An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis
We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as...
Saved in:
Published in | Advances in computational mathematics Vol. 51; no. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as the frequency approaches zero, ensuring that there is no low-frequency breakdown. The system is derived from a formulation we introduced in our previous work, which required additional integral constraints to ensure well-posedness across all frequencies. In this study, we eliminate those constraints and demonstrate that our new self-adjoint, constraints-free linear system—expressed in the desirable form of an identity plus a compact weakly-singular operator—is stable for all frequencies. Furthermore, we propose and analyze a fully discrete numerical method for these systems and provide a proof of spectrally accurate convergence for the computational method. We also computationally demonstrate the high-order accuracy of the algorithm using benchmark scatterers with curved surfaces. |
---|---|
AbstractList | We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as the frequency approaches zero, ensuring that there is no low-frequency breakdown. The system is derived from a formulation we introduced in our previous work, which required additional integral constraints to ensure well-posedness across all frequencies. In this study, we eliminate those constraints and demonstrate that our new self-adjoint, constraints-free linear system—expressed in the desirable form of an identity plus a compact weakly-singular operator—is stable for all frequencies. Furthermore, we propose and analyze a fully discrete numerical method for these systems and provide a proof of spectrally accurate convergence for the computational method. We also computationally demonstrate the high-order accuracy of the algorithm using benchmark scatterers with curved surfaces. |
ArticleNumber | 6 |
Author | Hawkins, Stuart C. Volkov, Darko Ganesh, Mahadevan |
Author_xml | – sequence: 1 givenname: Mahadevan orcidid: 0000-0002-7792-4119 surname: Ganesh fullname: Ganesh, Mahadevan – sequence: 2 givenname: Stuart C. surname: Hawkins fullname: Hawkins, Stuart C. – sequence: 3 givenname: Darko surname: Volkov fullname: Volkov, Darko |
BookMark | eNotkMtORCEMQInRxOcPuCJxjQLD3Ie7yfhMNG50TbhQzDUMjJSJzk4_w9_zS0THVZv2tGnPPtmOKQIhx4KfCs7bMxRcKcW4VExwKTqmtsiemLaS9bWxXXMuetaKptsl-4gvnPO-aad75HMWqQmB-QyvK4h2TbGYIQAdY4HnbALFNRZYUJ8yvTfvbxDC98cX0oqbMqaIlaQTdkGXEKHkv9kFuNGcU5tiGeMqrZCa6Kgb0WYotZ0chFoyYY0jHpIdbwLC0X88IE9Xl4_zG3b3cH07n90xK6ZNYd47abwS4IVroOuFcr5X3EshB9v51lvpOmF6rwbTNQ6M54OxQ2vdtEKSTw7IyWbvMqf6Khb9kla5HoF6Ilre865pZaXkhrI5IWbwepnHhclrLbj-Va03qnVVrf9UazX5Afxxd4g |
Cites_doi | 10.1002/cpa.20313 10.1007/978-3-662-11773-6 10.1007/978-3-540-68093-2 10.1002/cpa.21420 10.1137/S0036139998348979 10.1364/AO.45.006030 10.1364/AO.39.001026 10.1137/1.9780898719291 10.1007/978-3-642-58175-5_2 10.1016/j.camwa.2022.10.018 10.1016/j.jmaa.2013.10.059 10.1017/S0962492904000212 10.1016/j.jcp.2019.108881 10.1007/s10543-020-00820-5 10.1364/AO.19.001505 10.1109/TAP.2005.856313 10.1109/TAP.2007.910363 10.1016/0030-4018(94)90731-5 10.1049/SBEW524E 10.1007/978-3-030-30351-8 10.1007/BF01328780 10.1006/jath.1999.3426 10.1137/090779462 10.1007/978-3-642-36745-8 10.1137/1.9781611973167 10.1007/s11075-006-9033-7 10.1007/s10444-021-09904-4 10.1145/50063.214386 10.1137/0519043 10.1016/j.jcp.2007.11.024 10.1364/OE.19.011138 10.1007/978-1-4757-4393-7 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-024-10218-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
ExternalDocumentID | 10_1007_s10444_024_10218_4 |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX ABRTQ |
ID | FETCH-LOGICAL-c156t-ffd2af41ef1d6e8914df940f212bc8f7fc2d81a9f4ba86deaf0bacb7cd50f2203 |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 09:48:18 EDT 2025 Tue Jul 01 05:28:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c156t-ffd2af41ef1d6e8914df940f212bc8f7fc2d81a9f4ba86deaf0bacb7cd50f2203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7792-4119 |
PQID | 3170908672 |
PQPubID | 2043875 |
ParticipantIDs | proquest_journals_3170908672 crossref_primary_10_1007_s10444_024_10218_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-01 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | D Colton (10218_CR21) 2013 MI Mishchenko (10218_CR26) 1994; 109 C Epstein (10218_CR13) 2009; 63 A-W Maue (10218_CR12) 1949; 126 10218_CR32 J Helsing (10218_CR36) 2022; 128 10218_CR31 WJ Wiscombe (10218_CR30) 1990; 19 P Ylä-Oijala (10218_CR17) 2005; 53 10218_CR35 10218_CR1 10218_CR2 M Ganesh (10218_CR19) 2006; 43 10218_CR3 M Costabel (10218_CR20) 1988; 19 D Colton (10218_CR6) 2019 J-C Nédélec (10218_CR7) 2001 IH Sloan (10218_CR29) 2000 M Taskinen (10218_CR18) 2007; 55 M Ganesh (10218_CR11) 2014; 412 C Müller (10218_CR9) 1969 M Kahnert (10218_CR27) 2011; 19 C Epstein (10218_CR14) 2013; 66 10218_CR4 J Helsing (10218_CR16) 2021; 47 10218_CR8 10218_CR23 10218_CR22 A Buffa (10218_CR10) 2000; 60 10218_CR24 T Rother (10218_CR28) 2006; 45 M Benzi (10218_CR25) 2005; 14 M Costabel (10218_CR5) 2011; 71 M Ganesh (10218_CR15) 2019; 398 J Helsing (10218_CR34) 2008; 227 MI Mishchenko (10218_CR33) 2000; 39 |
References_xml | – volume: 63 start-page: 413 year: 2009 ident: 10218_CR13 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.20313 – volume-title: Foundations of the Mathematical Theory of Electromagnetic Waves year: 1969 ident: 10218_CR9 doi: 10.1007/978-3-662-11773-6 – ident: 10218_CR24 doi: 10.1007/978-3-540-68093-2 – volume: 66 start-page: 753 year: 2013 ident: 10218_CR14 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.21420 – ident: 10218_CR8 – ident: 10218_CR2 – volume: 60 start-page: 1805 issue: 5 year: 2000 ident: 10218_CR10 publication-title: SIAM J. Appl. Math. doi: 10.1137/S0036139998348979 – ident: 10218_CR23 – volume: 45 start-page: 6030 year: 2006 ident: 10218_CR28 publication-title: Appl. Opt. doi: 10.1364/AO.45.006030 – volume: 39 start-page: 1026 year: 2000 ident: 10218_CR33 publication-title: Appl. Opt. doi: 10.1364/AO.39.001026 – ident: 10218_CR1 doi: 10.1137/1.9780898719291 – ident: 10218_CR22 doi: 10.1007/978-3-642-58175-5_2 – volume: 128 start-page: 145 year: 2022 ident: 10218_CR36 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2022.10.018 – volume: 412 start-page: 277 issue: 1 year: 2014 ident: 10218_CR11 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2013.10.059 – volume: 14 start-page: 1 year: 2005 ident: 10218_CR25 publication-title: Acta Numer. doi: 10.1017/S0962492904000212 – volume: 398 start-page: 10881 year: 2019 ident: 10218_CR15 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.108881 – ident: 10218_CR35 doi: 10.1007/s10543-020-00820-5 – volume: 19 start-page: 1505 year: 1990 ident: 10218_CR30 publication-title: Appl. Opt. doi: 10.1364/AO.19.001505 – volume: 53 start-page: 3316 year: 2005 ident: 10218_CR17 publication-title: IEEE Antennas and Propagation doi: 10.1109/TAP.2005.856313 – volume: 55 start-page: 3495 year: 2007 ident: 10218_CR18 publication-title: IEEE Antennas and Propagation doi: 10.1109/TAP.2007.910363 – volume: 109 start-page: 16 year: 1994 ident: 10218_CR26 publication-title: Opt. Commun. doi: 10.1016/0030-4018(94)90731-5 – ident: 10218_CR3 doi: 10.1049/SBEW524E – volume-title: Inverse Acoustic and Electromagnetic Scattering Theory year: 2019 ident: 10218_CR6 doi: 10.1007/978-3-030-30351-8 – volume: 126 start-page: 601 year: 1949 ident: 10218_CR12 publication-title: Z. Physik doi: 10.1007/BF01328780 – volume-title: Constructive polynomial approximation on the sphere year: 2000 ident: 10218_CR29 doi: 10.1006/jath.1999.3426 – volume: 71 start-page: 635 year: 2011 ident: 10218_CR5 publication-title: SIAM J. Appl. Math. doi: 10.1137/090779462 – ident: 10218_CR32 – ident: 10218_CR4 doi: 10.1007/978-3-642-36745-8 – volume-title: Integral Equation Methods in Scattering Theory year: 2013 ident: 10218_CR21 doi: 10.1137/1.9781611973167 – volume: 43 start-page: 25 year: 2006 ident: 10218_CR19 publication-title: Numer. Algorithms doi: 10.1007/s11075-006-9033-7 – volume: 47 start-page: 76 year: 2021 ident: 10218_CR16 publication-title: Adv. Comput. Math. doi: 10.1007/s10444-021-09904-4 – ident: 10218_CR31 doi: 10.1145/50063.214386 – volume: 19 start-page: 613 year: 1988 ident: 10218_CR20 publication-title: SIAM J. Math. Anal. doi: 10.1137/0519043 – volume: 227 start-page: 2899 year: 2008 ident: 10218_CR34 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.11.024 – volume: 19 start-page: 11138 year: 2011 ident: 10218_CR27 publication-title: Opt. Express doi: 10.1364/OE.19.011138 – volume-title: Acoustic and Electromagnetic Equations year: 2001 ident: 10218_CR7 doi: 10.1007/978-1-4757-4393-7 |
SSID | ssj0009675 |
Score | 2.3812482 |
Snippet | We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Algorithms Constraints Integral equations Linear operators Linear systems Mathematics Maxwell's equations Numerical methods Operators (mathematics) Well posed problems |
Title | An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis |
URI | https://www.proquest.com/docview/3170908672 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4EDjwXEPkA-cKuMEsd5ccvCViu0LZdW6i2yHVtCKmHVZiXgBD9j_x6_ZMevZLMgBFyiyk3dKPN1MjOd7xuEXsVNpKjIEqKEqValUpGylJwYaRApE8HzxiSK80V2tmLv1-l6mLFp2SWdeC2__ZZX8j9WhTWwq2HJ_oNl-01hAV6DfeEIFobjX9m4aqd8syF66_qhv5rCgGFCeQ2Ijddptq2Ec_7FNkD75oZyN4UPDZ3kCXk3vQC_123tDpZQYqoFppX9Y3tpGmVNid2QeLcQZ7sJOrDkJE1uhriV6yqwu0o7MyLUGz_1ErGjYgNNQ3_yrWKj6aQ2_2_0ZBjrOyFaJJB-OXeqvD_NKSkjJ_EYHK5XmL0BrF_8eBR4zYwxuAZGzATywvOBRqLZiw_1bHV-Xi9P18u7aI9CtkAnaK-anZwsBvXlzCou91fo2VOeQ3nrO8YRyvgBbaOO5SP0wKcLuHK2f4zuqHYfPfSpA_aOebeP7s-He_sE_ahaPAIGdsDAARjYAQMDMLAHxs_vVzvcQwLOxAAJPEACW0i8wQMgMAACB0BgCwgcAPEUrWany7dnxM_aIBIy-I5o3VCuWax03GSqKGPW6JJFGiIbIQuda0mbIualZoIXWaO4jgSXIpdNCifRKHmGJu3nVj1HOJM5E3mk0pRzxhszgYCWHB6sKskiXvADNA33t75wkir1IJ5trFGDNWprjZodoONggtr_9HY1BL1RCcl4Tg___PYRujfA-BhNuu2legFRZCdeeoxcA0Z_d4Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+all-frequency+stable+integral+system+for+Maxwell%E2%80%99s+equations+in+3-D+penetrable+media%3A+continuous+and+discrete+model+analysis&rft.jtitle=Advances+in+computational+mathematics&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-024-10218-4&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |