Pre‐Defined Stem‐Loop Structure Library for the Discovery of L‐RNA Aptamers that Target RNA G‐Quadruplexes

L‐RNA aptamers have been developed to target G‐quadruplexes (G4s) and regulate G4‐mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subject to high failure rates. By analyzing the previously reported G4‐binding L‐RNA aptamers...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 137; no. 5
Main Authors Ji, Danyang, Wang, Bo, Lo, Kwok Wai, Tsang, Chi Man, Kwok, Chun Kit
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 27.01.2025
Subjects
Online AccessGet full text
ISSN0044-8249
1521-3757
DOI10.1002/ange.202417247

Cover

Loading…
Abstract L‐RNA aptamers have been developed to target G‐quadruplexes (G4s) and regulate G4‐mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subject to high failure rates. By analyzing the previously reported G4‐binding L‐RNA aptamers, we found that the stem‐loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4‐SLSELEX‐Seq platform specifically for G4 targets by introducing a pre‐defined stem‐loop structure library during the SELEX process. Using G4‐SLSELEX‐Seq, we identified an L‐RNA aptamer, L‐Apt1‐12, for the Epstein–Barr nuclear antigen 1 (EBNA1) RNA G4 (rG4) in just three selection rounds. L‐Apt1‐12 maintained the stem‐loop structure initially introduced, and possessed a unique G‐triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. L‐Apt1‐12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards Epstein–Barr virus (EBV)‐positive cancer cells, highlighting its potential for targeted therapy against EBV‐associated cancers. Furthermore, we demonstrated the robustness and generality of G4‐SLSELEX‐Seq by selecting L‐RNA aptamers for the amyloid precursor protein (APP) rG4 and the hepatitis C virus subtype 1a (HCV‐1a) rG4, obtaining high‐affinity aptamers in three selection rounds. These findings demonstrated G4‐SLSELEX‐Seq as a robust and efficient platform for the selection of rG4‐targeting L‐RNA aptamers. We combine mirror‐image SELEX with a pre‐structured library for the first time, using a pre‐defined stem‐loop (SL) structure library to develop the G4‐SLSELEX‐Seq platform. G4‐SLSELEX‐Seq can serve as a general L‐RNA aptamer SELEX platform for RNA G‐quadruplex (rG4) targets. L‐Apt1‐12 for the EBNA1 rG4 is selected in three rounds (within a week). It can effectively inhibit EBNA1 mRNA translation in Epstein–Barr virus (EBV)‐positive cancer cells.
AbstractList L‐RNA aptamers have been developed to target G‐quadruplexes (G4s) and regulate G4‐mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subject to high failure rates. By analyzing the previously reported G4‐binding L‐RNA aptamers, we found that the stem‐loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4‐SLSELEX‐Seq platform specifically for G4 targets by introducing a pre‐defined stem‐loop structure library during the SELEX process. Using G4‐SLSELEX‐Seq, we identified an L‐RNA aptamer, L‐Apt1‐12, for the Epstein–Barr nuclear antigen 1 (EBNA1) RNA G4 (rG4) in just three selection rounds. L‐Apt1‐12 maintained the stem‐loop structure initially introduced, and possessed a unique G‐triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. L‐Apt1‐12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards Epstein–Barr virus (EBV)‐positive cancer cells, highlighting its potential for targeted therapy against EBV‐associated cancers. Furthermore, we demonstrated the robustness and generality of G4‐SLSELEX‐Seq by selecting L‐RNA aptamers for the amyloid precursor protein (APP) rG4 and the hepatitis C virus subtype 1a (HCV‐1a) rG4, obtaining high‐affinity aptamers in three selection rounds. These findings demonstrated G4‐SLSELEX‐Seq as a robust and efficient platform for the selection of rG4‐targeting L‐RNA aptamers.
L‐RNA aptamers have been developed to target G‐quadruplexes (G4s) and regulate G4‐mediated gene expression. However, the aptamer selection process is laborious and challenging, and aptamer identification is subject to high failure rates. By analyzing the previously reported G4‐binding L‐RNA aptamers, we found that the stem‐loop (SL) structure is favored by G4 binding. Herein, we present a robust and effective G4‐SLSELEX‐Seq platform specifically for G4 targets by introducing a pre‐defined stem‐loop structure library during the SELEX process. Using G4‐SLSELEX‐Seq, we identified an L‐RNA aptamer, L‐Apt1‐12, for the Epstein–Barr nuclear antigen 1 (EBNA1) RNA G4 (rG4) in just three selection rounds. L‐Apt1‐12 maintained the stem‐loop structure initially introduced, and possessed a unique G‐triplex motif that is important for the strong binding affinity and specificity to EBNA1 rG4. L‐Apt1‐12 effectively downregulated endogenous EBNA1 protein expression in human cancer cells and showed selective toxicity towards Epstein–Barr virus (EBV)‐positive cancer cells, highlighting its potential for targeted therapy against EBV‐associated cancers. Furthermore, we demonstrated the robustness and generality of G4‐SLSELEX‐Seq by selecting L‐RNA aptamers for the amyloid precursor protein (APP) rG4 and the hepatitis C virus subtype 1a (HCV‐1a) rG4, obtaining high‐affinity aptamers in three selection rounds. These findings demonstrated G4‐SLSELEX‐Seq as a robust and efficient platform for the selection of rG4‐targeting L‐RNA aptamers. We combine mirror‐image SELEX with a pre‐structured library for the first time, using a pre‐defined stem‐loop (SL) structure library to develop the G4‐SLSELEX‐Seq platform. G4‐SLSELEX‐Seq can serve as a general L‐RNA aptamer SELEX platform for RNA G‐quadruplex (rG4) targets. L‐Apt1‐12 for the EBNA1 rG4 is selected in three rounds (within a week). It can effectively inhibit EBNA1 mRNA translation in Epstein–Barr virus (EBV)‐positive cancer cells.
Author Kwok, Chun Kit
Lo, Kwok Wai
Wang, Bo
Tsang, Chi Man
Ji, Danyang
Author_xml – sequence: 1
  givenname: Danyang
  orcidid: 0000-0003-1721-9482
  surname: Ji
  fullname: Ji, Danyang
  organization: Soochow University
– sequence: 2
  givenname: Bo
  surname: Wang
  fullname: Wang, Bo
  organization: The Chinese University of Hong Kong
– sequence: 3
  givenname: Kwok Wai
  surname: Lo
  fullname: Lo, Kwok Wai
  organization: The Chinese University of Hong Kong
– sequence: 4
  givenname: Chi Man
  surname: Tsang
  fullname: Tsang, Chi Man
  email: annatsang@cuhk.edu.hk
  organization: The Chinese University of Hong Kong
– sequence: 5
  givenname: Chun Kit
  orcidid: 0000-0001-9175-8543
  surname: Kwok
  fullname: Kwok, Chun Kit
  email: ckkwok42@cityu.edu.hk
  organization: Shenzhen Research Institute of City University of Hong Kong
BookMark eNqFkMtOwkAUhicGExHdup7EdXHu0y4JIJo0eGPfDO0plkCnzrQqOx_BZ_RJHILRpatz-_5zcv5T1KttDQhdUDKkhLArU69gyAgTVDOhj1CfSkYjrqXuoT4hQkQxE8kJOvV-TQhRTCd95O4dfH18TqCsaijwUwvbUKbWNiF3Xd52DnBaLZ1xO1xah9tnwJPK5_YVQseWOA3843yER01rtuB8IEyLF8atoMX7wSwAD50pXNds4B38GTouzcbD-U8coMX1dDG-idK72e14lEY5lVpHMiexzJVkRBZFrIiGmIWwTKjihhO-NFrkrFCGF7IkKo6VkEUiElVyJVXBB-jysLZx9qUD32Zr27k6XMw4DeuoUEQGanigcme9d1Bmjau24dmMkmxva7a3Nfu1NQiSg-Ct2sDuHzobzWfTP-038CeAIg
Cites_doi 10.1016/j.bios.2015.06.040
10.1016/j.virol.2005.11.021
10.1038/nchembio.1479
10.1021/acsami.0c05750
10.1038/s41467-017-02282-w
10.1016/j.cell.2022.08.026
10.1002/path.4448
10.1186/1750-9378-9-38
10.1016/S0006-3495(97)78360-7
10.1038/nrg3939
10.3389/fonc.2020.00600
10.1016/0006-291X(90)92116-H
10.5483/BMBRep.2016.49.4.260
10.1002/anie.201206522
10.1002/anie.200804643
10.1128/jvi.70.1.623-627.1996
10.1007/978-1-0716-3056-3_17
10.1093/nar/gkad900
10.1002/(SICI)1097-0215(19970207)70:4<443::AID-IJC12>3.0.CO;2-G
10.1038/s41467-018-06889-5
10.7150/thno.26823
10.1016/j.tibtech.2023.05.005
10.1038/nbt0996-1112
10.1093/nar/gkl655
10.1002/ange.201603562
10.1016/S0734-9750(97)00003-7
10.1021/acs.analchem.7b04666
10.1039/c4an00132j
10.1093/nar/gkg595
10.1016/j.addr.2018.04.007
10.1038/ncomms16043
10.1021/ja00051a001
10.1002/anie.201914955
10.1016/j.tibtech.2008.04.006
10.1142/S1088424619300179
10.1128/JVI.02142-07
10.1021/ja4094617
10.1021/acs.nanolett.2c02489
10.1038/s41388-018-0147-x
10.1073/pnas.2336099100
10.1093/nar/gni134
10.1038/nrd3141
10.1073/pnas.0908332106
10.1021/acsabm.0c00062
10.1038/ncomms7481
10.1021/ja406634g
10.1128/JVI.01606-13
10.1002/(SICI)1097-0215(19990924)83:1<121::AID-IJC21>3.0.CO;2-F
10.1073/pnas.1202637109
10.1073/pnas.0606409103
10.1039/D1AY01624E
10.1038/s43586-023-00238-7
10.1261/rna.068684.118
10.1021/acsami.2c06390
10.1038/s41570-017-0076
10.1038/srep09255
10.1093/nar/gkaa759
10.1016/j.tibtech.2017.06.012
ContentType Journal Article
Copyright 2024 Wiley-VCH GmbH
2025 Wiley-VCH GmbH
Copyright_xml – notice: 2024 Wiley-VCH GmbH
– notice: 2025 Wiley-VCH GmbH
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/ange.202417247
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3757
EndPage n/a
ExternalDocumentID 10_1002_ange_202417247
ANGE202417247
Genre article
GrantInformation_xml – fundername: the National Natural Science Foundation of China (NSFC) Projects
  funderid: 32471343, 32222089
– fundername: Faculty Innovation Award
  funderid: FIA2020/A/01
– fundername: Early Career Scheme (ECS)
  funderid: 24114922
– fundername: The Innovation and Technology Fund (Midstream Research Programme for Universities
  funderid: MRP/036/21X
– fundername: Research Grants Council (RGC) of the Hong Kong Special Administra-tive Region
  funderid: RFS2425-1S02, CityU 11100123, CityU 11100222, CityU 11100421
– fundername: State Key Laboratory in Marine Pollution
  funderid: SCRF/0037, SCRF/0040, SCRF/0070
– fundername: City University of Hong Kong projects
  funderid: 7030001, 6000827, 9678302
– fundername: Research Grants Council-General Research Fund (GRF)
  funderid: 14116124, 14113620, 14114523
– fundername: Croucher Foundation
  funderid: 9509003
– fundername: Research Grant Council, Hong Kong
  funderid: AoE/M-401/20, 14101721, 08191046
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCUC
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RGC
ROL
RWI
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBFHL
WBKPD
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XV2
Y6R
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
CITATION
7SR
7U5
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
L7M
ID FETCH-LOGICAL-c1577-5c085c65205dd8607e82860b9163a303ba74c2d6a3d5f0688645d9496f3656d3
IEDL.DBID DR2
ISSN 0044-8249
IngestDate Fri Jul 25 11:48:45 EDT 2025
Tue Jul 01 05:08:46 EDT 2025
Wed Jan 29 10:50:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1577-5c085c65205dd8607e82860b9163a303ba74c2d6a3d5f0688645d9496f3656d3
Notes These authors contributed to this work equally.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1721-9482
0000-0001-9175-8543
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/ange.202417247
PQID 3160714605
PQPubID 866336
PageCount 10
ParticipantIDs proquest_journals_3160714605
crossref_primary_10_1002_ange_202417247
wiley_primary_10_1002_ange_202417247_ANGE202417247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 27, 2025
PublicationDateYYYYMMDD 2025-01-27
PublicationDate_xml – month: 01
  year: 2025
  text: January 27, 2025
  day: 27
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Angewandte Chemie
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2014; 139
2017; 8
2017; 1
2006; 34
2016; 76
2020; 59
2020; 13
1996; 70
2023; 3
2022; 22
2020; 10
1999; 83
2024
2009; 48
2018; 9
2018; 8
2020; 3
1997; 15
2018; 134
2019; 23
1992; 114
2017; 35
2019; 25
2013; 52
1990; 170
2008; 26
2020; 48
2014; 9
2016; 49
2005; 33
2018; 37
2010; 9
2014; 10
2023; 51
2015; 6
2015; 16
2015; 5
2012
2013; 87
2016; 128
1996; 14
2003; 31
2012; 109
2021; 13
2023; 41
1997; 73
2022; 185
1997; 70
2023
2015; 235
2022; 14
2018; 90
2013; 135
2006; 346
2008; 82
2003; 100
2006; 103
2009; 106
e_1_2_8_28_2
e_1_2_8_24_1
e_1_2_8_49_1
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
Brown A. (e_1_2_8_73_1) 2024
e_1_2_8_5_1
e_1_2_8_3_2
e_1_2_8_7_2
e_1_2_8_66_1
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_60_2
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_59_1
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_36_2
e_1_2_8_57_2
e_1_2_8_55_1
e_1_2_8_53_1
e_1_2_8_11_2
e_1_2_8_32_2
e_1_2_8_74_1
e_1_2_8_51_2
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_70_2
e_1_2_8_27_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_48_2
e_1_2_8_69_1
e_1_2_8_2_2
Frappier L. (e_1_2_8_68_1) 2012
e_1_2_8_4_2
e_1_2_8_6_2
e_1_2_8_8_1
e_1_2_8_42_2
e_1_2_8_67_1
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_65_1
e_1_2_8_61_2
e_1_2_8_63_1
e_1_2_8_40_2
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_2
e_1_2_8_58_2
e_1_2_8_14_2
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_31_2
e_1_2_8_56_1
e_1_2_8_10_2
e_1_2_8_52_2
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_50_2
e_1_2_8_71_2
References_xml – volume: 114
  start-page: 9731
  year: 1992
  end-page: 9736
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 1195
  year: 2019
  end-page: 1215
  publication-title: J. Porphyrins Phthalocyanines
– volume: 49
  start-page: 226
  year: 2016
  publication-title: BMB Rep.
– volume: 87
  start-page: 13020
  year: 2013
  end-page: 13028
  publication-title: J. Virol.
– volume: 70
  start-page: 623
  year: 1996
  end-page: 627
  publication-title: J. Virol.
– start-page: 154
  year: 2012
  end-page: 161
– volume: 41
  start-page: 1360
  year: 2023
  end-page: 1384
  publication-title: Trends Biotechnol.
– volume: 9
  start-page: 4663
  year: 2018
  publication-title: Nat. Commun.
– volume: 13
  start-page: 5211
  year: 2021
  end-page: 5215
  publication-title: Anal. Methods
– volume: 185
  start-page: 3652
  year: 2022
  end-page: 3670
  publication-title: Cell
– volume: 106
  start-page: 15750
  year: 2009
  end-page: 15755
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 128
  start-page: 9104
  year: 2016
  end-page: 9107
  publication-title: Angew. Chem. Int. Ed.
– volume: 82
  start-page: 1679
  year: 2008
  end-page: 1687
  publication-title: J. Virol.
– volume: 16
  start-page: 255
  year: 2015
  end-page: 255
  publication-title: Nat. Rev. Genet.
– volume: 83
  start-page: 121
  year: 1999
  end-page: 126
  publication-title: Int. J. Cancer
– volume: 235
  start-page: 323
  year: 2015
  end-page: 333
  publication-title: J. Pathol.
– volume: 13
  start-page: 9500
  year: 2020
  end-page: 9519
  publication-title: ACS Appl. Mater. Interfaces
– volume: 35
  start-page: 997
  year: 2017
  end-page: 1013
  publication-title: Trends Biotechnol.
– volume: 8
  start-page: 2103
  year: 2017
  publication-title: Nat. Commun.
– volume: 5
  start-page: 9255
  year: 2015
  publication-title: Sci. Rep.
– volume: 6
  start-page: 6481
  year: 2015
  publication-title: Nat. Commun.
– volume: 31
  start-page: 3406
  year: 2003
  end-page: 3415
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 43
  year: 1997
  end-page: 58
  publication-title: Biotechnol. Adv.
– volume: 70
  start-page: 443
  year: 1997
  end-page: 449
  publication-title: Int. J. Cancer
– volume: 170
  start-page: 477
  year: 1990
  end-page: 483
  publication-title: Biochem. Biophys. Res. Commun.
– start-page: 263
  year: 2023
  end-page: 275
– volume: 103
  start-page: 14003
  year: 2006
  end-page: 14008
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 8
  start-page: 16043
  year: 2017
  publication-title: Nat. Commun.
– volume: 14
  start-page: 1112
  year: 1996
  end-page: 1115
  publication-title: Nat. Biotechnol.
– volume: 73
  start-page: 3358
  year: 1997
  end-page: 3370
  publication-title: Biophys. J.
– volume: 52
  start-page: 2269
  year: 2013
  end-page: 2273
  publication-title: Angew. Chem. Int. Ed.
– volume: 3
  start-page: 2816
  year: 2020
  end-page: 2826
  publication-title: ACS Appl. Bio Mater.
– volume: 135
  start-page: 13290
  year: 2013
  end-page: 13293
  publication-title: J. Am. Chem. Soc.
– volume: 1
  start-page: 0076
  year: 2017
  publication-title: Nat. Chem. Rev.
– volume: 109
  start-page: E3473
  year: 2012
  end-page: E3482
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 22
  start-page: 8445
  year: 2022
  end-page: 8454
  publication-title: Nano Lett.
– volume: 8
  start-page: 5307
  year: 2018
  publication-title: Theranostics
– volume: 48
  start-page: 2672
  year: 2009
  end-page: 2689
  publication-title: Angew. Chem. Int. Ed.
– volume: 34
  start-page: 5402
  year: 2006
  end-page: 5415
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 30582
  year: 2022
  end-page: 30594
  publication-title: ACS Appl. Mater. Interfaces
– volume: 3
  start-page: 54
  year: 2023
  publication-title: Nat. Rev. Methods Primers
– volume: 10
  start-page: 358
  year: 2014
  end-page: 364
  publication-title: Nat. Chem. Biol.
– volume: 90
  start-page: 3220
  year: 2018
  end-page: 3226
  publication-title: Anal. Chem.
– volume: 48
  start-page: 10125
  year: 2020
  end-page: 10141
  publication-title: Nucleic Acids Res.
– volume: 10
  start-page: 600
  year: 2020
  publication-title: Front. Oncol.
– volume: 33
  start-page: e138
  year: 2005
  end-page: e138
  publication-title: Nucleic Acids Res.
– volume: 37
  start-page: 3998
  year: 2018
  end-page: 4012
  publication-title: Oncogene
– volume: 25
  start-page: 158
  year: 2019
  end-page: 167
  publication-title: RNA
– volume: 51
  start-page: 11439
  year: 2023
  end-page: 11452
  publication-title: Nucleic Acids Res.
– volume: 346
  start-page: 385
  year: 2006
  end-page: 393
  publication-title: Virology
– volume: 134
  start-page: 3
  year: 2018
  end-page: 21
  publication-title: Adv. Drug Delivery Rev.
– volume: 9
  start-page: 537
  year: 2010
  end-page: 550
  publication-title: Nat. Rev. Drug Discovery
– volume: 100
  start-page: 14269
  year: 2003
  end-page: 14274
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2024
  publication-title: Angew. Chem. Int. Ed.
– volume: 26
  start-page: 442
  year: 2008
  end-page: 449
  publication-title: Trends Biotechnol.
– volume: 139
  start-page: 2627
  year: 2014
  end-page: 2640
  publication-title: Analyst
– volume: 59
  start-page: 5293
  year: 2020
  end-page: 5297
  publication-title: Angew. Chem. Int. Ed.
– volume: 9
  start-page: 1
  year: 2014
  end-page: 11
  publication-title: Infect. Agents Cancer
– volume: 135
  start-page: 18644
  year: 2013
  end-page: 18650
  publication-title: J. Am. Chem. Soc.
– volume: 76
  start-page: 2
  year: 2016
  end-page: 19
  publication-title: Biosens. Bioelectron.
– ident: e_1_2_8_10_2
  doi: 10.1016/j.bios.2015.06.040
– ident: e_1_2_8_42_2
  doi: 10.1016/j.virol.2005.11.021
– ident: e_1_2_8_32_2
  doi: 10.1038/nchembio.1479
– ident: e_1_2_8_59_1
– ident: e_1_2_8_16_1
  doi: 10.1021/acsami.0c05750
– ident: e_1_2_8_35_2
  doi: 10.1038/s41467-017-02282-w
– ident: e_1_2_8_37_1
  doi: 10.1016/j.cell.2022.08.026
– ident: e_1_2_8_65_1
  doi: 10.1002/path.4448
– ident: e_1_2_8_38_1
  doi: 10.1186/1750-9378-9-38
– ident: e_1_2_8_51_2
  doi: 10.1016/S0006-3495(97)78360-7
– ident: e_1_2_8_54_1
  doi: 10.1038/nrg3939
– ident: e_1_2_8_40_2
  doi: 10.3389/fonc.2020.00600
– ident: e_1_2_8_69_1
– ident: e_1_2_8_50_2
  doi: 10.1016/0006-291X(90)92116-H
– ident: e_1_2_8_43_2
  doi: 10.5483/BMBRep.2016.49.4.260
– ident: e_1_2_8_55_1
  doi: 10.1002/anie.201206522
– ident: e_1_2_8_7_2
  doi: 10.1002/anie.200804643
– ident: e_1_2_8_66_1
  doi: 10.1128/jvi.70.1.623-627.1996
– ident: e_1_2_8_70_2
  doi: 10.1007/978-1-0716-3056-3_17
– ident: e_1_2_8_29_2
  doi: 10.1093/nar/gkad900
– ident: e_1_2_8_64_1
  doi: 10.1002/(SICI)1097-0215(19970207)70:4<443::AID-IJC12>3.0.CO;2-G
– ident: e_1_2_8_63_1
  doi: 10.1038/s41467-018-06889-5
– ident: e_1_2_8_41_2
  doi: 10.7150/thno.26823
– ident: e_1_2_8_17_1
  doi: 10.1016/j.tibtech.2023.05.005
– ident: e_1_2_8_12_1
– ident: e_1_2_8_23_2
  doi: 10.1038/nbt0996-1112
– ident: e_1_2_8_24_1
  doi: 10.1093/nar/gkl655
– ident: e_1_2_8_53_1
  doi: 10.1002/ange.201603562
– year: 2024
  ident: e_1_2_8_73_1
  publication-title: Angew. Chem. Int. Ed.
– ident: e_1_2_8_11_2
  doi: 10.1016/S0734-9750(97)00003-7
– start-page: 154
  volume-title: Seminars in cancer biology, Vol. 22
  year: 2012
  ident: e_1_2_8_68_1
– ident: e_1_2_8_58_2
  doi: 10.1021/acs.analchem.7b04666
– ident: e_1_2_8_15_1
  doi: 10.1039/c4an00132j
– ident: e_1_2_8_45_1
  doi: 10.1093/nar/gkg595
– ident: e_1_2_8_6_2
  doi: 10.1016/j.addr.2018.04.007
– ident: e_1_2_8_31_2
  doi: 10.1038/ncomms16043
– ident: e_1_2_8_18_1
  doi: 10.1021/ja00051a001
– ident: e_1_2_8_56_1
– ident: e_1_2_8_27_2
  doi: 10.1002/anie.201914955
– ident: e_1_2_8_13_2
  doi: 10.1016/j.tibtech.2008.04.006
– ident: e_1_2_8_39_1
– ident: e_1_2_8_60_2
  doi: 10.1142/S1088424619300179
– ident: e_1_2_8_25_1
– ident: e_1_2_8_33_1
– ident: e_1_2_8_67_1
  doi: 10.1128/JVI.02142-07
– ident: e_1_2_8_4_2
  doi: 10.1021/ja4094617
– ident: e_1_2_8_1_1
– ident: e_1_2_8_14_2
  doi: 10.1021/acs.nanolett.2c02489
– ident: e_1_2_8_36_2
  doi: 10.1038/s41388-018-0147-x
– ident: e_1_2_8_5_1
– ident: e_1_2_8_44_2
  doi: 10.1073/pnas.2336099100
– ident: e_1_2_8_61_2
  doi: 10.1093/nar/gni134
– ident: e_1_2_8_2_2
  doi: 10.1038/nrd3141
– ident: e_1_2_8_52_2
  doi: 10.1073/pnas.0908332106
– ident: e_1_2_8_19_1
– ident: e_1_2_8_20_2
  doi: 10.1021/acsabm.0c00062
– ident: e_1_2_8_21_2
  doi: 10.1038/ncomms7481
– ident: e_1_2_8_22_2
  doi: 10.1021/ja406634g
– ident: e_1_2_8_34_2
  doi: 10.1128/JVI.01606-13
– ident: e_1_2_8_46_1
– ident: e_1_2_8_62_1
  doi: 10.1002/(SICI)1097-0215(19990924)83:1<121::AID-IJC21>3.0.CO;2-F
– ident: e_1_2_8_72_1
  doi: 10.1073/pnas.1202637109
– ident: e_1_2_8_8_1
– ident: e_1_2_8_30_1
– ident: e_1_2_8_47_2
  doi: 10.1073/pnas.0606409103
– ident: e_1_2_8_71_2
  doi: 10.1039/D1AY01624E
– ident: e_1_2_8_9_2
  doi: 10.1038/s43586-023-00238-7
– ident: e_1_2_8_48_2
  doi: 10.1261/rna.068684.118
– ident: e_1_2_8_28_2
  doi: 10.1021/acsami.2c06390
– ident: e_1_2_8_3_2
  doi: 10.1038/s41570-017-0076
– ident: e_1_2_8_49_1
– ident: e_1_2_8_57_2
  doi: 10.1038/srep09255
– ident: e_1_2_8_26_2
  doi: 10.1093/nar/gkaa759
– ident: e_1_2_8_74_1
  doi: 10.1016/j.tibtech.2017.06.012
SSID ssj0006279
Score 2.2811167
Snippet L‐RNA aptamers have been developed to target G‐quadruplexes (G4s) and regulate G4‐mediated gene expression. However, the aptamer selection process is laborious...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Affinity
Alzheimer's disease
Amyloid precursor protein
Aptamers
Binding
Cancer
EBNA1 rG4
Epstein-Barr virus
G-quadruplexes
Gene expression
gene regulation
Hepatitis C
nucleic acids
Proteins
Ribonucleic acid
RNA
RNA viruses
Robustness
Toxicity
Title Pre‐Defined Stem‐Loop Structure Library for the Discovery of L‐RNA Aptamers that Target RNA G‐Quadruplexes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fange.202417247
https://www.proquest.com/docview/3160714605
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVQL3BhR5RNPiBxcps6XppjxVahUrEUqbfIjh0JAW3VpBJw4hP4Rr6EcZYuXJDgaMWTxJ5x5tmZeYPQccCpZV5siNc0AWFMa6J9oUlTg0AARsKzcj7XXdF-YFd93p_L4s_5IaYHbm5lZN9rt8CVTuoz0lAXew_7O_BAkjKXTu4CthwqupvxRwmak-15jJEmbDRK1kaP1hfFF73SDGrOA9bM41ysIVW-ax5o8lSbpLoWvf-gcfzPYNbRagFHcSu3nw20ZAebaPm0rAK3hcY3Y_v18XlmY3iGwfepfYFmZzgc4fuMenYytrhIfsAAgDEASnz2mEQuNPQND2Pcgf533RZujVLlDsmhh0pxL4tAx-7CJXS4nSgznoye7atNtlHv4rx32iZFnQYSNbiUhEeA2yLBqceNaQpPWpeb7mlAnr4CF6mVZBE1QvmGx67IjWDcBCwQMWhMGH8HVQbDgd1FmEdc-sxIMBnJFIs0UyY2TPgNrrSORRWdlGoKRzkbR5jzLtPQTWE4ncIqOii1GBarMgn9jE3P_QmuIpqp45e7hK3u5fm0tfcXoX20Ql3JYK9BqDxAFVCNPQQck-qjzFa_AYHw7MQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFH6CcigXtvFDlHWbD0icDKnjH82xokA3SgWlSNwiO3YkBLRVm0qw0_6E_Y37S_acNO3ggsSOVuwk9nvO--w8fx_AfiSY40FqadC0EeXcGGpCaWjTYIMInUTkcj4XPdm54T9uRZlN6M_CFPwQiw03PzPy77Wf4H5D-mjJGuqT73GBhyFIMa5WYc3LensRg3Z_ySAlWUG3F3BOm7jUKHkbA3b0sv3LuLQEm_9C1jzmnH4AU75tkWpyfzjLzGHy8xWR43915yNszBEpaRUu9AlW3HATqselENwWTC4n7s-v322X4kMsuc7cIxa7o9GYXOfss7OJI_PzDwQxMEFMSdp308Rnhz6TUUq6WL_fa5HWONN-nxxr6IwM8iR04i-cYYWrmbaT2fjBPbnpNgxOTwbHHTqXaqBJQyhFRYLQLZGCBcLapgyU88fTA4PgM9QYJY1WPGFW6tCK1OvcSC5sxCOZhggobbgDleFo6HaBiESokFuFXqO45onh2qaWy7AhtDGprMFBaad4XBByxAX1Mov9EMaLIaxBvTRjPJ-Y0zjMCfX8z-AasNweb9wlbvXOThalvfc0-gbVzuCiG3e_984_wzrzCsJBgzJVhwqayX1BWJOZr7nj_gVNOfDe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB6xIO1yWWBZRJeXD0h7MqSOH82xopRXqXh0JW6RHTsSAtqoTaVdTvwEfiO_hHHStMBlpd2jFU8Se2Yyn53xNwC7kWCOB6mlQcNGlHNjqAmloQ2DAhEaiSjK-Zx35fEvfnojbt6c4i_5IaYbbt4ziu-1d_DMpvsz0lCfe4_rO4xAinH1CRa4RI_xsOhqRiAlWcm2F3BOG7jSqGgbA7b_Xv59WJphzbeItQg57SXQ1cuWmSZ3e-Pc7CWPH3gc_2c0y_B1gkdJszSgFZhz_W_w5aAqA7cKw4uhe3l6brkUn2HJde4esNkZDDJyXXDPjoeOTE4_EETABBElad2OEp8b-ocMUtLB_lfdJmlmufa75NhD56RXpKATf-EIO1yOtR2Os3v3242-Q6992Ds4ppNCDTSpC6WoSBC4JVKwQFjbkIFy_nB6YBB6hhpjpNGKJ8xKHVqR-io3kgsb8UimIcJJG67BfH_Qd-tARCJUyK1Cm1Fc88RwbVPLZVgX2phU1uBnpaY4K-k44pJ4mcV-CuPpFNZgs9JiPHHLURwWdHr-V3ANWKGOv9wlbnaPDqetH_8itAOfL1rtuHPSPduARebLBwd1ytQmzKOW3BZimtxsF2b7CqLg75Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pre%E2%80%90Defined+Stem%E2%80%90Loop+Structure+Library+for+the+Discovery+of+L%E2%80%90RNA+Aptamers+that+Target+RNA+G%E2%80%90Quadruplexes&rft.jtitle=Angewandte+Chemie&rft.au=Ji%2C+Danyang&rft.au=Wang%2C+Bo&rft.au=Lo%2C+Kwok+Wai&rft.au=Tsang%2C+Chi+Man&rft.date=2025-01-27&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0044-8249&rft.eissn=1521-3757&rft.volume=137&rft.issue=5&rft_id=info:doi/10.1002%2Fange.202417247&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0044-8249&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0044-8249&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0044-8249&client=summon