Investigating the Role of Image Retrieval for Visual Localization An Exhaustive Benchmark
Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimat...
Saved in:
Published in | International journal of computer vision Vol. 130; no. 7; pp. 1811 - 1836 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at
https://github.com/naver/kapture-localization
. |
---|---|
AbstractList | Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality. State-of-the-art localization approaches often rely on image retrieval techniques for one of two purposes: (1) provide an approximate pose estimate or (2) determine which parts of the scene are potentially visible in a given query image. It is common practice to use state-of-the-art image retrieval algorithms for both of them. These algorithms are often trained for the goal of retrieving the same landmark under a large range of viewpoint changes which often differs from the requirements of visual localization. In order to investigate the consequences for visual localization, this paper focuses on understanding the role of image retrieval for multiple visual localization paradigms. First, we introduce a novel benchmark setup and compare state-of-the-art retrieval representations on multiple datasets using localization performance as metric. Second, we investigate several definitions of “ground truth” for image retrieval. Using these definitions as upper bounds for the visual localization paradigms, we show that there is still significant room for improvement. Third, using these tools and in-depth analysis, we show that retrieval performance on classical landmark retrieval or place recognition tasks correlates only for some but not all paradigms to localization performance. Finally, we analyze the effects of blur and dynamic scenes in the images. We conclude that there is a need for retrieval approaches specifically designed for localization paradigms. Our benchmark and evaluation protocols are available at
https://github.com/naver/kapture-localization
. |
Author | Weinzaepfel, Philippe Guérin, Nicolas Sattler, Torsten Lee, Donghwan Csurka, Gabriela Humenberger, Martin Cabon, Yohann Pion, Noé |
Author_xml | – sequence: 1 givenname: Martin orcidid: 0000-0003-0600-9164 surname: Humenberger fullname: Humenberger, Martin email: martin.humenberger@naverlabs.com organization: NAVER LABS Europe – sequence: 2 givenname: Yohann surname: Cabon fullname: Cabon, Yohann organization: NAVER LABS Europe – sequence: 3 givenname: Noé surname: Pion fullname: Pion, Noé organization: NAVER LABS Europe – sequence: 4 givenname: Philippe orcidid: 0000-0002-4223-3983 surname: Weinzaepfel fullname: Weinzaepfel, Philippe organization: NAVER LABS Europe – sequence: 5 givenname: Donghwan surname: Lee fullname: Lee, Donghwan organization: NAVER LABS – sequence: 6 givenname: Nicolas surname: Guérin fullname: Guérin, Nicolas organization: NAVER LABS Europe – sequence: 7 givenname: Torsten orcidid: 0000-0001-9760-4553 surname: Sattler fullname: Sattler, Torsten organization: Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague – sequence: 8 givenname: Gabriela surname: Csurka fullname: Csurka, Gabriela organization: NAVER LABS Europe |
BookMark | eNp9kN1KwzAUgINMsJu-gFd9gehJsibp5Rj-DAaCqLchTZPa0SWSdAN9erPVa-HA-eF8h8M3RzMfvEXolsAdARD3iRDKGQZKMRBOKiwuUEEqwTBZQjVDBdQUcMVrcoXmKe0AgErKCrTa-KNNY9_psfddOX7a8jUMtgyu3Ox1lzs7xt4e9VC6EMuPPh1yuQ1GD_1PZoK_RpdOD8ne_OUFen98eFs_4-3L02a92mKT_xDYNUZSTkkrJKeSyGbJhWsaJ0GI04DztpWVNHXbGqaBu5o5UZtllYNp3rAFotNdE0NK0Tr1Ffu9jt-KgDpJUJMElSWoswQlMsQmKOVl39moduEQff7zP-oXsZJgjQ |
Cites_doi | 10.1007/978-3-319-10590-1_38 10.1023/B:VISI.0000029664.99615.94 10.1109/CVPR.2019.01300 10.1109/CVPR.2011.5995464 10.1007/s11263-007-0107-3 10.1109/ICCV.2019.00296 10.1109/CVPR.2016.572 10.1109/CVPR46437.2021.00326 10.1007/s10044-017-0611-1 10.1007/978-3-319-10605-2_18 10.1109/CVPR.2016.445 10.1109/ICCV.2019.00447 10.1109/CVPR.2015.7298949 10.1177/0278364914561101 10.1007/978-3-319-16817-3_13 10.1007/978-3-319-46604-0_48 10.1109/ICCV.2019.00762 10.1109/CVPR.2009.5206587 10.1109/CVPR42600.2020.00265 10.5244/C.26.76 10.1109/ICCVW.2011.6130230 10.1109/ICRA40945.2020.9196607 10.1007/978-3-319-10602-1_48 10.1016/j.patcog.2017.09.013 10.1109/ICCV.2015.336 10.1109/ICCV.2015.243 10.1109/CVPR.2018.00897 10.1109/CVPR.2013.96 10.1109/CVPR46437.2021.01392 10.1109/ICCV.2017.254 10.1109/TPAMI.2018.2846566 10.1109/CVPR.2008.4587635 10.1007/978-3-642-33718-5_2 10.3169/mta.4.251 10.1109/CVPR.2010.5540039 10.1109/TVCG.2014.27 10.1109/3DV.2017.00028 10.1109/CVPR.2015.7298790 10.1109/CVPR.2008.4587784 10.1109/CVPR.2016.175 10.1109/ICCV.2017.75 10.1145/358669.358692 10.1109/ICCV.2017.374 10.15607/RSS.2015.XI.037 10.1109/CVPR42600.2020.01200 10.1109/TRO.2015.2496823 10.1109/3DV50981.2020.00058 10.1109/TPAMI.2019.2915068 10.1109/ICCV.2019.00013 10.1007/s11263-017-1016-8 10.1109/TPAMI.2016.2611662 10.1109/CVPR.2019.00828 10.1109/CVPR.2019.00578 10.1109/ICCVW.2017.113 10.1109/TPAMI.2007.70787 10.4324/9781410607034 10.1109/CVPR.2019.00482 10.1109/CVPR.2017.346 10.1109/ISWC.2008.4911577 10.1007/978-3-030-58565-5_43 10.1007/s11263-020-01399-8 10.1109/ICCV.2015.240 10.1023/A:1008854305733 10.1109/CVPR.2017.736 10.1109/CVPR.2017.598 10.1109/CVPR.2007.383150 10.1109/CVPR.2007.383266 10.1109/ICCV.2019.00266 10.1109/CVPR.2011.5995610 10.1109/3DV.2019.00063 10.1109/CVPR.2018.00489 10.1109/CVPR.2013.377 10.1109/TPAMI.2019.2941876 10.1109/CVPR.2007.383172 10.1007/978-3-319-25781-5 10.1109/CVPR.2018.00752 10.1109/ICCV48922.2021.00616 10.1109/ICCV.2003.1238663 10.1109/CVPR.2013.207 10.1109/CVPR.2012.6248018 10.1145/1873951.1873973 10.1109/ICRA.2019.8793949 10.1109/CVPR46437.2021.00187 10.1109/CVPR.2018.00277 10.1109/ICCV.2019.00521 10.1007/978-3-642-15561-1_19 10.1177/0278364916679498 10.5244/C.26.95 10.1109/ISMAR.2009.5336494 10.1109/CVPR.2018.00598 10.1007/978-3-030-01264-9_46 10.1109/ICCV.2017.322 10.1145/1526709.1526812 10.1109/ICCV.2013.350 10.1007/978-3-642-15552-9_57 10.1109/3DPVT.2006.80 10.1007/978-3-642-15549-9_54 10.1109/ICCV.2017.286 10.1109/CVPR46437.2021.00324 10.1109/CVPR.2017.156 10.1109/ICRA.2017.7989598 10.1109/TPAMI.2015.2409868 10.1109/CVPR.2019.00342 10.1109/TPAMI.2017.2667665 10.1109/CVPR.2017.694 10.1007/978-3-642-33709-3_55 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11263-022-01615-7 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1573-1405 |
EndPage | 1836 |
ExternalDocumentID | 10_1007_s11263_022_01615_7 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 QF4 QM1 QN7 QO4 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XFK YLTOR Z45 Z5O Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8P Z8Q Z8R Z8S Z8T Z8W Z92 ZMTXR ~8M ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 PQBZA |
ID | FETCH-LOGICAL-c1577-fbc82621d7862818b467fbbf8077628166dd858c9ddc3a06f93f79c45c453a6b3 |
IEDL.DBID | AGYKE |
ISSN | 0920-5691 |
IngestDate | Thu Sep 12 16:55:22 EDT 2024 Sat Dec 16 12:05:33 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Benchmark Place recognition Landmark retrieval Visual localization Image retrieval Camera pose estimation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1577-fbc82621d7862818b467fbbf8077628166dd858c9ddc3a06f93f79c45c453a6b3 |
ORCID | 0000-0001-9760-4553 0000-0003-0600-9164 0000-0002-4223-3983 |
PageCount | 26 |
ParticipantIDs | crossref_primary_10_1007_s11263_022_01615_7 springer_journals_10_1007_s11263_022_01615_7 |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of computer vision |
PublicationTitleAbbrev | Int J Comput Vis |
PublicationYear | 2022 |
Publisher | Springer US |
Publisher_xml | – name: Springer US |
References | Babenko, A., & Lempitsky, V. (2015). Aggregating deep convolutional features for image retrieval. In ICCV. RadenovićFToliasGChumOFine-tuning CNN image retrieval with no human annotationIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)20194171655166810.1109/TPAMI.2018.2846566 RazavianASullivanJCarlssonSMakiAVisual instance retrieval with deep convolutional networksITE Transactions on Media Technology and Applications20154325125810.3169/mta.4.251 Sattler, T., Weyand, T., Leibe, B., & Kobbelt, L. (2012). Image retrieval for image-based localization revisited. In BMVC. Sattler, T., Zhou, Q., Pollefeys, M., & Leal-Taixé, L. (2019). Understanding the limitations of CNN-based absolute camera pose regression. In CVPR. Sattler, T., Maddern, W., Toft, C., Torii, A., Hammarstrand, L., Stenborg, E., Safari, D., Okutomi, M., Pollefeys, M., Sivic, J., Kahl, F., & Pajdla, T. (2018). Benchmarking 6DoF outdoor visual localization in changing conditions. In CVPR. Humenberger, M., Cabon, Y., Guerin, N., Morat, J., Revaud, J., Rerole, P., Pion, N., de Souza, C., Leroy, V., & Csurka, G. (2020). Robust image retrieval-based visual localization using Kapture. arXiv:2007.13867 Yang, L., Bai, Z., Tang, C., Li, H., Furukawa, Y., & Tan, P. (2019). SANet: Scene agnostic network for camera localization. In ICCV. Zamir, A., Hakeem, A., Gool, L., Shah, M., & Richard, S. (2016). Large-scale visual geo-localization. In Advances in computer vision and pattern recognition. Springer. Kneip, L., Scaramuzza, D., & Siegwart, R. (2011). A novel parametrization of the perspective-three-point problem for a direct computation of absolute camera position and orientation. In CVPR. Balntas, V., Li, S., & Prisacariu, V. (2018). RelocNet: Continuous metric learning relocalisation using neural nets. In ECCV. Brachmann, E., & Rother, C. (2019). Expert sample consensus applied to camera re-localization. In ICCV. Zamir, A. R., & Shah, M. (2010). Accurate image localization based on google maps street view. In ECCV. Ding, M., Wang, Z., Sun, J., Shi, J., & Luo, P. (2019). CamNet: Coarse-to-fine retrieval for camera re-localization. In ICCV. Babenko, A., Slesarev, A., Chigorin, A., & Lempitsky, V. (2014). Neural codes for image retrieval. In ECCV. VenturaJArthCReitmayrGSchmalstiegDGlobal localization from monocular SLAM on a mobile phoneIEEE Transactions on Visualization and Computer Graphics201420453153910.1109/TVCG.2014.27 Cavallari, T., Bertinetto, L., Mukhoti, J., Torr, P., & Golodetz, S. (2017). Let’s take this online: Adapting scene coordinate regression network predictions for online RGB-D camera relocalisation. In 3DV. Chen, D., Baatz, G., Köser, K., Tsai, S., Vedantham, R., Pylvänäinen, T., Roimela, K., Chen, X., Bach, J., Pollefeys, M., Girod, B., & Grzeszczuk, R. (2011). City-scale landmark identification on mobile devices. In CVPR. Avrithis, Y., Kalantidis, Y., Tolias, G., & Spyrou, E. (2010). Retrieving landmark and non-landmark images from community photo collections. In ACMMM. Arandjelović, R., & Zisserman, A. (2014) DisLocation: Scalable descriptor distinctiveness for location recognition. In ACCV (pp. 188–204). Springer. LuFMiliosEGlobally consistent range scan alignment for environment mappingAutonomous Robots199743333410.1023/A:1008854305733 Sivic, J., & Zisserman, A. (2003). Video Google: A text retrieval approach to object matching in videos. In ICCV. Tang, S., Tang, C., Huang, R., Zhu, S., & Tan, P. (2021). Learning camera localization via dense scene matching. In CVPR. Larsson, V., Kukelova, Z., & Zheng, Y. (2017). Making minimal solvers for absolute pose estimation compact and robust. In ICCV. Arandjelović, R., Gronát, P., Torii, A., Pajdla, T., & Sivic, J. (2016). NetVLAD: CNN architecture for weakly supervised place recognition. In CVPR. Sattler, T., Havlena, M., Radenović, F., Schindler, K., & Pollefeys, M. (2015). Hyperpoints and fine vocabularies for large-scale location recognition. In ICCV. Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A convolutional network for real-time 6-DOF camera relocalization. In ICCV. Dusmanu, M., Rocco, I., Pajdla, T., Pollefeys, M., Sivic, J., Torii, A., & Sattler, T. (2019). D2-Net: A trainable CNN for joint description and detection of local features. In CVPR Weinzaepfel, P., Csurka, G., Cabon, Y., & Humenberger, M. (2019). Visual localization by learning objects-of-interest dense match regression. In CVPR. Arandjelović, R., & Zisserman, A. (2012). Three things everyone should know to improve object retrieval. In CVPR. ToriiAArandjelovićRSivicJOkutomiMPajdlaT24/7 Place recognition by view synthesisIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)201840225727110.1109/TPAMI.2017.2667665 ToliasGJégouHVisual query expansion with or without geometry: Refining local descriptors by feature aggregationComputer Vision and Image Understanding (CVIU)2014471034663476 He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask R-CNN. In ICCV. LimHSinhaSCohenMUyttendaeleMKimHReal-time monocular image-based 6-DoF localizationInternational Journal of Robotics Research2015344–547649210.1177/0278364914561101 Hausler, S., Garg, S., Xu, M., Milford, M., & Fischer, T. (2021). Patch-NetVLAD: Multi-scale fusion of locally-global descriptors for place recognition. In CVPR. Myers, J., & Well, A. (2003). Research design and statistical analysis. Lawrence Erlbaum Associates. PearsonKNotes on regression and inheritance in the case of two parentsProceedings of the Royal Society of London198558240242 Lynen, S., Sattler, T., Bosse, M., Hesch, J., Pollefeys, M., & Siegwart, R. (2015). Get out of my Lab: Large-scale, real-time visual-inertial localization. In RSS. ChumOMatasJOptimal randomized RANSACIEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)20083081472148210.1109/TPAMI.2007.70787 Zhang, W., & Kosecka, J. (2006). Image based localization in urban environments. In International symposium on 3D data processing, visualization, and transmission. Perronnin, F., & Dance, C. (2007). Fisher kernels on visual vocabularies for image categorization. In CVPR. Lebeda, K., Matas, J., & Chum, O. (2012). Fixing the locally optimized RANSAC. In BMVC. SnavelyNSeitzSSzeliskiRModeling the world from internet photo collectionsInternational Journal of Computer Vision (IJCV)200880218921010.1007/s11263-007-0107-3 Li, Y., Snavely, N., Huttenlocher, D., & Fua, P. (2012) Worldwide pose estimation using 3D point clouds. In ECCV. Liu, L., Li, H., & Dai, Y. (2019). Stochastic attraction-repulsion embedding for large scale image localization. In ICCV. Brachmann, E., & Rother, C. (2018). Learning less is more—6D camera localization via 3D surface regression. In CVPR. Pion, N., Humenberger, M., Csurka Khedari, G., Cabon, Y., & Torsten, S. (2020). Benchmarking image retrieval for visual localization. In 3DV. Kukelova, Z., Bujnak, M., & Pajdla, T. (2013). Real-time solution to the absolute pose problem with unknown radial distortion and focal length. In ICCV. Revaud, J., Almazan, J., de Rezende, R. S., & de Souza, C. R. (2019a). Learning with average precision: Training image retrieval with a listwise loss. In ICCV. GordoAAlmazánJRevaudJLarlusDEnd-to-end learning of deep visual representations for image retrievalInternational Journal of Computer Vision (IJCV)2017124237254368162510.1007/s11263-017-1016-8 Philbin, J., Chum, O., Isard, M., Sivic, J., & Zisserman, A. (2008). Lost in quantization: Improving particular object retrieval in large scale image databases. In CVPR. Se, S., Lowe, D., & Little, J. (2002). Global localization using distinctive visual features. In IROS. Cao, S., & Snavely, N. (2013). Graph-based discriminative learning for location recognition. In CVPR. Revaud, J., Weinzaepfel, P., De Souza, C., & Humenberger, M. (2019b). R2D2: Reliable and repeatable detectors and descriptors. In NeurIPS. Sun, X., Xie, Y., Luo, P., & Wang, L. (2017). A dataset for benchmarking image-based localization. In CVPR. Schönberger, J., & Frahm, J. M. (2016). Structure-from-motion revisited. In CVPR. BrejchaJČadíkMState-of-the-art in visual geo-localizationPattern Analysis and Applications (PAA)2017203613637367161310.1007/s10044-017-0611-1 Crandall, D., Backstrom, L., Huttenlocher, D., & Kleinberg, J. (2009). Mapping the world’s photos. In WWW. Torii, A., Sivic, J., Okutomi, M., & Pajdla, T. (2015b). Visual place recognition with repetitive structures. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI),37(11), 2346–2359. Wijmans, E., & Furukawa, Y. (2017). Exploiting 2D floorplan for building-scale panorama RGB-D alignment. In CVPR. Zheng, L., Zhao, Y., Wang, S., Wang, J., & Tian, Q. (2016). Good practice in CNN feature transfer. arXiv:1604.00133 Taira, H., Rocco, I., Sedlar, J., Okutomi, M., Sivic, J., Pajdla, T., Sattler, T., & Torii, A. (2019b). Is This the Right Place? Geometric-semantic pose verification for indoor visual localization. In ICCV. Tolias, G., Sicre, R., & Jégou, H. (2016). Particular object retrieval with integral maxpooling of CNN activations. In ICLR. Heng, L., Choi, B., Cui, Z., Geppert, M., Hu, S., Kuan, B., Liu, P., Nguyen, R., Yeo, Y., Geiger, A., Lee, G., Pollefeys, M., & Sattler, T. (2019). Project AutoVision: Localization and 3D scene perception for an autonomous vehicle with a multi-camera system. In ICRA. Noh, H., Araujo, A., Sim, J., Weyand, T., & Han, B. (2017) Large-scale image retrieval with attentive deep local features. In ICCV. Taira, H., Okutomi, M., Sattler, T., Cimpoi, M., Pollefeys, M., Sivic, J., Pajdla, T., & Akihiko, T. (2019a). InLoc: Indoor visual localization with dense matching and view synthesis. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI). (Early Acces). Brachmann, E., Humenberger, M., Rother, C., & Sattler, T. (2021). On the limits of pseudo ground truth in visual camera re-localisation. In ICCV. Kalantidis, Y., Mellina, C., & Osindero, S. (2016). Cross-dimensional Weighting for aggregated deep convolutional features. In ECCV Workshops. Jégou, H., Douze, M., Schmid, C., & M Fischler (1615_CR29) 1981; 24 F Radenović (1615_CR78) 2019; 41 S Lowry (1615_CR63) 2016; 32 1615_CR22 1615_CR24 1615_CR23 1615_CR20 1615_CR26 1615_CR25 1615_CR28 1615_CR27 J Ventura (1615_CR110) 2014; 20 A Razavian (1615_CR79) 2015; 4 J Brejcha (1615_CR14) 2017; 20 1615_CR9 1615_CR7 1615_CR8 1615_CR5 1615_CR6 1615_CR3 1615_CR11 1615_CR99 1615_CR4 1615_CR10 1615_CR98 1615_CR1 1615_CR13 1615_CR2 1615_CR12 1615_CR95 1615_CR94 A Torii (1615_CR106) 2018; 40 1615_CR96 1615_CR18 1615_CR15 1615_CR17 1615_CR16 1615_CR108 1615_CR104 1615_CR105 H Lim (1615_CR58) 2015; 34 O Chum (1615_CR21) 2008; 30 1615_CR107 1615_CR91 1615_CR90 1615_CR93 1615_CR92 1615_CR88 1615_CR89 1615_CR84 1615_CR83 1615_CR86 1615_CR85 1615_CR100 1615_CR101 1615_CR102 T Cavallari (1615_CR19) 2019; 42 1615_CR80 1615_CR82 1615_CR81 1615_CR77 1615_CR76 1615_CR73 1615_CR72 1615_CR74 1615_CR70 K Pearson (1615_CR71) 1985; 58 W Maddern (1615_CR66) 2017; 36 1615_CR65 1615_CR68 1615_CR67 1615_CR61 A Torii (1615_CR109) 2021; 43 1615_CR122 1615_CR123 1615_CR69 1615_CR121 1615_CR119 1615_CR115 N Piasco (1615_CR75) 2018; 74 N Snavely (1615_CR97) 2008; 80 1615_CR116 1615_CR117 1615_CR118 T Sattler (1615_CR87) 2017; 39 1615_CR60 1615_CR55 D Lowe (1615_CR62) 2004; 60 1615_CR54 1615_CR57 1615_CR56 1615_CR51 1615_CR50 1615_CR53 1615_CR52 1615_CR111 1615_CR112 1615_CR113 1615_CR114 1615_CR59 E Garcia-Fidalgo (1615_CR30) 2015; 64 G Tolias (1615_CR103) 2014; 47 Z Zhang (1615_CR120) 2021; 129 1615_CR44 1615_CR46 1615_CR45 1615_CR40 1615_CR42 1615_CR41 Y Kalantidis (1615_CR43) 2011; 74 1615_CR48 1615_CR47 1615_CR49 F Lu (1615_CR64) 1997; 4 A Gordo (1615_CR32) 2017; 124 1615_CR33 1615_CR35 1615_CR34 1615_CR31 1615_CR37 1615_CR36 1615_CR39 1615_CR38 |
References_xml | – ident: 1615_CR8 doi: 10.1007/978-3-319-10590-1_38 – volume: 60 start-page: 91 issue: 2 year: 2004 ident: 1615_CR62 publication-title: International Journal of Computer Vision (IJCV) doi: 10.1023/B:VISI.0000029664.99615.94 contributor: fullname: D Lowe – ident: 1615_CR83 doi: 10.1109/CVPR.2019.01300 – ident: 1615_CR47 doi: 10.1109/CVPR.2011.5995464 – ident: 1615_CR38 – volume: 80 start-page: 189 issue: 2 year: 2008 ident: 1615_CR97 publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-007-0107-3 contributor: fullname: N Snavely – ident: 1615_CR27 doi: 10.1109/ICCV.2019.00296 – ident: 1615_CR1 doi: 10.1109/CVPR.2016.572 – volume: 58 start-page: 240 year: 1985 ident: 1615_CR71 publication-title: Proceedings of the Royal Society of London contributor: fullname: K Pearson – ident: 1615_CR82 – ident: 1615_CR84 doi: 10.1109/CVPR46437.2021.00326 – volume: 20 start-page: 613 issue: 3 year: 2017 ident: 1615_CR14 publication-title: Pattern Analysis and Applications (PAA) doi: 10.1007/s10044-017-0611-1 contributor: fullname: J Brejcha – ident: 1615_CR18 – ident: 1615_CR68 doi: 10.1007/978-3-319-10605-2_18 – ident: 1615_CR92 doi: 10.1109/CVPR.2016.445 – ident: 1615_CR101 doi: 10.1109/ICCV.2019.00447 – ident: 1615_CR36 doi: 10.1109/CVPR.2015.7298949 – ident: 1615_CR122 – ident: 1615_CR55 – volume: 34 start-page: 476 issue: 4–5 year: 2015 ident: 1615_CR58 publication-title: International Journal of Robotics Research doi: 10.1177/0278364914561101 contributor: fullname: H Lim – ident: 1615_CR4 doi: 10.1007/978-3-319-16817-3_13 – ident: 1615_CR42 doi: 10.1007/978-3-319-46604-0_48 – ident: 1615_CR12 doi: 10.1109/ICCV.2019.00762 – ident: 1615_CR39 doi: 10.1109/CVPR.2009.5206587 – ident: 1615_CR114 doi: 10.1109/CVPR42600.2020.00265 – ident: 1615_CR89 doi: 10.5244/C.26.76 – ident: 1615_CR108 doi: 10.1109/ICCVW.2011.6130230 – ident: 1615_CR123 doi: 10.1109/ICRA40945.2020.9196607 – ident: 1615_CR59 doi: 10.1007/978-3-319-10602-1_48 – volume: 74 start-page: 90 issue: 2 year: 2018 ident: 1615_CR75 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2017.09.013 contributor: fullname: N Piasco – ident: 1615_CR45 doi: 10.1109/ICCV.2015.336 – ident: 1615_CR85 doi: 10.1109/ICCV.2015.243 – ident: 1615_CR24 – ident: 1615_CR88 doi: 10.1109/CVPR.2018.00897 – ident: 1615_CR16 doi: 10.1109/CVPR.2013.96 – ident: 1615_CR33 doi: 10.1109/CVPR46437.2021.01392 – ident: 1615_CR50 doi: 10.1109/ICCV.2017.254 – volume: 41 start-page: 1655 issue: 7 year: 2019 ident: 1615_CR78 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) doi: 10.1109/TPAMI.2018.2846566 contributor: fullname: F Radenović – ident: 1615_CR74 doi: 10.1109/CVPR.2008.4587635 – ident: 1615_CR57 doi: 10.1007/978-3-642-33718-5_2 – volume: 4 start-page: 251 issue: 3 year: 2015 ident: 1615_CR79 publication-title: ITE Transactions on Media Technology and Applications doi: 10.3169/mta.4.251 contributor: fullname: A Razavian – ident: 1615_CR41 doi: 10.1109/CVPR.2010.5540039 – volume: 47 start-page: 3466 issue: 10 year: 2014 ident: 1615_CR103 publication-title: Computer Vision and Image Understanding (CVIU) contributor: fullname: G Tolias – volume: 20 start-page: 531 issue: 4 year: 2014 ident: 1615_CR110 publication-title: IEEE Transactions on Visualization and Computer Graphics doi: 10.1109/TVCG.2014.27 contributor: fullname: J Ventura – ident: 1615_CR25 doi: 10.1109/3DV.2017.00028 – ident: 1615_CR105 doi: 10.1109/CVPR.2015.7298790 – ident: 1615_CR34 doi: 10.1109/CVPR.2008.4587784 – ident: 1615_CR7 – ident: 1615_CR86 doi: 10.1109/CVPR.2016.175 – ident: 1615_CR61 – ident: 1615_CR112 doi: 10.1109/ICCV.2017.75 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 1615_CR29 publication-title: Communications of the ACM doi: 10.1145/358669.358692 contributor: fullname: M Fischler – ident: 1615_CR70 doi: 10.1109/ICCV.2017.374 – ident: 1615_CR65 doi: 10.15607/RSS.2015.XI.037 – ident: 1615_CR54 doi: 10.1109/CVPR42600.2020.01200 – volume: 32 start-page: 1 issue: 1 year: 2016 ident: 1615_CR63 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2015.2496823 contributor: fullname: S Lowry – ident: 1615_CR76 doi: 10.1109/3DV50981.2020.00058 – ident: 1615_CR81 – volume: 42 start-page: 2465 issue: 10 year: 2019 ident: 1615_CR19 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) doi: 10.1109/TPAMI.2019.2915068 contributor: fullname: T Cavallari – ident: 1615_CR116 doi: 10.1109/ICCV.2019.00013 – volume: 124 start-page: 237 year: 2017 ident: 1615_CR32 publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-017-1016-8 contributor: fullname: A Gordo – volume: 39 start-page: 1744 issue: 9 year: 2017 ident: 1615_CR87 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) doi: 10.1109/TPAMI.2016.2611662 contributor: fullname: T Sattler – ident: 1615_CR28 doi: 10.1109/CVPR.2019.00828 – ident: 1615_CR113 doi: 10.1109/CVPR.2019.00578 – ident: 1615_CR51 doi: 10.1109/ICCVW.2017.113 – volume: 30 start-page: 1472 issue: 8 year: 2008 ident: 1615_CR21 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) doi: 10.1109/TPAMI.2007.70787 contributor: fullname: O Chum – ident: 1615_CR69 doi: 10.4324/9781410607034 – ident: 1615_CR26 doi: 10.1109/CVPR.2019.00482 – ident: 1615_CR46 doi: 10.1109/CVPR.2017.346 – ident: 1615_CR17 doi: 10.1109/ISWC.2008.4911577 – ident: 1615_CR15 doi: 10.1007/978-3-030-58565-5_43 – volume: 129 start-page: 821 year: 2021 ident: 1615_CR120 publication-title: International Journal of Computer Vision (IJCV) doi: 10.1007/s11263-020-01399-8 contributor: fullname: Z Zhang – ident: 1615_CR121 doi: 10.1109/ICCV.2015.240 – volume: 4 start-page: 333 year: 1997 ident: 1615_CR64 publication-title: Autonomous Robots doi: 10.1023/A:1008854305733 contributor: fullname: F Lu – ident: 1615_CR93 doi: 10.1109/CVPR.2017.736 – ident: 1615_CR98 doi: 10.1109/CVPR.2017.598 – ident: 1615_CR91 doi: 10.1109/CVPR.2007.383150 – volume: 74 start-page: 3121 issue: 9 year: 2011 ident: 1615_CR43 publication-title: Multimedia Tools and Applications (MTA) contributor: fullname: Y Kalantidis – ident: 1615_CR72 doi: 10.1109/CVPR.2007.383266 – ident: 1615_CR60 doi: 10.1109/ICCV.2019.00266 – ident: 1615_CR20 doi: 10.1109/CVPR.2011.5995610 – ident: 1615_CR31 doi: 10.1109/3DV.2019.00063 – ident: 1615_CR11 doi: 10.1109/CVPR.2018.00489 – ident: 1615_CR95 doi: 10.1109/CVPR.2013.377 – volume: 43 start-page: 814 issue: 3 year: 2021 ident: 1615_CR109 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) doi: 10.1109/TPAMI.2019.2941876 contributor: fullname: A Torii – ident: 1615_CR73 doi: 10.1109/CVPR.2007.383172 – ident: 1615_CR117 doi: 10.1007/978-3-319-25781-5 – ident: 1615_CR99 doi: 10.1109/CVPR.2018.00752 – ident: 1615_CR104 – ident: 1615_CR10 doi: 10.1109/ICCV48922.2021.00616 – ident: 1615_CR96 doi: 10.1109/ICCV.2003.1238663 – ident: 1615_CR3 doi: 10.1109/CVPR.2013.207 – ident: 1615_CR2 doi: 10.1109/CVPR.2012.6248018 – ident: 1615_CR6 doi: 10.1145/1873951.1873973 – ident: 1615_CR37 doi: 10.1109/ICRA.2019.8793949 – ident: 1615_CR102 doi: 10.1109/CVPR46437.2021.00187 – ident: 1615_CR13 doi: 10.1109/CVPR.2018.00277 – ident: 1615_CR80 doi: 10.1109/ICCV.2019.00521 – ident: 1615_CR94 – ident: 1615_CR118 doi: 10.1007/978-3-642-15561-1_19 – volume: 36 start-page: 3 issue: 1 year: 2017 ident: 1615_CR66 publication-title: International Journal of Robotics Research doi: 10.1177/0278364916679498 contributor: fullname: W Maddern – ident: 1615_CR52 doi: 10.5244/C.26.95 – ident: 1615_CR5 doi: 10.1109/ISMAR.2009.5336494 – ident: 1615_CR77 doi: 10.1109/CVPR.2018.00598 – ident: 1615_CR9 doi: 10.1007/978-3-030-01264-9_46 – ident: 1615_CR35 doi: 10.1109/ICCV.2017.322 – ident: 1615_CR22 doi: 10.1145/1526709.1526812 – ident: 1615_CR49 doi: 10.1109/ICCV.2013.350 – volume: 64 start-page: 1 issue: 2 year: 2015 ident: 1615_CR30 publication-title: Robotics and Autonomous Systems (RAS) contributor: fullname: E Garcia-Fidalgo – ident: 1615_CR56 doi: 10.1007/978-3-642-15552-9_57 – ident: 1615_CR23 – ident: 1615_CR119 doi: 10.1109/3DPVT.2006.80 – ident: 1615_CR48 doi: 10.1007/978-3-642-15549-9_54 – ident: 1615_CR111 doi: 10.1109/ICCV.2017.286 – ident: 1615_CR53 doi: 10.1109/CVPR46437.2021.00324 – ident: 1615_CR100 doi: 10.1109/CVPR.2018.00752 – ident: 1615_CR115 doi: 10.1109/CVPR.2017.156 – ident: 1615_CR67 doi: 10.1109/ICRA.2017.7989598 – ident: 1615_CR107 doi: 10.1109/TPAMI.2015.2409868 – ident: 1615_CR90 doi: 10.1109/CVPR.2019.00342 – volume: 40 start-page: 257 issue: 2 year: 2018 ident: 1615_CR106 publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) doi: 10.1109/TPAMI.2017.2667665 contributor: fullname: A Torii – ident: 1615_CR44 doi: 10.1109/CVPR.2017.694 – ident: 1615_CR40 doi: 10.1007/978-3-642-33709-3_55 |
SSID | ssj0002823 |
Score | 2.5331554 |
Snippet | Visual localization, i.e., camera pose estimation in a known scene, is a core component of technologies such as autonomous driving and augmented reality.... |
SourceID | crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1811 |
SubjectTerms | Artificial Intelligence Computer Imaging Computer Science Image Processing and Computer Vision Pattern Recognition Pattern Recognition and Graphics S.I. : 3D Computer Vision Vision |
Subtitle | An Exhaustive Benchmark |
Title | Investigating the Role of Image Retrieval for Visual Localization |
URI | https://link.springer.com/article/10.1007/s11263-022-01615-7 |
Volume | 130 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5se_FifWJ9lD1405TmnT0G6cPnobRSTyH7ElETse3FX-9ssrEWRSjkkCxLCJPZmW-Y-WYAzhA06IMmdN9W1_K4DCwqPYa6TL0UAw4ecc1GvrsPhhPveupPlzzuoti9ykgWhnrJdbOdIuWoKwnQDVthDRqGeNqIB483vW8DjFFEOUEeIyM_oLbhyvz9llV_tJoMLXxMvwnjiqlTlpa8dBZz1uGfvxs3rvP527BlMCeJSyXZgQ2Z7ULT4E9iTvcMl6oRD9XaHsQ_-nBkTwTRIhnlr5Lkily9oSkio2IiF6orQfRLHp5nC7y91Q7SEDz3YdLvjS-Hlpm6YHHbD0NLMY4hh2OLEIMddOcMTaliTEW68Y-j04xCRH7EqRDcTbuBoq4KKfd8vNw0YO4B1LM8k4dABMY7LBLUdmTXY17EUuVKVAeGIETJ0G7BeSX75L1srpEs2yhrgSUosKQQWBK24KISbWIO2uyf7UfrbT-GTaf4O7oS9wTq84-FPEW8MWdtqEX9QdtoGT5NnPgL2gTKiw |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HvTiW6zPPXjTQJNsstljEUurbQ-lld6W7EsETcW0_9_ZdGMtiCDkEJZlDzO7M98wM98A3CBocA9NO97WOKDKpAE3VOJd5jTHgENlynUjD4Zpd0Ifp8nUN4WVdbV7nZKsLPWq2S2MqpyjKyVAPxywTdhy_OqOMX8Stb_tLwYRywHyGBglKQ99q8zvZ6y7o_VcaOViOvuw67EhaS-VeQAbpjiEPY8TiX-FJS7VoxjqtSNo_-DLKF4Iojoymr0ZMrOk944mg4yqyVl4rQiiVPL8Wi7wt-8cmW_EPIZJ52F83w38dIRAhQljgZUKQ4Mo1AyDEnS7Ek2eldJmjqAnculArbMkU1xrFeet1PLYMq5ogl-cpzI-gUYxK8wpEI1xicw0DyPTopJmMrexQbVJBAvWsLAJt7WQxMeSBEOs6I6dSAWKVFQiFawJd7UchX8Q5R_bz_63_Rq2u-NBX_R7w6dz2IkqXbrq2QtozD8X5hIxwlxeVVfiC-M6r6M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60BfFifWJ97sGbpm2SzetYtLW1tUixUk8h-xJR02Lbi7_e2TxsKyKIkENYliWZnd35hpn5BuAMQYM-aELzttoG5dI1AkkZ6nJAI3Q4uM91NfJtz20N6M3QGS5U8SfZ7nlIMq1p0CxN8bQ6Fqo6L3wzrST-qNMK0CYb3ioUqWZGKkCxfv3YaXzdxuhSpO3k0U1y3MDMCmd-XmXZOC1HRhOD0yxBlH9qmmfyUplNWYV_fGNx_M-_bMJGhkZJPVWfLViR8TaUMmRKsnM_waG8-UM-tgP1BYaO-IkgjiT90askI0Xab3hJkX7SqwsVmSAuJg_Pkxm-drXpzEo_d2HQbNxftoysH4PBTcfzDMU4OiOWKTx0g9DQM7xkFWPK15RAlg5ACuE7Pg-E4HZUc1VgKy_g1MHHjlxm70EhHsVyH4hAT4j5IjAtWaOM-ixStkRFYQhPlPTMMpznGxGOU9qNcE6wrAUWosDCRGChV4aLXMxhdgQnv0w_-Nv0U1i7u2qG3XavcwjrVrJROl33CArT95k8RlAyZSeZ3n0Cv8vVdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigating+the+Role+of+Image+Retrieval+for+Visual+Localization&rft.jtitle=International+journal+of+computer+vision&rft.au=Humenberger%2C+Martin&rft.au=Cabon%2C+Yohann&rft.au=Pion%2C+No%C3%A9&rft.au=Weinzaepfel%2C+Philippe&rft.date=2022-07-01&rft.issn=0920-5691&rft.eissn=1573-1405&rft.volume=130&rft.issue=7&rft.spage=1811&rft.epage=1836&rft_id=info:doi/10.1007%2Fs11263-022-01615-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11263_022_01615_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-5691&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-5691&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-5691&client=summon |