An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis

We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 51; no. 1
Main Authors Ganesh, Mahadevan, Hawkins, Stuart C., Volkov, Darko
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as the frequency approaches zero, ensuring that there is no low-frequency breakdown. The system is derived from a formulation we introduced in our previous work, which required additional integral constraints to ensure well-posedness across all frequencies. In this study, we eliminate those constraints and demonstrate that our new self-adjoint, constraints-free linear system—expressed in the desirable form of an identity plus a compact weakly-singular operator—is stable for all frequencies. Furthermore, we propose and analyze a fully discrete numerical method for these systems and provide a proof of spectrally accurate convergence for the computational method. We also computationally demonstrate the high-order accuracy of the algorithm using benchmark scatterers with curved surfaces.
AbstractList We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features, both of which we prove. First, it is well-posed at all frequencies. Second, the underlying linear operator has a uniformly bounded inverse as the frequency approaches zero, ensuring that there is no low-frequency breakdown. The system is derived from a formulation we introduced in our previous work, which required additional integral constraints to ensure well-posedness across all frequencies. In this study, we eliminate those constraints and demonstrate that our new self-adjoint, constraints-free linear system—expressed in the desirable form of an identity plus a compact weakly-singular operator—is stable for all frequencies. Furthermore, we propose and analyze a fully discrete numerical method for these systems and provide a proof of spectrally accurate convergence for the computational method. We also computationally demonstrate the high-order accuracy of the algorithm using benchmark scatterers with curved surfaces.
ArticleNumber 6
Author Hawkins, Stuart C.
Volkov, Darko
Ganesh, Mahadevan
Author_xml – sequence: 1
  givenname: Mahadevan
  orcidid: 0000-0002-7792-4119
  surname: Ganesh
  fullname: Ganesh, Mahadevan
– sequence: 2
  givenname: Stuart C.
  surname: Hawkins
  fullname: Hawkins, Stuart C.
– sequence: 3
  givenname: Darko
  surname: Volkov
  fullname: Volkov, Darko
BookMark eNotkMtORCEMQInRxOcPuCJxjQLD3Ie7yfhMNG50TbhQzDUMjJSJzk4_w9_zS0THVZv2tGnPPtmOKQIhx4KfCs7bMxRcKcW4VExwKTqmtsiemLaS9bWxXXMuetaKptsl-4gvnPO-aad75HMWqQmB-QyvK4h2TbGYIQAdY4HnbALFNRZYUJ8yvTfvbxDC98cX0oqbMqaIlaQTdkGXEKHkv9kFuNGcU5tiGeMqrZCa6Kgb0WYotZ0chFoyYY0jHpIdbwLC0X88IE9Xl4_zG3b3cH07n90xK6ZNYd47abwS4IVroOuFcr5X3EshB9v51lvpOmF6rwbTNQ6M54OxQ2vdtEKSTw7IyWbvMqf6Khb9kla5HoF6Ilre865pZaXkhrI5IWbwepnHhclrLbj-Va03qnVVrf9UazX5Afxxd4g
Cites_doi 10.1002/cpa.20313
10.1007/978-3-662-11773-6
10.1007/978-3-540-68093-2
10.1002/cpa.21420
10.1137/S0036139998348979
10.1364/AO.45.006030
10.1364/AO.39.001026
10.1137/1.9780898719291
10.1007/978-3-642-58175-5_2
10.1016/j.camwa.2022.10.018
10.1016/j.jmaa.2013.10.059
10.1017/S0962492904000212
10.1016/j.jcp.2019.108881
10.1007/s10543-020-00820-5
10.1364/AO.19.001505
10.1109/TAP.2005.856313
10.1109/TAP.2007.910363
10.1016/0030-4018(94)90731-5
10.1049/SBEW524E
10.1007/978-3-030-30351-8
10.1007/BF01328780
10.1006/jath.1999.3426
10.1137/090779462
10.1007/978-3-642-36745-8
10.1137/1.9781611973167
10.1007/s11075-006-9033-7
10.1007/s10444-021-09904-4
10.1145/50063.214386
10.1137/0519043
10.1016/j.jcp.2007.11.024
10.1364/OE.19.011138
10.1007/978-1-4757-4393-7
ContentType Journal Article
Copyright Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10444-024-10218-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
ExternalDocumentID 10_1007_s10444_024_10218_4
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
MK~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
ABRTQ
ID FETCH-LOGICAL-c156t-ffd2af41ef1d6e8914df940f212bc8f7fc2d81a9f4ba86deaf0bacb7cd50f2203
ISSN 1019-7168
IngestDate Fri Jul 25 09:48:18 EDT 2025
Tue Jul 01 05:28:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c156t-ffd2af41ef1d6e8914df940f212bc8f7fc2d81a9f4ba86deaf0bacb7cd50f2203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7792-4119
PQID 3170908672
PQPubID 2043875
ParticipantIDs proquest_journals_3170908672
crossref_primary_10_1007_s10444_024_10218_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References D Colton (10218_CR21) 2013
MI Mishchenko (10218_CR26) 1994; 109
C Epstein (10218_CR13) 2009; 63
A-W Maue (10218_CR12) 1949; 126
10218_CR32
J Helsing (10218_CR36) 2022; 128
10218_CR31
WJ Wiscombe (10218_CR30) 1990; 19
P Ylä-Oijala (10218_CR17) 2005; 53
10218_CR35
10218_CR1
10218_CR2
M Ganesh (10218_CR19) 2006; 43
10218_CR3
M Costabel (10218_CR20) 1988; 19
D Colton (10218_CR6) 2019
J-C Nédélec (10218_CR7) 2001
IH Sloan (10218_CR29) 2000
M Taskinen (10218_CR18) 2007; 55
M Ganesh (10218_CR11) 2014; 412
C Müller (10218_CR9) 1969
M Kahnert (10218_CR27) 2011; 19
C Epstein (10218_CR14) 2013; 66
10218_CR4
J Helsing (10218_CR16) 2021; 47
10218_CR8
10218_CR23
10218_CR22
A Buffa (10218_CR10) 2000; 60
10218_CR24
T Rother (10218_CR28) 2006; 45
M Benzi (10218_CR25) 2005; 14
M Costabel (10218_CR5) 2011; 71
M Ganesh (10218_CR15) 2019; 398
J Helsing (10218_CR34) 2008; 227
MI Mishchenko (10218_CR33) 2000; 39
References_xml – volume: 63
  start-page: 413
  year: 2009
  ident: 10218_CR13
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20313
– volume-title: Foundations of the Mathematical Theory of Electromagnetic Waves
  year: 1969
  ident: 10218_CR9
  doi: 10.1007/978-3-662-11773-6
– ident: 10218_CR24
  doi: 10.1007/978-3-540-68093-2
– volume: 66
  start-page: 753
  year: 2013
  ident: 10218_CR14
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.21420
– ident: 10218_CR8
– ident: 10218_CR2
– volume: 60
  start-page: 1805
  issue: 5
  year: 2000
  ident: 10218_CR10
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139998348979
– ident: 10218_CR23
– volume: 45
  start-page: 6030
  year: 2006
  ident: 10218_CR28
  publication-title: Appl. Opt.
  doi: 10.1364/AO.45.006030
– volume: 39
  start-page: 1026
  year: 2000
  ident: 10218_CR33
  publication-title: Appl. Opt.
  doi: 10.1364/AO.39.001026
– ident: 10218_CR1
  doi: 10.1137/1.9780898719291
– ident: 10218_CR22
  doi: 10.1007/978-3-642-58175-5_2
– volume: 128
  start-page: 145
  year: 2022
  ident: 10218_CR36
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2022.10.018
– volume: 412
  start-page: 277
  issue: 1
  year: 2014
  ident: 10218_CR11
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2013.10.059
– volume: 14
  start-page: 1
  year: 2005
  ident: 10218_CR25
  publication-title: Acta Numer.
  doi: 10.1017/S0962492904000212
– volume: 398
  start-page: 10881
  year: 2019
  ident: 10218_CR15
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.108881
– ident: 10218_CR35
  doi: 10.1007/s10543-020-00820-5
– volume: 19
  start-page: 1505
  year: 1990
  ident: 10218_CR30
  publication-title: Appl. Opt.
  doi: 10.1364/AO.19.001505
– volume: 53
  start-page: 3316
  year: 2005
  ident: 10218_CR17
  publication-title: IEEE Antennas and Propagation
  doi: 10.1109/TAP.2005.856313
– volume: 55
  start-page: 3495
  year: 2007
  ident: 10218_CR18
  publication-title: IEEE Antennas and Propagation
  doi: 10.1109/TAP.2007.910363
– volume: 109
  start-page: 16
  year: 1994
  ident: 10218_CR26
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(94)90731-5
– ident: 10218_CR3
  doi: 10.1049/SBEW524E
– volume-title: Inverse Acoustic and Electromagnetic Scattering Theory
  year: 2019
  ident: 10218_CR6
  doi: 10.1007/978-3-030-30351-8
– volume: 126
  start-page: 601
  year: 1949
  ident: 10218_CR12
  publication-title: Z. Physik
  doi: 10.1007/BF01328780
– volume-title: Constructive polynomial approximation on the sphere
  year: 2000
  ident: 10218_CR29
  doi: 10.1006/jath.1999.3426
– volume: 71
  start-page: 635
  year: 2011
  ident: 10218_CR5
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/090779462
– ident: 10218_CR32
– ident: 10218_CR4
  doi: 10.1007/978-3-642-36745-8
– volume-title: Integral Equation Methods in Scattering Theory
  year: 2013
  ident: 10218_CR21
  doi: 10.1137/1.9781611973167
– volume: 43
  start-page: 25
  year: 2006
  ident: 10218_CR19
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-006-9033-7
– volume: 47
  start-page: 76
  year: 2021
  ident: 10218_CR16
  publication-title: Adv. Comput. Math.
  doi: 10.1007/s10444-021-09904-4
– ident: 10218_CR31
  doi: 10.1145/50063.214386
– volume: 19
  start-page: 613
  year: 1988
  ident: 10218_CR20
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0519043
– volume: 227
  start-page: 2899
  year: 2008
  ident: 10218_CR34
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.11.024
– volume: 19
  start-page: 11138
  year: 2011
  ident: 10218_CR27
  publication-title: Opt. Express
  doi: 10.1364/OE.19.011138
– volume-title: Acoustic and Electromagnetic Equations
  year: 2001
  ident: 10218_CR7
  doi: 10.1007/978-1-4757-4393-7
SSID ssj0009675
Score 2.3812482
Snippet We introduce a new system of surface integral equations for Maxwell’s transmission problem in three dimensions (3-D). This system has two remarkable features,...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Constraints
Integral equations
Linear operators
Linear systems
Mathematics
Maxwell's equations
Numerical methods
Operators (mathematics)
Well posed problems
Title An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis
URI https://www.proquest.com/docview/3170908672
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELage4EDjwXEPkA-cKuMEsd5ccvCViu0LZdW6i2yHVtCKmHVZiXgBD9j_x6_ZMevZLMgBFyiyk3dKPN1MjOd7xuEXsVNpKjIEqKEqValUpGylJwYaRApE8HzxiSK80V2tmLv1-l6mLFp2SWdeC2__ZZX8j9WhTWwq2HJ_oNl-01hAV6DfeEIFobjX9m4aqd8syF66_qhv5rCgGFCeQ2Ijddptq2Ec_7FNkD75oZyN4UPDZ3kCXk3vQC_123tDpZQYqoFppX9Y3tpGmVNid2QeLcQZ7sJOrDkJE1uhriV6yqwu0o7MyLUGz_1ErGjYgNNQ3_yrWKj6aQ2_2_0ZBjrOyFaJJB-OXeqvD_NKSkjJ_EYHK5XmL0BrF_8eBR4zYwxuAZGzATywvOBRqLZiw_1bHV-Xi9P18u7aI9CtkAnaK-anZwsBvXlzCou91fo2VOeQ3nrO8YRyvgBbaOO5SP0wKcLuHK2f4zuqHYfPfSpA_aOebeP7s-He_sE_ahaPAIGdsDAARjYAQMDMLAHxs_vVzvcQwLOxAAJPEACW0i8wQMgMAACB0BgCwgcAPEUrWany7dnxM_aIBIy-I5o3VCuWax03GSqKGPW6JJFGiIbIQuda0mbIualZoIXWaO4jgSXIpdNCifRKHmGJu3nVj1HOJM5E3mk0pRzxhszgYCWHB6sKskiXvADNA33t75wkir1IJ5trFGDNWprjZodoONggtr_9HY1BL1RCcl4Tg___PYRujfA-BhNuu2legFRZCdeeoxcA0Z_d4Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+all-frequency+stable+integral+system+for+Maxwell%E2%80%99s+equations+in+3-D+penetrable+media%3A+continuous+and+discrete+model+analysis&rft.jtitle=Advances+in+computational+mathematics&rft.date=2025-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=51&rft.issue=1&rft_id=info:doi/10.1007%2Fs10444-024-10218-4&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon