Investigating the Role of Image Retrieval for Visual Localization An Exhaustive Benchmark

Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimat...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of computer vision Vol. 130; no. 7; pp. 1811 - 1836
Main Authors Humenberger, Martin, Cabon, Yohann, Pion, Noé, Weinzaepfel, Philippe, Lee, Donghwan, Guérin, Nicolas, Sattler, Torsten, Csurka, Gabriela
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization .
AbstractList Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at https://github.com/naver/kapture-localization .
Author Weinzaepfel, Philippe
Guérin, Nicolas
Sattler, Torsten
Lee, Donghwan
Csurka, Gabriela
Humenberger, Martin
Cabon, Yohann
Pion, Noé
Author_xml – sequence: 1
  givenname: Martin
  orcidid: 0000-0003-0600-9164
  surname: Humenberger
  fullname: Humenberger, Martin
  email: martin.humenberger@naverlabs.com
  organization: NAVER LABS Europe
– sequence: 2
  givenname: Yohann
  surname: Cabon
  fullname: Cabon, Yohann
  organization: NAVER LABS Europe
– sequence: 3
  givenname: Noé
  surname: Pion
  fullname: Pion, Noé
  organization: NAVER LABS Europe
– sequence: 4
  givenname: Philippe
  orcidid: 0000-0002-4223-3983
  surname: Weinzaepfel
  fullname: Weinzaepfel, Philippe
  organization: NAVER LABS Europe
– sequence: 5
  givenname: Donghwan
  surname: Lee
  fullname: Lee, Donghwan
  organization: NAVER LABS
– sequence: 6
  givenname: Nicolas
  surname: Guérin
  fullname: Guérin, Nicolas
  organization: NAVER LABS Europe
– sequence: 7
  givenname: Torsten
  orcidid: 0000-0001-9760-4553
  surname: Sattler
  fullname: Sattler, Torsten
  organization: Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague
– sequence: 8
  givenname: Gabriela
  surname: Csurka
  fullname: Csurka, Gabriela
  organization: NAVER LABS Europe
BookMark eNp9kN1KwzAUgINMsJu-gFd9gehJsibp5Rj-DAaCqLchTZPa0SWSdAN9erPVa-HA-eF8h8M3RzMfvEXolsAdARD3iRDKGQZKMRBOKiwuUEEqwTBZQjVDBdQUcMVrcoXmKe0AgErKCrTa-KNNY9_psfddOX7a8jUMtgyu3Ox1lzs7xt4e9VC6EMuPPh1yuQ1GD_1PZoK_RpdOD8ne_OUFen98eFs_4-3L02a92mKT_xDYNUZSTkkrJKeSyGbJhWsaJ0GI04DztpWVNHXbGqaBu5o5UZtllYNp3rAFotNdE0NK0Tr1Ffu9jt-KgDpJUJMElSWoswQlMsQmKOVl39moduEQff7zP-oXsZJgjQ
Cites_doi 10.1007/978-3-319-10590-1_38
10.1023/B:VISI.0000029664.99615.94
10.1109/CVPR.2019.01300
10.1109/CVPR.2011.5995464
10.1007/s11263-007-0107-3
10.1109/ICCV.2019.00296
10.1109/CVPR.2016.572
10.1109/CVPR46437.2021.00326
10.1007/s10044-017-0611-1
10.1007/978-3-319-10605-2_18
10.1109/CVPR.2016.445
10.1109/ICCV.2019.00447
10.1109/CVPR.2015.7298949
10.1177/0278364914561101
10.1007/978-3-319-16817-3_13
10.1007/978-3-319-46604-0_48
10.1109/ICCV.2019.00762
10.1109/CVPR.2009.5206587
10.1109/CVPR42600.2020.00265
10.5244/C.26.76
10.1109/ICCVW.2011.6130230
10.1109/ICRA40945.2020.9196607
10.1007/978-3-319-10602-1_48
10.1016/j.patcog.2017.09.013
10.1109/ICCV.2015.336
10.1109/ICCV.2015.243
10.1109/CVPR.2018.00897
10.1109/CVPR.2013.96
10.1109/CVPR46437.2021.01392
10.1109/ICCV.2017.254
10.1109/TPAMI.2018.2846566
10.1109/CVPR.2008.4587635
10.1007/978-3-642-33718-5_2
10.3169/mta.4.251
10.1109/CVPR.2010.5540039
10.1109/TVCG.2014.27
10.1109/3DV.2017.00028
10.1109/CVPR.2015.7298790
10.1109/CVPR.2008.4587784
10.1109/CVPR.2016.175
10.1109/ICCV.2017.75
10.1145/358669.358692
10.1109/ICCV.2017.374
10.15607/RSS.2015.XI.037
10.1109/CVPR42600.2020.01200
10.1109/TRO.2015.2496823
10.1109/3DV50981.2020.00058
10.1109/TPAMI.2019.2915068
10.1109/ICCV.2019.00013
10.1007/s11263-017-1016-8
10.1109/TPAMI.2016.2611662
10.1109/CVPR.2019.00828
10.1109/CVPR.2019.00578
10.1109/ICCVW.2017.113
10.1109/TPAMI.2007.70787
10.4324/9781410607034
10.1109/CVPR.2019.00482
10.1109/CVPR.2017.346
10.1109/ISWC.2008.4911577
10.1007/978-3-030-58565-5_43
10.1007/s11263-020-01399-8
10.1109/ICCV.2015.240
10.1023/A:1008854305733
10.1109/CVPR.2017.736
10.1109/CVPR.2017.598
10.1109/CVPR.2007.383150
10.1109/CVPR.2007.383266
10.1109/ICCV.2019.00266
10.1109/CVPR.2011.5995610
10.1109/3DV.2019.00063
10.1109/CVPR.2018.00489
10.1109/CVPR.2013.377
10.1109/TPAMI.2019.2941876
10.1109/CVPR.2007.383172
10.1007/978-3-319-25781-5
10.1109/CVPR.2018.00752
10.1109/ICCV48922.2021.00616
10.1109/ICCV.2003.1238663
10.1109/CVPR.2013.207
10.1109/CVPR.2012.6248018
10.1145/1873951.1873973
10.1109/ICRA.2019.8793949
10.1109/CVPR46437.2021.00187
10.1109/CVPR.2018.00277
10.1109/ICCV.2019.00521
10.1007/978-3-642-15561-1_19
10.1177/0278364916679498
10.5244/C.26.95
10.1109/ISMAR.2009.5336494
10.1109/CVPR.2018.00598
10.1007/978-3-030-01264-9_46
10.1109/ICCV.2017.322
10.1145/1526709.1526812
10.1109/ICCV.2013.350
10.1007/978-3-642-15552-9_57
10.1109/3DPVT.2006.80
10.1007/978-3-642-15549-9_54
10.1109/ICCV.2017.286
10.1109/CVPR46437.2021.00324
10.1109/CVPR.2017.156
10.1109/ICRA.2017.7989598
10.1109/TPAMI.2015.2409868
10.1109/CVPR.2019.00342
10.1109/TPAMI.2017.2667665
10.1109/CVPR.2017.694
10.1007/978-3-642-33709-3_55
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11263-022-01615-7
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1573-1405
EndPage 1836
ExternalDocumentID 10_1007_s11263_022_01615_7
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
QF4
QM1
QN7
QO4
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XFK
YLTOR
Z45
Z5O
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8P
Z8Q
Z8R
Z8S
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
PQBZA
ID FETCH-LOGICAL-c1577-fbc82621d7862818b467fbbf8077628166dd858c9ddc3a06f93f79c45c453a6b3
IEDL.DBID AGYKE
ISSN 0920-5691
IngestDate Thu Sep 12 16:55:22 EDT 2024
Sat Dec 16 12:05:33 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Benchmark
Place recognition
Landmark retrieval
Visual localization
Image retrieval
Camera pose estimation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1577-fbc82621d7862818b467fbbf8077628166dd858c9ddc3a06f93f79c45c453a6b3
ORCID 0000-0001-9760-4553
0000-0003-0600-9164
0000-0002-4223-3983
PageCount 26
ParticipantIDs crossref_primary_10_1007_s11263_022_01615_7
springer_journals_10_1007_s11263_022_01615_7
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of computer vision
PublicationTitleAbbrev Int J Comput Vis
PublicationYear 2022
Publisher Springer US
Publisher_xml – name: Springer US
References Babenko, A., & Lempitsky, V. (2015). Aggregating deep convolutional features for image retrieval. In ICCV.
RadenovićFToliasGChumOFine-tuning CNN image retrieval with no human annotationIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)20194171655166810.1109/TPAMI.2018.2846566
RazavianASullivanJCarlssonSMakiAVisual instance retrieval with deep convolutional networksITE Transactions on Media Technology and Applications20154325125810.3169/mta.4.251
Sattler, T., Weyand, T., Leibe, B., & Kobbelt, L. (2012). Image retrieval for image-based localization revisited. In BMVC.
Sattler, T., Zhou, Q., Pollefeys, M., & Leal-Taixé, L. (2019). Understanding the limitations of CNN-based absolute camera pose regression. In CVPR.
Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D., Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., & Pajdla, T. (2018). Benchmarking 6DoF outdoor visual localization in changing conditions. In CVPR.
Humenberger, M., Cabon, Y., Guerin, N., Morat, J., Revaud, J., Rerole, P., Pion, N., de Souza, C., Leroy, V., & Csurka, G. (2020). Robust image retrieval-based visual localization using Kapture. arXiv:2007.13867
Yang, L., Bai, Z., Tang, C., Li, H., Furukawa, Y., & Tan, P. (2019). SANet: Scene agnostic network for camera localization. In ICCV.
Zamir, A., Hakeem, A., Gool, L., Shah, M., & Richard, S. (2016). Large-scale visual geo-localization. In Advances in computer vision and pattern recognition. Springer.
Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In CVPR.
Balntas, V., Li, S., & Prisacariu, V. (2018). RelocNet: Continuous metric learning relocalisation using neural nets. In ECCV.
Brachmann, E., & Rother, C. (2019). Expert sample consensus applied to camera re-localization. In ICCV.
Zamir, A. R., & Shah, M. (2010). Accurate image localization based on google maps street view. In ECCV.
Ding, M., Wang, Z., Sun, J., Shi, J., & Luo, P. (2019). CamNet: Coarse-to-fine retrieval for camera re-localization. In ICCV.
Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural codes for image retrieval. In ECCV.
VenturaJArthCReitmayrGSchmalstiegDGlobal localization from monocular SLAM on a mobile phoneIEEE Transactions on Visualization and Computer Graphics201420453153910.1109/TVCG.2014.27
Cavallari, T., Bertinetto, L., Mukhoti, J., Torr, P., & Golodetz, S. (2017). Let’s take this online: Adapting scene coordinate regression network predictions for online RGB-D camera relocalisation. In 3DV.
Chen, D., Baatz, G., Köser, K., Tsai, S., Vedantham, R., Pylvänäinen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B., & Grzeszczuk, R. (2011). City-scale landmark identification on mobile devices. In CVPR.
Avrithis, Y., Kalantidis, Y., Tolias, G., & Spyrou, E. (2010). Retrieving landmark and non-landmark images from community photo collections. In ACMMM.
Arandjelović, R., & Zisserman, A. (2014) DisLocation: Scalable descriptor distinctiveness for location recognition. In ACCV (pp. 188–204). Springer.
LuFMiliosEGlobally consistent range scan alignment for environment mappingAutonomous Robots199743333410.1023/A:1008854305733
Sivic, J., & Zisserman, A. (2003). Video Google: A text retrieval approach to object matching in videos. In ICCV.
Tang, S., Tang, C., Huang, R., Zhu, S., & Tan, P. (2021). Learning camera localization via dense scene matching. In CVPR.
Larsson, V., Kukelova, Z., & Zheng, Y. (2017). Making minimal solvers for absolute pose estimation compact and robust. In ICCV.
Arandjelović, R., Gronát, P., Torii, A., Pajdla, T., & Sivic, J. (2016). NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR.
Sattler, T., Havlena, M., Radenović, F., Schindler, K., & Pollefeys, M. (2015). Hyperpoints and fine vocabularies for large-scale location recognition. In ICCV.
Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A convolutional network for real-time 6-DOF camera relocalization. In ICCV.
Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T. (2019). D2-Net: A trainable CNN for joint description and detection of local features. In CVPR
Weinzaepfel, P., Csurka, G., Cabon, Y., & Humenberger, M. (2019). Visual localization by learning objects-of-interest dense match regression. In CVPR.
Arandjelović, R., & Zisserman, A. (2012). Three things everyone should know to improve object retrieval. In CVPR.
ToriiAArandjelovićRSivicJOkutomiMPajdlaT24/7 Place recognition by view synthesisIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)201840225727110.1109/TPAMI.2017.2667665
ToliasGJégouHVisual query expansion with or without geometry: Refining local descriptors by feature aggregationComputer Vision and Image Understanding (CVIU)2014471034663476
He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In ICCV.
LimHSinhaSCohenMUyttendaeleMKimHReal-time monocular image-based 6-DoF localizationInternational Journal of Robotics Research2015344–547649210.1177/0278364914561101
Hausler, S., Garg, S., Xu, M., Milford, M., & Fischer, T. (2021). Patch-NetVLAD: Multi-scale fusion of locally-global descriptors for place recognition. In CVPR.
Myers, J., & Well, A. (2003). Research design and statistical analysis. Lawrence Erlbaum Associates.
PearsonKNotes on regression and inheritance in the case of two parentsProceedings of the Royal Society of London198558240242
Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., & Siegwart, R. (2015). Get out of my Lab: Large-scale, real-time visual-inertial localization. In RSS.
ChumOMatasJOptimal randomized RANSACIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)20083081472148210.1109/TPAMI.2007.70787
Zhang, W., & Kosecka, J. (2006). Image based localization in urban environments. In International symposium on 3D data processing, visualization, and transmission.
Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabularies for image categorization. In CVPR.
Lebeda, K., Matas, J., & Chum, O. (2012). Fixing the locally optimized RANSAC. In BMVC.
SnavelyNSeitzSSzeliskiRModeling the world from internet photo collectionsInternational Journal of Computer Vision (IJCV)200880218921010.1007/s11263-007-0107-3
Li, Y., Snavely, N., Huttenlocher, D., & Fua, P. (2012) Worldwide pose estimation using 3D point clouds. In ECCV.
Liu, L., Li, H., & Dai, Y. (2019). Stochastic attraction-repulsion embedding for large scale image localization. In ICCV.
Brachmann, E., & Rother, C. (2018). Learning less is more—6D camera localization via 3D surface regression. In CVPR.
Pion, N., Humenberger, M., Csurka Khedari, G., Cabon, Y., & Torsten, S. (2020). Benchmarking image retrieval for visual localization. In 3DV.
Kukelova, Z., Bujnak, M., & Pajdla, T. (2013). Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In ICCV.
Revaud, J., Almazan, J., de Rezende, R. S., & de Souza, C. R. (2019a). Learning with average precision: Training image retrieval with a listwise loss. In ICCV.
GordoAAlmazánJRevaudJLarlusDEnd-to-end learning of deep visual representations for image retrievalInternational Journal of Computer Vision (IJCV)2017124237254368162510.1007/s11263-017-1016-8
Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2008). Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR.
Se, S., Lowe, D., & Little, J. (2002). Global localization using distinctive visual features. In IROS.
Cao, S., & Snavely, N. (2013). Graph-based discriminative learning for location recognition. In CVPR.
Revaud, J., Weinzaepfel, P., De Souza, C., & Humenberger, M. (2019b). R2D2: Reliable and repeatable detectors and descriptors. In NeurIPS.
Sun, X., Xie, Y., Luo, P., & Wang, L. (2017). A dataset for benchmarking image-based localization. In CVPR.
Schönberger, J., & Frahm, J. M. (2016). Structure-from-motion revisited. In CVPR.
BrejchaJČadíkMState-of-the-art in visual geo-localizationPattern Analysis and Applications (PAA)2017203613637367161310.1007/s10044-017-0611-1
Crandall, D., Backstrom, L., Huttenlocher, D., & Kleinberg, J. (2009). Mapping the world’s photos. In WWW.
Torii, A., Sivic, J., Okutomi, M., & Pajdla, T. (2015b). Visual place recognition with repetitive structures. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),37(11), 2346–2359.
Wijmans, E., & Furukawa, Y. (2017). Exploiting 2D floorplan for building-scale panorama RGB-D alignment. In CVPR.
Zheng, L., Zhao, Y., Wang, S., Wang, J., & Tian, Q. (2016). Good practice in CNN feature transfer. arXiv:1604.00133
Taira, H., Rocco, I., Sedlar, J., Okutomi, M., Sivic, J., Pajdla, T., Sattler, T., & Torii, A. (2019b). Is This the Right Place? Geometric-semantic pose verification for indoor visual localization. In ICCV.
Tolias, G., Sicre, R., & Jégou, H. (2016). Particular object retrieval with integral maxpooling of CNN activations. In ICLR.
Heng, L., Choi, B., Cui, Z., Geppert, M., Hu, S., Kuan, B., Liu, P., Nguyen, R., Yeo, Y., Geiger, A., Lee, G., Pollefeys, M., & Sattler, T. (2019). Project AutoVision: Localization and 3D scene perception for an autonomous vehicle with a multi-camera system. In ICRA.
Noh, H., Araujo, A., Sim, J., Weyand, T., & Han, B. (2017) Large-scale image retrieval with attentive deep local features. In ICCV.
Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., & Akihiko, T. (2019a). InLoc: Indoor visual localization with dense matching and view synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). (Early Acces).
Brachmann, E., Humenberger, M., Rother, C., & Sattler, T. (2021). On the limits of pseudo ground truth in visual camera re-localisation. In ICCV.
Kalantidis, Y., Mellina, C., & Osindero, S. (2016). Cross-dimensional Weighting for aggregated deep convolutional features. In ECCV Workshops.
Jégou, H., Douze, M., Schmid, C., &
M Fischler (1615_CR29) 1981; 24
F Radenović (1615_CR78) 2019; 41
S Lowry (1615_CR63) 2016; 32
1615_CR22
1615_CR24
1615_CR23
1615_CR20
1615_CR26
1615_CR25
1615_CR28
1615_CR27
J Ventura (1615_CR110) 2014; 20
A Razavian (1615_CR79) 2015; 4
J Brejcha (1615_CR14) 2017; 20
1615_CR9
1615_CR7
1615_CR8
1615_CR5
1615_CR6
1615_CR3
1615_CR11
1615_CR99
1615_CR4
1615_CR10
1615_CR98
1615_CR1
1615_CR13
1615_CR2
1615_CR12
1615_CR95
1615_CR94
A Torii (1615_CR106) 2018; 40
1615_CR96
1615_CR18
1615_CR15
1615_CR17
1615_CR16
1615_CR108
1615_CR104
1615_CR105
H Lim (1615_CR58) 2015; 34
O Chum (1615_CR21) 2008; 30
1615_CR107
1615_CR91
1615_CR90
1615_CR93
1615_CR92
1615_CR88
1615_CR89
1615_CR84
1615_CR83
1615_CR86
1615_CR85
1615_CR100
1615_CR101
1615_CR102
T Cavallari (1615_CR19) 2019; 42
1615_CR80
1615_CR82
1615_CR81
1615_CR77
1615_CR76
1615_CR73
1615_CR72
1615_CR74
1615_CR70
K Pearson (1615_CR71) 1985; 58
W Maddern (1615_CR66) 2017; 36
1615_CR65
1615_CR68
1615_CR67
1615_CR61
A Torii (1615_CR109) 2021; 43
1615_CR122
1615_CR123
1615_CR69
1615_CR121
1615_CR119
1615_CR115
N Piasco (1615_CR75) 2018; 74
N Snavely (1615_CR97) 2008; 80
1615_CR116
1615_CR117
1615_CR118
T Sattler (1615_CR87) 2017; 39
1615_CR60
1615_CR55
D Lowe (1615_CR62) 2004; 60
1615_CR54
1615_CR57
1615_CR56
1615_CR51
1615_CR50
1615_CR53
1615_CR52
1615_CR111
1615_CR112
1615_CR113
1615_CR114
1615_CR59
E Garcia-Fidalgo (1615_CR30) 2015; 64
G Tolias (1615_CR103) 2014; 47
Z Zhang (1615_CR120) 2021; 129
1615_CR44
1615_CR46
1615_CR45
1615_CR40
1615_CR42
1615_CR41
Y Kalantidis (1615_CR43) 2011; 74
1615_CR48
1615_CR47
1615_CR49
F Lu (1615_CR64) 1997; 4
A Gordo (1615_CR32) 2017; 124
1615_CR33
1615_CR35
1615_CR34
1615_CR31
1615_CR37
1615_CR36
1615_CR39
1615_CR38
References_xml – ident: 1615_CR8
  doi: 10.1007/978-3-319-10590-1_38
– volume: 60
  start-page: 91
  issue: 2
  year: 2004
  ident: 1615_CR62
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1023/B:VISI.0000029664.99615.94
  contributor:
    fullname: D Lowe
– ident: 1615_CR83
  doi: 10.1109/CVPR.2019.01300
– ident: 1615_CR47
  doi: 10.1109/CVPR.2011.5995464
– ident: 1615_CR38
– volume: 80
  start-page: 189
  issue: 2
  year: 2008
  ident: 1615_CR97
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-007-0107-3
  contributor:
    fullname: N Snavely
– ident: 1615_CR27
  doi: 10.1109/ICCV.2019.00296
– ident: 1615_CR1
  doi: 10.1109/CVPR.2016.572
– volume: 58
  start-page: 240
  year: 1985
  ident: 1615_CR71
  publication-title: Proceedings of the Royal Society of London
  contributor:
    fullname: K Pearson
– ident: 1615_CR82
– ident: 1615_CR84
  doi: 10.1109/CVPR46437.2021.00326
– volume: 20
  start-page: 613
  issue: 3
  year: 2017
  ident: 1615_CR14
  publication-title: Pattern Analysis and Applications (PAA)
  doi: 10.1007/s10044-017-0611-1
  contributor:
    fullname: J Brejcha
– ident: 1615_CR18
– ident: 1615_CR68
  doi: 10.1007/978-3-319-10605-2_18
– ident: 1615_CR92
  doi: 10.1109/CVPR.2016.445
– ident: 1615_CR101
  doi: 10.1109/ICCV.2019.00447
– ident: 1615_CR36
  doi: 10.1109/CVPR.2015.7298949
– ident: 1615_CR122
– ident: 1615_CR55
– volume: 34
  start-page: 476
  issue: 4–5
  year: 2015
  ident: 1615_CR58
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364914561101
  contributor:
    fullname: H Lim
– ident: 1615_CR4
  doi: 10.1007/978-3-319-16817-3_13
– ident: 1615_CR42
  doi: 10.1007/978-3-319-46604-0_48
– ident: 1615_CR12
  doi: 10.1109/ICCV.2019.00762
– ident: 1615_CR39
  doi: 10.1109/CVPR.2009.5206587
– ident: 1615_CR114
  doi: 10.1109/CVPR42600.2020.00265
– ident: 1615_CR89
  doi: 10.5244/C.26.76
– ident: 1615_CR108
  doi: 10.1109/ICCVW.2011.6130230
– ident: 1615_CR123
  doi: 10.1109/ICRA40945.2020.9196607
– ident: 1615_CR59
  doi: 10.1007/978-3-319-10602-1_48
– volume: 74
  start-page: 90
  issue: 2
  year: 2018
  ident: 1615_CR75
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2017.09.013
  contributor:
    fullname: N Piasco
– ident: 1615_CR45
  doi: 10.1109/ICCV.2015.336
– ident: 1615_CR85
  doi: 10.1109/ICCV.2015.243
– ident: 1615_CR24
– ident: 1615_CR88
  doi: 10.1109/CVPR.2018.00897
– ident: 1615_CR16
  doi: 10.1109/CVPR.2013.96
– ident: 1615_CR33
  doi: 10.1109/CVPR46437.2021.01392
– ident: 1615_CR50
  doi: 10.1109/ICCV.2017.254
– volume: 41
  start-page: 1655
  issue: 7
  year: 2019
  ident: 1615_CR78
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2018.2846566
  contributor:
    fullname: F Radenović
– ident: 1615_CR74
  doi: 10.1109/CVPR.2008.4587635
– ident: 1615_CR57
  doi: 10.1007/978-3-642-33718-5_2
– volume: 4
  start-page: 251
  issue: 3
  year: 2015
  ident: 1615_CR79
  publication-title: ITE Transactions on Media Technology and Applications
  doi: 10.3169/mta.4.251
  contributor:
    fullname: A Razavian
– ident: 1615_CR41
  doi: 10.1109/CVPR.2010.5540039
– volume: 47
  start-page: 3466
  issue: 10
  year: 2014
  ident: 1615_CR103
  publication-title: Computer Vision and Image Understanding (CVIU)
  contributor:
    fullname: G Tolias
– volume: 20
  start-page: 531
  issue: 4
  year: 2014
  ident: 1615_CR110
  publication-title: IEEE Transactions on Visualization and Computer Graphics
  doi: 10.1109/TVCG.2014.27
  contributor:
    fullname: J Ventura
– ident: 1615_CR25
  doi: 10.1109/3DV.2017.00028
– ident: 1615_CR105
  doi: 10.1109/CVPR.2015.7298790
– ident: 1615_CR34
  doi: 10.1109/CVPR.2008.4587784
– ident: 1615_CR7
– ident: 1615_CR86
  doi: 10.1109/CVPR.2016.175
– ident: 1615_CR61
– ident: 1615_CR112
  doi: 10.1109/ICCV.2017.75
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 1615_CR29
  publication-title: Communications of the ACM
  doi: 10.1145/358669.358692
  contributor:
    fullname: M Fischler
– ident: 1615_CR70
  doi: 10.1109/ICCV.2017.374
– ident: 1615_CR65
  doi: 10.15607/RSS.2015.XI.037
– ident: 1615_CR54
  doi: 10.1109/CVPR42600.2020.01200
– volume: 32
  start-page: 1
  issue: 1
  year: 2016
  ident: 1615_CR63
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2015.2496823
  contributor:
    fullname: S Lowry
– ident: 1615_CR76
  doi: 10.1109/3DV50981.2020.00058
– ident: 1615_CR81
– volume: 42
  start-page: 2465
  issue: 10
  year: 2019
  ident: 1615_CR19
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2019.2915068
  contributor:
    fullname: T Cavallari
– ident: 1615_CR116
  doi: 10.1109/ICCV.2019.00013
– volume: 124
  start-page: 237
  year: 2017
  ident: 1615_CR32
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-017-1016-8
  contributor:
    fullname: A Gordo
– volume: 39
  start-page: 1744
  issue: 9
  year: 2017
  ident: 1615_CR87
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2016.2611662
  contributor:
    fullname: T Sattler
– ident: 1615_CR28
  doi: 10.1109/CVPR.2019.00828
– ident: 1615_CR113
  doi: 10.1109/CVPR.2019.00578
– ident: 1615_CR51
  doi: 10.1109/ICCVW.2017.113
– volume: 30
  start-page: 1472
  issue: 8
  year: 2008
  ident: 1615_CR21
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2007.70787
  contributor:
    fullname: O Chum
– ident: 1615_CR69
  doi: 10.4324/9781410607034
– ident: 1615_CR26
  doi: 10.1109/CVPR.2019.00482
– ident: 1615_CR46
  doi: 10.1109/CVPR.2017.346
– ident: 1615_CR17
  doi: 10.1109/ISWC.2008.4911577
– ident: 1615_CR15
  doi: 10.1007/978-3-030-58565-5_43
– volume: 129
  start-page: 821
  year: 2021
  ident: 1615_CR120
  publication-title: International Journal of Computer Vision (IJCV)
  doi: 10.1007/s11263-020-01399-8
  contributor:
    fullname: Z Zhang
– ident: 1615_CR121
  doi: 10.1109/ICCV.2015.240
– volume: 4
  start-page: 333
  year: 1997
  ident: 1615_CR64
  publication-title: Autonomous Robots
  doi: 10.1023/A:1008854305733
  contributor:
    fullname: F Lu
– ident: 1615_CR93
  doi: 10.1109/CVPR.2017.736
– ident: 1615_CR98
  doi: 10.1109/CVPR.2017.598
– ident: 1615_CR91
  doi: 10.1109/CVPR.2007.383150
– volume: 74
  start-page: 3121
  issue: 9
  year: 2011
  ident: 1615_CR43
  publication-title: Multimedia Tools and Applications (MTA)
  contributor:
    fullname: Y Kalantidis
– ident: 1615_CR72
  doi: 10.1109/CVPR.2007.383266
– ident: 1615_CR60
  doi: 10.1109/ICCV.2019.00266
– ident: 1615_CR20
  doi: 10.1109/CVPR.2011.5995610
– ident: 1615_CR31
  doi: 10.1109/3DV.2019.00063
– ident: 1615_CR11
  doi: 10.1109/CVPR.2018.00489
– ident: 1615_CR95
  doi: 10.1109/CVPR.2013.377
– volume: 43
  start-page: 814
  issue: 3
  year: 2021
  ident: 1615_CR109
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2019.2941876
  contributor:
    fullname: A Torii
– ident: 1615_CR73
  doi: 10.1109/CVPR.2007.383172
– ident: 1615_CR117
  doi: 10.1007/978-3-319-25781-5
– ident: 1615_CR99
  doi: 10.1109/CVPR.2018.00752
– ident: 1615_CR104
– ident: 1615_CR10
  doi: 10.1109/ICCV48922.2021.00616
– ident: 1615_CR96
  doi: 10.1109/ICCV.2003.1238663
– ident: 1615_CR3
  doi: 10.1109/CVPR.2013.207
– ident: 1615_CR2
  doi: 10.1109/CVPR.2012.6248018
– ident: 1615_CR6
  doi: 10.1145/1873951.1873973
– ident: 1615_CR37
  doi: 10.1109/ICRA.2019.8793949
– ident: 1615_CR102
  doi: 10.1109/CVPR46437.2021.00187
– ident: 1615_CR13
  doi: 10.1109/CVPR.2018.00277
– ident: 1615_CR80
  doi: 10.1109/ICCV.2019.00521
– ident: 1615_CR94
– ident: 1615_CR118
  doi: 10.1007/978-3-642-15561-1_19
– volume: 36
  start-page: 3
  issue: 1
  year: 2017
  ident: 1615_CR66
  publication-title: International Journal of Robotics Research
  doi: 10.1177/0278364916679498
  contributor:
    fullname: W Maddern
– ident: 1615_CR52
  doi: 10.5244/C.26.95
– ident: 1615_CR5
  doi: 10.1109/ISMAR.2009.5336494
– ident: 1615_CR77
  doi: 10.1109/CVPR.2018.00598
– ident: 1615_CR9
  doi: 10.1007/978-3-030-01264-9_46
– ident: 1615_CR35
  doi: 10.1109/ICCV.2017.322
– ident: 1615_CR22
  doi: 10.1145/1526709.1526812
– ident: 1615_CR49
  doi: 10.1109/ICCV.2013.350
– volume: 64
  start-page: 1
  issue: 2
  year: 2015
  ident: 1615_CR30
  publication-title: Robotics and Autonomous Systems (RAS)
  contributor:
    fullname: E Garcia-Fidalgo
– ident: 1615_CR56
  doi: 10.1007/978-3-642-15552-9_57
– ident: 1615_CR23
– ident: 1615_CR119
  doi: 10.1109/3DPVT.2006.80
– ident: 1615_CR48
  doi: 10.1007/978-3-642-15549-9_54
– ident: 1615_CR111
  doi: 10.1109/ICCV.2017.286
– ident: 1615_CR53
  doi: 10.1109/CVPR46437.2021.00324
– ident: 1615_CR100
  doi: 10.1109/CVPR.2018.00752
– ident: 1615_CR115
  doi: 10.1109/CVPR.2017.156
– ident: 1615_CR67
  doi: 10.1109/ICRA.2017.7989598
– ident: 1615_CR107
  doi: 10.1109/TPAMI.2015.2409868
– ident: 1615_CR90
  doi: 10.1109/CVPR.2019.00342
– volume: 40
  start-page: 257
  issue: 2
  year: 2018
  ident: 1615_CR106
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
  doi: 10.1109/TPAMI.2017.2667665
  contributor:
    fullname: A Torii
– ident: 1615_CR44
  doi: 10.1109/CVPR.2017.694
– ident: 1615_CR40
  doi: 10.1007/978-3-642-33709-3_55
SSID ssj0002823
Score 2.5331554
Snippet Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality....
SourceID crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1811
SubjectTerms Artificial Intelligence
Computer Imaging
Computer Science
Image Processing and Computer Vision
Pattern Recognition
Pattern Recognition and Graphics
S.I. : 3D Computer Vision
Vision
Subtitle An Exhaustive Benchmark
Title Investigating the Role of Image Retrieval for Visual Localization
URI https://link.springer.com/article/10.1007/s11263-022-01615-7
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se_FifWJ9lD1405TmnT0G6cPnobRSTyH7ElETse3FX-9ssrEWRSjkkCxLCJPZmW-Y-WYAzhA06IMmdN9W1_K4DCwqPYa6TL0UAw4ecc1GvrsPhhPveupPlzzuoti9ykgWhnrJdbOdIuWoKwnQDVthDRqGeNqIB483vW8DjFFEOUEeIyM_oLbhyvz9llV_tJoMLXxMvwnjiqlTlpa8dBZz1uGfvxs3rvP527BlMCeJSyXZgQ2Z7ULT4E9iTvcMl6oRD9XaHsQ_-nBkTwTRIhnlr5Lkily9oSkio2IiF6orQfRLHp5nC7y91Q7SEDz3YdLvjS-Hlpm6YHHbD0NLMY4hh2OLEIMddOcMTaliTEW68Y-j04xCRH7EqRDcTbuBoq4KKfd8vNw0YO4B1LM8k4dABMY7LBLUdmTXY17EUuVKVAeGIETJ0G7BeSX75L1srpEs2yhrgSUosKQQWBK24KISbWIO2uyf7UfrbT-GTaf4O7oS9wTq84-FPEW8MWdtqEX9QdtoGT5NnPgL2gTKiw
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HvTiW6zPPXjTQJNsstljEUurbQ-lld6W7EsETcW0_9_ZdGMtiCDkEJZlDzO7M98wM98A3CBocA9NO97WOKDKpAE3VOJd5jTHgENlynUjD4Zpd0Ifp8nUN4WVdbV7nZKsLPWq2S2MqpyjKyVAPxywTdhy_OqOMX8Stb_tLwYRywHyGBglKQ99q8zvZ6y7o_VcaOViOvuw67EhaS-VeQAbpjiEPY8TiX-FJS7VoxjqtSNo_-DLKF4Iojoymr0ZMrOk944mg4yqyVl4rQiiVPL8Wi7wt-8cmW_EPIZJ52F83w38dIRAhQljgZUKQ4Mo1AyDEnS7Ek2eldJmjqAnculArbMkU1xrFeet1PLYMq5ogl-cpzI-gUYxK8wpEI1xicw0DyPTopJmMrexQbVJBAvWsLAJt7WQxMeSBEOs6I6dSAWKVFQiFawJd7UchX8Q5R_bz_63_Rq2u-NBX_R7w6dz2IkqXbrq2QtozD8X5hIxwlxeVVfiC-M6r6M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BfFifWJ97sGbpm2SzetYtLW1tUixUk8h-xJR02Lbi7_e2TxsKyKIkENYliWZnd35hpn5BuAMQYM-aELzttoG5dI1AkkZ6nJAI3Q4uM91NfJtz20N6M3QGS5U8SfZ7nlIMq1p0CxN8bQ6Fqo6L3wzrST-qNMK0CYb3ioUqWZGKkCxfv3YaXzdxuhSpO3k0U1y3MDMCmd-XmXZOC1HRhOD0yxBlH9qmmfyUplNWYV_fGNx_M-_bMJGhkZJPVWfLViR8TaUMmRKsnM_waG8-UM-tgP1BYaO-IkgjiT90askI0Xab3hJkX7SqwsVmSAuJg_Pkxm-drXpzEo_d2HQbNxftoysH4PBTcfzDMU4OiOWKTx0g9DQM7xkFWPK15RAlg5ACuE7Pg-E4HZUc1VgKy_g1MHHjlxm70EhHsVyH4hAT4j5IjAtWaOM-ixStkRFYQhPlPTMMpznGxGOU9qNcE6wrAUWosDCRGChV4aLXMxhdgQnv0w_-Nv0U1i7u2qG3XavcwjrVrJROl33CArT95k8RlAyZSeZ3n0Cv8vVdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Role+of+Image+Retrieval+for+Visual+Localization&rft.jtitle=International+journal+of+computer+vision&rft.au=Humenberger%2C+Martin&rft.au=Cabon%2C+Yohann&rft.au=Pion%2C+No%C3%A9&rft.au=Weinzaepfel%2C+Philippe&rft.date=2022-07-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=7&rft.spage=1811&rft.epage=1836&rft_id=info:doi/10.1007%2Fs11263-022-01615-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_022_01615_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon