001 ident: e_1_2_7_33_1 – ident: e_1_2_7_6_1 doi: 10.1016/j.fss.2010.09.001 – ident: e_1_2_7_24_1 doi: 10.1007/s12555-012-0403-8 – ident: e_1_2_7_10_1 doi: 10.1109/TFUZZ.2011.2171189 – ident: e_1_2_7_29_1 doi: 10.1137/1.9780898719376 – volume: 10 year: 2008 ident: e_1_2_7_14_1 article-title: A robust fuzzy control approach to stabilization of nonlinear time‐delay systems with saturating inputs publication-title: Int J Fuzzy Syst – ident: e_1_2_7_28_1 doi: 10.1109/TNN.2010.2047115 – ident: e_1_2_7_9_1 doi: 10.1016/j.cnsns.2009.09.022 – ident: e_1_2_7_38_1 doi: 10.1002/rnc.4360 – ident: e_1_2_7_12_1 doi: 10.1109/TAC.2011.2122730 – ident: e_1_2_7_40_1 doi: 10.1109/ISFA.2016.7790210 – ident: e_1_2_7_23_1 doi: 10.1016/j.automatica.2008.11.017 |
SSID | ssj0009924 |
Score | 2.3528795 |
Snippet | In this paper, an
L
1
adaptive output‐feedback controller is developed for multivariable nonlinear systems subject to constraints using online optimization. In... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 4116 |
Title | L 1 adaptive output‐feedback control of multivariable nonlinear systems subject to constraints using online optimization |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKdoEDYgPE-Jg8CYlDlFEnjh0fEWya0MYBFWm3ynZtkICmapNJ24krN_5G_hKeYzt1xw4DqYoqy4mdvF_8PvLezwi9FEzBKyZFPrNc5LRUNJfgC8Ebr-HHSuVzc84-sJNP9P15dT4a_UyylrpWHeqrG-tK_keq0AZydVWy_yDZ4aLQAP9BvnAECcPxVjI-zUgmZ3LRp_80Xbvo2iF5wYJaUlJ_HZLR3Yd0lz14Ad5xXy819ywZMtI5r7JVp1xYxtmj2tmNbvuIdpV1fTzB984aGO17KN5MLdvN0GJCSLFsVLfyeezrEcOk1vHwHjdNUKP9NxEfw_1i5p8vuzQ24cqh6hib8Msp-B95LXxF8aEJbcJtwOApjOIaHKIeAWtFsqJSQliinUHn0htXfs8ku4RFlVY-43eTXPua0htSET1tczGFM6fuzDtouwCPw22G8e7jmolMCL8_cryhyGM8Ll7HMRPLJjFRJg_Q_eBb4DceKDtoZOa76F7COPkQXZ1igiNksIfM7x-_IlhwkAtuLN4ACx5EhwNYcAALbhucgAX3YMG-N07B8ghNjo8mb0_ysP1GrknF21wwM66tARNXFsRKSWuthKCUgQ3PiZDCcFVLOyu1sIUhEjSFJUQKTWorhSofoy2Ym3mCsJ5JJsAV4IqDMcRrxfiYqaqSLvmGl8UeehWf3FQHano362_T69LZQwdDz4WnY_mrz9Nb9HmG7q7x-hxttcvOvADrslX7vdz_ADp_hD4 |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=L+1+adaptive+output%E2%80%90feedback+control+of+multivariable+nonlinear+systems+subject+to+constraints+using+online+optimization&rft.jtitle=International+journal+of+robust+and+nonlinear+control&rft.au=Ma%2C+Tong&rft.au=Cao%2C+Chengyu&rft.date=2019-08-01&rft.issn=1049-8923&rft.eissn=1099-1239&rft.volume=29&rft.issue=12&rft.spage=4116&rft.epage=4134&rft_id=info:doi/10.1002%2Frnc.4597&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rnc_4597 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1049-8923&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1049-8923&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1049-8923&client=summon |