Electrochemical Generation of Hypervalent Bromine(III) Compounds

In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult‐to‐control reactivity of λ3‐bromanes as well as to their challenging preparation from the highly toxic and co...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 133; no. 29; pp. 15966 - 15971
Main Authors Sokolovs, Igors, Mohebbati, Nayereh, Francke, Robert, Suna, Edgars
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 12.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult‐to‐control reactivity of λ3‐bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF3 precursor. In this context, we present a straightforward and scalable approach to chelation‐stabilized λ3‐bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro‐2‐hydroxypropanyl substituents. A series of para‐substituted λ3‐bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench‐stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ3‐bromane activation is exemplified by oxidative C−C, C−N, and C−O bond forming reactions. A straightforward electrochemical synthesis of chelation‐stabilized hypervalent bromine(III) compounds is presented. The electrolysis proceeds at room temperature in an undivided cell under galvanostatic conditions, giving λ3‐bromanes in good yields on the gram scale from bromoarenes. The reactivity of λ3‐bromanes can be enhanced by Lewis or Brønsted acid additives as demonstrated in λ3‐bromane‐mediated oxidative biaryl formation.
AbstractList Abstract In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult‐to‐control reactivity of λ 3 ‐bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF 3 precursor. In this context, we present a straightforward and scalable approach to chelation‐stabilized λ 3 ‐bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro‐2‐hydroxypropanyl substituents. A series of para ‐substituted λ 3 ‐bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO 3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench‐stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ 3 ‐bromane activation is exemplified by oxidative C−C, C−N, and C−O bond forming reactions.
In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult‐to‐control reactivity of λ3‐bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF3 precursor. In this context, we present a straightforward and scalable approach to chelation‐stabilized λ3‐bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro‐2‐hydroxypropanyl substituents. A series of para‐substituted λ3‐bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench‐stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ3‐bromane activation is exemplified by oxidative C−C, C−N, and C−O bond forming reactions. A straightforward electrochemical synthesis of chelation‐stabilized hypervalent bromine(III) compounds is presented. The electrolysis proceeds at room temperature in an undivided cell under galvanostatic conditions, giving λ3‐bromanes in good yields on the gram scale from bromoarenes. The reactivity of λ3‐bromanes can be enhanced by Lewis or Brønsted acid additives as demonstrated in λ3‐bromane‐mediated oxidative biaryl formation.
In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is mainly attributed to the difficult‐to‐control reactivity of λ3‐bromanes as well as to their challenging preparation from the highly toxic and corrosive BrF3 precursor. In this context, we present a straightforward and scalable approach to chelation‐stabilized λ3‐bromanes by anodic oxidation of parent aryl bromides possessing two coordinating hexafluoro‐2‐hydroxypropanyl substituents. A series of para‐substituted λ3‐bromanes with remarkably high redox potentials spanning a range from 1.86 V to 2.60 V vs. Ag/AgNO3 was synthesized by the electrochemical method. We demonstrate that the intrinsic reactivity of the bench‐stable bromine(III) species can be unlocked by addition of a Lewis or a Brønsted acid. The synthetic utility of the λ3‐bromane activation is exemplified by oxidative C−C, C−N, and C−O bond forming reactions.
Author Francke, Robert
Mohebbati, Nayereh
Suna, Edgars
Sokolovs, Igors
Author_xml – sequence: 1
  givenname: Igors
  surname: Sokolovs
  fullname: Sokolovs, Igors
  organization: Rostock University
– sequence: 2
  givenname: Nayereh
  surname: Mohebbati
  fullname: Mohebbati, Nayereh
  organization: Rostock University
– sequence: 3
  givenname: Robert
  orcidid: 0000-0002-4998-1829
  surname: Francke
  fullname: Francke, Robert
  email: robert.francke@catalysis.de
  organization: Rostock University
– sequence: 4
  givenname: Edgars
  orcidid: 0000-0002-3078-0576
  surname: Suna
  fullname: Suna, Edgars
  email: edgars@osi.lv
  organization: University of Latvia
BookMark eNqFkDFPwzAQhS1UJNrCyhyJBYaUs-PUyUapShupggVm6-JeIFViByel6r8nVRGMTLd833u6N2ID6ywxds1hwgHEPdp3mggQHORUqTM25LHgYaRiNWBDACnDRMj0go3adgsAU6HSIXtYVGQ678wH1aXBKliSJY9d6WzgimB1aMh_YUW2Cx69q0tLt1mW3QVzVzduZzftJTsvsGrp6ueO2dvT4nW-Ctcvy2w-W4eGx0qFBgoljJJcYJxCGqPgaAgLlfCIo0S-SaVEo1Ru8g3PhVAyjxOAKMeEOKbRmN2cchvvPnfUdnrrdt72lVrEso9U_bs9NTlRxru29VToxpc1-oPmoI8r6eNK-nelXkhPwr6s6PAPrWfPy8Wf-w2FZ2xn
Cites_doi 10.1021/ja808940n
10.1002/chem.201801232
10.1021/ol201868n
10.1016/j.coelec.2019.03.012
10.1021/acs.orglett.9b02884
10.1016/j.coelec.2021.100719
10.1002/anie.200805027
10.1002/ange.201509073
10.1002/ange.201904379
10.1016/S0040-4039(96)02245-9
10.1021/jacs.6b07999
10.1021/ja410865z
10.1002/anie.201914226
10.1055/s-0032-1316917
10.1021/acscentsci.6b00119
10.1021/om010018y
10.1070/RC2009v078n02ABEH003886
10.1126/science.1201686
10.1002/ange.201506805
10.1021/acs.orglett.6b02979
10.1021/ja903544d
10.1021/cr500223h
10.1016/0022-1139(94)03150-X
10.1002/9781118341155
10.1002/anie.201904379
10.1002/chem.201804152
10.1002/ange.201914226
10.1016/S0020-1693(99)00407-7
10.1016/S0022-1139(98)00087-6
10.1021/cr60254a003
10.1021/ja104330g
10.1021/cr00002a004
10.1016/j.tet.2009.10.040
10.1021/ja031543m
10.1002/ange.200500589
10.1021/ja00273a041
10.1021/ol0344523
10.1002/ange.201102984
10.1007/978-3-319-33733-3
10.1021/jo5028497
10.1021/ja00544a047
10.1021/acs.chemrev.5b00547
10.1002/anie.201912119
10.1021/ja801097c
10.1002/celc.201900540
10.1002/anie.200500589
10.1002/ejoc.201100360
10.1021/ja074624h
10.1002/anie.201506805
10.1002/ange.200805027
10.1246/bcsj.20160012
10.1002/anie.201509073
10.1002/anie.201102984
10.1021/ja809930f
10.1021/acs.joc.7b01686
10.1002/ange.201912119
10.1021/jacs.9b13918
10.1021/ja038777q
ContentType Journal Article
Copyright 2021 The Authors. Angewandte Chemie published by Wiley-VCH GmbH
2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. Angewandte Chemie published by Wiley-VCH GmbH
– notice: 2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202104677
DatabaseName Wiley Online Library
Wiley Online Library
CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList CrossRef

Materials Research Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage 15971
ExternalDocumentID 10_1002_ange_202104677
ANGE202104677
Genre shortCommunication
GrantInformation_xml – fundername: European Regional Development Fund
  funderid: 1.1.1.2/VIAA/2/18/377
– fundername: Deutsche Forschungsgemeinschaft
  funderid: FR 3848/1-2; FR 3848/4-1
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
TUS
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WIN
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c1577-c0f72c7412a59095a21aceaf78131a4a1d944ac77bcbd1b2274b58003ba8e1a93
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Thu Oct 10 16:36:50 EDT 2024
Fri Aug 23 01:48:31 EDT 2024
Sat Aug 24 01:03:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 29
Language English
License Attribution-NonCommercial-NoDerivs
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1577-c0f72c7412a59095a21aceaf78131a4a1d944ac77bcbd1b2274b58003ba8e1a93
ORCID 0000-0002-3078-0576
0000-0002-4998-1829
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202104677
PQID 2549097152
PQPubID 866336
PageCount 6
ParticipantIDs proquest_journals_2549097152
crossref_primary_10_1002_ange_202104677
wiley_primary_10_1002_ange_202104677_ANGE202104677
PublicationCentury 2000
PublicationDate July 12, 2021
PublicationDateYYYYMMDD 2021-07-12
PublicationDate_xml – month: 07
  year: 2021
  text: July 12, 2021
  day: 12
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1968; 68
1995; 71
2004; 126
2017; 82
2019; 6
2009; 65
2009 2009; 48 121
2011
2020; 142
2013; 45
2021; 28
2019; 15
2020 2020; 59 132
2006
2011; 13
2015; 80
2000; 298
2009; 131
2016; 18
2011; 332
1998; 89
2014; 136
2019 2019; 58 131
2001; 20
2018; 24
2009; 78
1986; 108
2016 2016; 55 128
2016; 2
2015; 115
2019; 21
2010; 132
2018
2015 2015; 54 127
2005 2005; 44 117
1991; 91
2003; 5
1997; 38
2016
2016; 116
2015
2011 2011; 50 123
2016; 138
2013
2003; 125
2008; 130
1980; 102
2016; 89
e_1_2_2_24_2
e_1_2_2_4_2
e_1_2_2_49_1
e_1_2_2_6_1
e_1_2_2_22_2
e_1_2_2_6_2
e_1_2_2_20_3
e_1_2_2_20_2
e_1_2_2_2_2
e_1_2_2_62_2
e_1_2_2_41_1
e_1_2_2_43_1
e_1_2_2_62_3
e_1_2_2_28_2
e_1_2_2_8_1
e_1_2_2_45_2
e_1_2_2_26_1
e_1_2_2_47_1
Kraszkiewicz L. (e_1_2_2_51_1) 2006
e_1_2_2_60_1
Miyamoto K. (e_1_2_2_34_2) 2018
e_1_2_2_13_2
e_1_2_2_11_3
e_1_2_2_38_1
e_1_2_2_59_1
e_1_2_2_11_2
e_1_2_2_19_3
e_1_2_2_30_1
e_1_2_2_19_2
e_1_2_2_32_1
e_1_2_2_53_1
e_1_2_2_17_2
e_1_2_2_15_3
e_1_2_2_55_1
e_1_2_2_15_2
e_1_2_2_13_3
e_1_2_2_36_1
e_1_2_2_57_1
e_1_2_2_3_2
e_1_2_2_48_1
e_1_2_2_23_2
e_1_2_2_21_2
e_1_2_2_1_1
e_1_2_2_40_2
e_1_2_2_42_1
e_1_2_2_63_2
e_1_2_2_9_1
e_1_2_2_29_1
e_1_2_2_27_2
e_1_2_2_44_2
e_1_2_2_25_2
e_1_2_2_46_2
e_1_2_2_61_1
e_1_2_2_37_1
e_1_2_2_12_2
e_1_2_2_39_2
Waser J. (e_1_2_2_7_1) 2015
e_1_2_2_10_1
e_1_2_2_52_1
e_1_2_2_31_1
e_1_2_2_54_1
e_1_2_2_18_2
e_1_2_2_56_1
e_1_2_2_33_2
e_1_2_2_16_1
e_1_2_2_33_3
e_1_2_2_35_1
e_1_2_2_58_1
e_1_2_2_14_2
e_1_2_2_50_1
Murarka S. (e_1_2_2_5_1) 2015
References_xml – volume: 89
  start-page: 546
  year: 2016
  end-page: 548
  publication-title: Bull. Chem. Soc. Jpn.
– volume: 131
  start-page: 2796
  year: 2009
  end-page: 2797
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 3184 3210
  year: 2020 2020
  end-page: 3189 3215
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 116
  start-page: 3328
  year: 2016
  end-page: 3435
  publication-title: Chem. Rev.
– volume: 71
  start-page: 47
  year: 1995
  end-page: 49
  publication-title: J. Fluorine Chem.
– volume: 115
  start-page: 650
  year: 2015
  end-page: 682
  publication-title: Chem. Rev.
– volume: 130
  start-page: 2118
  year: 2008
  end-page: 2119
  publication-title: J. Am. Chem. Soc.
– start-page: 1
  year: 2018
  end-page: 25
– volume: 80
  start-page: 3280
  year: 2015
  end-page: 3288
  publication-title: J. Org. Chem.
– volume: 332
  start-page: 448
  year: 2011
  end-page: 451
  publication-title: Science
– volume: 54 127
  start-page: 13719 13923
  year: 2015 2015
  end-page: 13723 13927
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 55 128
  start-page: 4436 4512
  year: 2016 2016
  end-page: 4454 4531
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 126
  start-page: 2300
  year: 2004
  end-page: 2301
  publication-title: J. Am. Chem. Soc.
– volume: 38
  start-page: 21
  year: 1997
  end-page: 24
  publication-title: Tetrahedron Lett.
– volume: 131
  start-page: 8392
  year: 2009
  end-page: 8393
  publication-title: J. Am. Chem. Soc.
– volume: 68
  start-page: 449
  year: 1968
  end-page: 523
  publication-title: Chem. Rev.
– volume: 89
  start-page: 59
  year: 1998
  end-page: 63
  publication-title: J. Fluorine Chem.
– volume: 13
  start-page: 5428
  year: 2011
  end-page: 5431
  publication-title: Org. Lett.
– volume: 15
  start-page: 83
  year: 2019
  end-page: 88
  publication-title: Curr. Opin. Electrochem.
– volume: 78
  start-page: 89
  year: 2009
  publication-title: Russ. Chem. Rev.
– volume: 142
  start-page: 4990
  year: 2020
  end-page: 4995
  publication-title: J. Am. Chem. Soc.
– volume: 125
  start-page: 15304
  year: 2003
  end-page: 15305
  publication-title: J. Am. Chem. Soc.
– volume: 59 132
  start-page: 1155 1171
  year: 2020 2020
  end-page: 1160 1176
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 18
  start-page: 5896
  year: 2016
  end-page: 5899
  publication-title: Org. Lett.
– volume: 21
  start-page: 7893
  year: 2019
  end-page: 7896
  publication-title: Org. Lett.
– volume: 44 117
  start-page: 4046 4114
  year: 2005 2005
  end-page: 4048 4116
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 58 131
  start-page: 9811 9916
  year: 2019 2019
  end-page: 9815 9920
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 65
  start-page: 10797
  year: 2009
  end-page: 10815
  publication-title: Tetrahedron
– volume: 50 123
  start-page: 8605 8764
  year: 2011 2011
  end-page: 8608 8767
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 131
  start-page: 1668
  year: 2009
  end-page: 1669
  publication-title: J. Am. Chem. Soc.
– volume: 136
  start-page: 427
  year: 2014
  end-page: 435
  publication-title: J. Am. Chem. Soc.
– volume: 20
  start-page: 1580
  year: 2001
  end-page: 1591
  publication-title: Organometallics
– start-page: 1195
  year: 2006
  end-page: 1199
  publication-title: Synthesis
– volume: 24
  start-page: 15781
  year: 2018
  end-page: 15785
  publication-title: Chem. Eur. J.
– year: 2016
– start-page: 75
  year: 2015
  end-page: 104
– volume: 102
  start-page: 7382
  year: 1980
  end-page: 7383
  publication-title: J. Am. Chem. Soc.
– volume: 5
  start-page: 1583
  year: 2003
  end-page: 1586
  publication-title: Org. Lett.
– volume: 28
  year: 2021
  publication-title: Curr. Opin. Electrochem.
– start-page: 3690
  year: 2011
  end-page: 3694
  publication-title: Eur. J. Org. Chem.
– volume: 45
  start-page: 2499
  year: 2013
  end-page: 2511
  publication-title: Synthesis
– volume: 48 121
  start-page: 1018 1036
  year: 2009 2009
  end-page: 1020 1038
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 130
  start-page: 3742
  year: 2008
  end-page: 3743
  publication-title: J. Am. Chem. Soc.
– volume: 138
  start-page: 12747
  year: 2016
  end-page: 12750
  publication-title: J. Am. Chem. Soc.
– volume: 108
  start-page: 3803
  year: 1986
  end-page: 3811
  publication-title: J. Am. Chem. Soc.
– volume: 6
  start-page: 4229
  year: 2019
  end-page: 4237
  publication-title: ChemElectroChem
– volume: 82
  start-page: 11669
  year: 2017
  end-page: 11681
  publication-title: J. Org. Chem.
– volume: 298
  start-page: 97
  year: 2000
  end-page: 102
  publication-title: Inorg. Chim. Acta
– start-page: 187
  year: 2015
  end-page: 222
– volume: 2
  start-page: 341
  year: 2016
  end-page: 350
  publication-title: ACS Cent. Sci.
– volume: 24
  start-page: 13399
  year: 2018
  end-page: 13407
  publication-title: Chem. Eur. J.
– volume: 91
  start-page: 165
  year: 1991
  end-page: 195
  publication-title: Chem. Rev.
– year: 2013
– volume: 132
  start-page: 9236
  year: 2010
  end-page: 9239
  publication-title: J. Am. Chem. Soc.
– ident: e_1_2_2_14_2
  doi: 10.1021/ja808940n
– ident: e_1_2_2_17_2
  doi: 10.1002/chem.201801232
– ident: e_1_2_2_36_1
  doi: 10.1021/ol201868n
– ident: e_1_2_2_32_1
– ident: e_1_2_2_18_2
  doi: 10.1016/j.coelec.2019.03.012
– ident: e_1_2_2_21_2
  doi: 10.1021/acs.orglett.9b02884
– ident: e_1_2_2_38_1
– ident: e_1_2_2_24_2
  doi: 10.1016/j.coelec.2021.100719
– ident: e_1_2_2_33_2
  doi: 10.1002/anie.200805027
– ident: e_1_2_2_6_2
  doi: 10.1002/ange.201509073
– ident: e_1_2_2_19_3
  doi: 10.1002/ange.201904379
– ident: e_1_2_2_63_2
  doi: 10.1016/S0040-4039(96)02245-9
– ident: e_1_2_2_58_1
  doi: 10.1021/jacs.6b07999
– ident: e_1_2_2_55_1
  doi: 10.1021/ja410865z
– ident: e_1_2_2_13_2
  doi: 10.1002/anie.201914226
– ident: e_1_2_2_9_1
  doi: 10.1055/s-0032-1316917
– ident: e_1_2_2_60_1
  doi: 10.1021/acscentsci.6b00119
– ident: e_1_2_2_50_1
  doi: 10.1021/om010018y
– ident: e_1_2_2_25_2
  doi: 10.1070/RC2009v078n02ABEH003886
– ident: e_1_2_2_31_1
  doi: 10.1126/science.1201686
– start-page: 1195
  year: 2006
  ident: e_1_2_2_51_1
  publication-title: Synthesis
  contributor:
    fullname: Kraszkiewicz L.
– ident: e_1_2_2_62_3
  doi: 10.1002/ange.201506805
– ident: e_1_2_2_44_2
  doi: 10.1021/acs.orglett.6b02979
– ident: e_1_2_2_29_1
  doi: 10.1021/ja903544d
– ident: e_1_2_2_8_1
  doi: 10.1021/cr500223h
– ident: e_1_2_2_48_1
  doi: 10.1016/0022-1139(94)03150-X
– ident: e_1_2_2_2_2
  doi: 10.1002/9781118341155
– ident: e_1_2_2_19_2
  doi: 10.1002/anie.201904379
– ident: e_1_2_2_23_2
  doi: 10.1002/chem.201804152
– ident: e_1_2_2_13_3
  doi: 10.1002/ange.201914226
– ident: e_1_2_2_53_1
  doi: 10.1016/S0020-1693(99)00407-7
– ident: e_1_2_2_35_1
  doi: 10.1016/S0022-1139(98)00087-6
– ident: e_1_2_2_41_1
  doi: 10.1021/cr60254a003
– ident: e_1_2_2_27_2
  doi: 10.1021/ja104330g
– ident: e_1_2_2_54_1
  doi: 10.1021/cr00002a004
– ident: e_1_2_2_57_1
  doi: 10.1016/j.tet.2009.10.040
– ident: e_1_2_2_43_1
– ident: e_1_2_2_1_1
– ident: e_1_2_2_12_2
  doi: 10.1021/ja031543m
– ident: e_1_2_2_11_3
  doi: 10.1002/ange.200500589
– ident: e_1_2_2_40_2
  doi: 10.1021/ja00273a041
– ident: e_1_2_2_59_1
  doi: 10.1021/ol0344523
– start-page: 1
  volume-title: Chemistry of Hypervalent Bromine in PATAI′S Chemistry of Functional Groups
  year: 2018
  ident: e_1_2_2_34_2
  contributor:
    fullname: Miyamoto K.
– ident: e_1_2_2_15_3
  doi: 10.1002/ange.201102984
– ident: e_1_2_2_3_2
  doi: 10.1007/978-3-319-33733-3
– ident: e_1_2_2_47_1
  doi: 10.1021/jo5028497
– ident: e_1_2_2_39_2
  doi: 10.1021/ja00544a047
– ident: e_1_2_2_4_2
  doi: 10.1021/acs.chemrev.5b00547
– ident: e_1_2_2_20_2
  doi: 10.1002/anie.201912119
– ident: e_1_2_2_26_1
– ident: e_1_2_2_30_1
  doi: 10.1021/ja801097c
– ident: e_1_2_2_46_2
  doi: 10.1002/celc.201900540
– ident: e_1_2_2_56_1
– ident: e_1_2_2_61_1
– ident: e_1_2_2_11_2
  doi: 10.1002/anie.200500589
– start-page: 75
  volume-title: Hypervalent Iodine Chemistry; Topics in Current Chemistry, Vol. 373
  year: 2015
  ident: e_1_2_2_5_1
  contributor:
    fullname: Murarka S.
– ident: e_1_2_2_42_1
  doi: 10.1002/ejoc.201100360
– ident: e_1_2_2_28_2
  doi: 10.1021/ja074624h
– ident: e_1_2_2_62_2
  doi: 10.1002/anie.201506805
– ident: e_1_2_2_33_3
  doi: 10.1002/ange.200805027
– ident: e_1_2_2_49_1
  doi: 10.1246/bcsj.20160012
– ident: e_1_2_2_6_1
  doi: 10.1002/anie.201509073
– ident: e_1_2_2_15_2
  doi: 10.1002/anie.201102984
– ident: e_1_2_2_52_1
  doi: 10.1021/ja809930f
– ident: e_1_2_2_16_1
– ident: e_1_2_2_45_2
  doi: 10.1021/acs.joc.7b01686
– start-page: 187
  volume-title: Hypervalent Iodine Chemistry; Topics in Current Chemistry, Vol. 373
  year: 2015
  ident: e_1_2_2_7_1
  contributor:
    fullname: Waser J.
– ident: e_1_2_2_10_1
– ident: e_1_2_2_20_3
  doi: 10.1002/ange.201912119
– ident: e_1_2_2_22_2
  doi: 10.1021/jacs.9b13918
– ident: e_1_2_2_37_1
  doi: 10.1021/ja038777q
SSID ssj0006279
Score 2.2055976
Snippet In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge gap is...
Abstract In sharp contrast to hypervalent iodine(III) compounds, the isoelectronic bromine(III) counterparts have been little studied to date. This knowledge...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
StartPage 15966
SubjectTerms anodic oxidation
Anodizing
Bromides
Bromine
Bromine compounds
Chelation
Chemistry
cyclic voltammetry
Electrochemistry
hypervalent bromine
Iodine
Oxidation
oxidative coupling
Silver nitrate
Title Electrochemical Generation of Hypervalent Bromine(III) Compounds
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202104677
https://www.proquest.com/docview/2549097152
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ07T8MwEMct6AILb0ShVBmQgCFt7NhxslFVLS0SFUJU6hadnXRBtKiPhU_PXR59sCDB5gyOnPPj_ufYv2Psxnga_bRC5QYqcCW3nmtApy5EYKxKlLGGLic_D4LeUD6N1GjjFn_Oh1htuNHMyNZrmuBg5s01NJTO3mN8J-gnpabr5ETTI1X0uuZHBSKH7XlSuiEGGiW10RPN7erbXmktNTcFa-ZxuocMyrbmB03eG8uFadivHxjH_3zMETso5KjTysfPMdtJJydsr11mgTtlD508T44twAJOzqmm7nSmY6eHYewMByu6Lgcj-g9syF2_3793aJ2hjE3zMzbsdt7aPbfIuuBarrR2rTfWwqLQEKAiFGAgONgUxjrkPgcJPImkBKs1dmPCjcCw1iiUnb6BMOUQ-eesMplO0gvmSBN5fmh0AGEgeRJGQWgiLGhNBFLrVdltafX4M4drxDlGWcRkkXhlkSqrlZ0SF5NsHlNsSwgsJapMZNb95S1xa_DYWT1d_qXSFdunMu3uclFjlcVsmV6jLFmYOtsV8qWeDcBv-ZvY5w
link.rule.ids 315,786,790,1382,11589,27955,27956,46085,46327,46509,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BGcrCG1EokAEJGFJi146Tjaq0pNB2QK3EFtluuiBa1MfCr-euSVrKggRTHpIj-3zn--5ifwdwZTyFfloictPSdwWznmu0SlwdamPlQBpr6HByp-tHffH0KvPdhHQWJuWHWCbcyDIW6zUZOCWk71asobT5HgM8Tn8pldqELbxIss2HlxWDlM9Tuj1PCDfAUCPnbfT43Xr7db-0ApvfIevC5zR3weS9TbeavFXmM1Oxnz-IHP81nD3YyRCpU0tVaB82ktEBFOt5IbhDuG-kpXJsxi3gpFTVNKPOeOhEGMlOUF_RezkY1L9jT25ardatQ0sNFW2aHkG_2ejVIzcrvOBaJpVyrTdU3CLW4FqGiME0Z9omeqgCVmVaaDYIhdBWKZzJATMcI1sjEXlWjQ4SpsPqMRRG41FyAo4woVcNjPJ14As2CEI_MCHeKEUkpNYrwXUu9vgj5deIUyZlHpNE4qVESlDOZyXO7GwaU3hLLFiSl4AvxPvLV-Ja97GxfDr9S6NLKEa9Tjtut7rPZ7BN7ynZy3gZCrPJPDlHlDIzFws9_AKQ2dww
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED1BkYAF8SkKBTIgAUPU2LHjZKMqLQ0fVQcqdbNsJ9loq7b8f875ajshsSWRHCkvPt97Tu4dwL32BOZpjsxN8cBlxHiuViJ1VaS04QnXRtvi5M9hMBiztwmfbFTxF_4Q9YabjYx8vbYBPk-y9to01P57j_qO2o-UQuzCHguQPlhvZzaq1-KAFm57HmNuiEqjsm30aHt7_HZaWnPNTcaap5z-MRyVXNHpFC_3BHbS6SkcdKsWbWfw3Cua2Jiy6t8pTKQt1s4scwaoMRc4kzCvOCi3v_GRH-M4fnLsImDbKS3PYdzvfXUHbtkSwTWEC-EaLxPUIAugikfIjhQlyqQqEyHxiWKKJBFjygiBGCdEU9ScmiMn9LUKU6Ii_wIa09k0vQSH6cjzQy0CFQaMJGEUhDrCAyGsPajxmvBQISLnhfOFLDyOqbTYyRq7JrQqwGQZAUtphaf1p-K0CTQH8Y-7yM7wtVefXf1n0B3sj1768iMevl_Dob1sd2EJbUFjtfhJb5A-rPRtPkN-AT1TuXg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Generation+of+Hypervalent+Bromine%28III%29+Compounds&rft.jtitle=Angewandte+Chemie&rft.au=Sokolovs%2C+Igors&rft.au=Mohebbati%2C+Nayereh&rft.au=Francke%2C+Robert&rft.au=Suna%2C+Edgars&rft.date=2021-07-12&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=133&rft.issue=29&rft.spage=15966&rft.epage=15971&rft_id=info:doi/10.1002%2Fange.202104677&rft.externalDBID=10.1002%252Fange.202104677&rft.externalDocID=ANGE202104677
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon