Towards an efficient scheduling strategy based on multi-objective optimization in fog environments

Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and intelligent transportation, due to their diverse and often critical nature. Meeting QoS requirements is crucial for IoT applications due to their d...

Full description

Saved in:
Bibliographic Details
Published inComputing Vol. 107; no. 3; p. 90
Main Authors Nie, Guolei, Rezvani, Elaheh
Format Journal Article
LanguageEnglish
Published Wien Springer Nature B.V 01.03.2025
Subjects
Online AccessGet full text
ISSN0010-485X
1436-5057
DOI10.1007/s00607-025-01448-5

Cover

Abstract Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and intelligent transportation, due to their diverse and often critical nature. Meeting QoS requirements is crucial for IoT applications due to their diverse and often critical nature. Ensuring high QoS guarantees that these applications function smoothly and efficiently, leading to enhanced user experiences and system reliability. With the rapid growth of the IoT and the increasing demand for data processing near the source, fog computing environments emerged as an intermediate layer between cloud and edge devices. Hence, robust QoS management is essential for IoT systems’ successful deployment and operation. Meanwhile, utilizing computing resources in the cloud-fog ecosystem is increasingly important and requires an efficient workflow scheduling strategy. This paper proposes an efficient Workflow Scheduling strategy based on Multi-objective Optimization considering Pareto front in fog environments (WSMOP) to address this issue. Our strategy addresses the challenges of resource management and workflow scheduling in fog environments by optimizing multiple objectives, including makespan (total time needed to complete all tasks), energy consumption, latency, throughput, and resource utilization. WSMOP uses an advanced meta-heuristic technique named Open-Source Development Model Algorithm (ODMA) for optimization work. We used the CloudSim simulator for performance evaluation, comparing WSMOP against advanced methods, including NSGA-II, AOAM, HDSOS-GOA, PSO-SA, and BAHA-KHA. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our proposed strategy in enhancing overall system performance and meeting QoS demands in fog computing scenarios. Specifically, WSMOP reduces the average makespan and energy consumption by 1.5% and 2.3% compared to the best existing method, respectively.
AbstractList Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and intelligent transportation, due to their diverse and often critical nature. Meeting QoS requirements is crucial for IoT applications due to their diverse and often critical nature. Ensuring high QoS guarantees that these applications function smoothly and efficiently, leading to enhanced user experiences and system reliability. With the rapid growth of the IoT and the increasing demand for data processing near the source, fog computing environments emerged as an intermediate layer between cloud and edge devices. Hence, robust QoS management is essential for IoT systems’ successful deployment and operation. Meanwhile, utilizing computing resources in the cloud-fog ecosystem is increasingly important and requires an efficient workflow scheduling strategy. This paper proposes an efficient Workflow Scheduling strategy based on Multi-objective Optimization considering Pareto front in fog environments (WSMOP) to address this issue. Our strategy addresses the challenges of resource management and workflow scheduling in fog environments by optimizing multiple objectives, including makespan (total time needed to complete all tasks), energy consumption, latency, throughput, and resource utilization. WSMOP uses an advanced meta-heuristic technique named Open-Source Development Model Algorithm (ODMA) for optimization work. We used the CloudSim simulator for performance evaluation, comparing WSMOP against advanced methods, including NSGA-II, AOAM, HDSOS-GOA, PSO-SA, and BAHA-KHA. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our proposed strategy in enhancing overall system performance and meeting QoS demands in fog computing scenarios. Specifically, WSMOP reduces the average makespan and energy consumption by 1.5% and 2.3% compared to the best existing method, respectively.
ArticleNumber 90
Author Nie, Guolei
Rezvani, Elaheh
Author_xml – sequence: 1
  givenname: Guolei
  surname: Nie
  fullname: Nie, Guolei
– sequence: 2
  givenname: Elaheh
  surname: Rezvani
  fullname: Rezvani, Elaheh
BookMark eNotkE1PAyEYhImpiW31D3gi8Yy-sAu7HE3jV9LES028EZaFStOFCrSm_npX62kOM5mZPDM0CTFYhK4p3FKA5i4DCGgIME6A1nVL-Bma0roShANvJmgKQIHULX-_QLOcNwDAqlZOUbeKXzr1GeuArXPeeBsKzubD9vutD2ucS9LFro-409n2OAY87LfFk9htrCn-YHHcFT_4b138aPqAXVxjGw4-xTCMZfkSnTu9zfbqX-fo7fFhtXgmy9enl8X9khjKRSGctk7KrhmfdroWTctFV-m-Yty0nHJrwLCmt67rtRHCaUktr5kcDcaklLSao5tT7y7Fz73NRW3iPoVxUlW0qQW0shJjip1SJsWck3Vql_yg01FRUL8s1YmlGlmqP5aKVz-QXmp-
Cites_doi 10.1109/TSC.2024.3478730
10.1007/s10586-021-03371-8
10.1007/s11063-021-10708-2
10.1155/2021/9114113
10.1109/TITS.2019.2918255
10.1007/s00607-023-01215-4
10.1145/3589132.3625569
10.1016/j.ins.2024.120756
10.2174/1574893617666220404145517
10.3390/electronics13173454
10.1016/j.neucom.2024.128176
10.1002/ett.4905
10.1016/j.jclepro.2017.01.100
10.1016/j.simpat.2024.102913
10.1016/j.jksuci.2022.07.012
10.3390/electronics13153044
10.1016/j.future.2019.12.054
10.1093/logcom/exab083
10.1109/TMC.2017.2702613
10.1109/TCNS.2021.3104103
10.1109/ACCESS.2023.3241240
10.1016/j.future.2024.03.013
10.1016/j.simpat.2022.102687
10.1109/TSC.2024.3384094
10.1109/ICDEW.2019.00-34
10.1016/j.advengsoft.2010.03.003
10.1109/TII.2020.3042872
10.1016/j.eswa.2024.123192
10.1145/3580305.3599801
10.1007/s11227-023-05330-z
10.1109/JIOT.2024.3360110
10.1016/j.cie.2022.108835
10.1007/s42235-023-00389-z
10.1109/TSC.2015.2477825
10.1093/nar/gkab957
10.1016/j.comnet.2023.110161
10.1109/JSYST.2024.3433023
10.1021/acscentsci.4c01385
10.1109/TITS.2024.3409415
10.1016/j.asoc.2023.111142
10.1109/TITS.2022.3210170
10.1007/s11227-022-04594-1
10.1109/JIOT.2022.3165646
10.1177/0020294024128921
10.1007/s00500-014-1536-x
10.1007/s11227-023-05592-7
10.1109/TNSM.2018.2861717
10.1109/TCBB.2024.3459870
10.1145/3583780.3615043
10.1007/s10766-016-0484-8
10.1007/s10586-024-04522-3
10.1016/j.future.2020.07.018
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Mar 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Mar 2025
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s00607-025-01448-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1436-5057
ExternalDocumentID 10_1007_s00607_025_01448_5
GroupedDBID -Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAS
LLZTM
M0C
M2O
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
~8M
~EX
7SC
8FD
ABRTQ
AFKWF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c156t-518f99b7001ba467856b3ad325c8515ec0c27defbdac66fa91e54295ec2299913
ISSN 0010-485X
IngestDate Sat Aug 16 18:52:09 EDT 2025
Tue Jul 01 05:14:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c156t-518f99b7001ba467856b3ad325c8515ec0c27defbdac66fa91e54295ec2299913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3174608936
PQPubID 48322
ParticipantIDs proquest_journals_3174608936
crossref_primary_10_1007_s00607_025_01448_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-00
20250301
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-00
PublicationDecade 2020
PublicationPlace Wien
PublicationPlace_xml – name: Wien
PublicationTitle Computing
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References H Li (1448_CR36) 2024; 156
A Han (1448_CR40) 2024; 13
N Khaledian (1448_CR31) 2024; 106
J Hájek (1448_CR38) 2010; 41
G Sun (1448_CR3) 2024
Y Zhang (1448_CR13) 2022; 34
S Karami (1448_CR28) 2024; 151
Y Huang (1448_CR22) 2020; 113
X Peng (1448_CR12) 2024; 11
P Li (1448_CR17) 2021; 9
Y Rong (1448_CR5) 2022; 23
C Cao (1448_CR50) 2022; 50
1448_CR4
G Sun (1448_CR42) 2018; 15
H Zhang (1448_CR49) 2022; 17
1448_CR19
AO Abdalrahman (1448_CR32) 2023; 20
S Bansal (1448_CR34) 2024
JL Herrera (1448_CR26) 2022; 10
1448_CR15
H Hajipour (1448_CR37) 2016; 20
B Xue (1448_CR48) 2024
S Javanmardi (1448_CR53) 2024; 133
X Gu (1448_CR54) 2024; 80
C Guo (1448_CR6) 2024; 35
S Javanmardi (1448_CR11) 2023; 72
C Liu (1448_CR44) 2022; 54
A Najafizadeh (1448_CR43) 2022; 25
1448_CR21
X Xu (1448_CR10) 2023; 175
G Sun (1448_CR20) 2020; 17
S Forti (1448_CR27) 2022; 32
B Zhu (1448_CR45) 2024; 18
S Seifhosseini (1448_CR18) 2024; 240
Y Zhong (1448_CR2) 2022; 78
T Wang (1448_CR51) 2024; 601
A Mohammadzadeh (1448_CR30) 2023; 79
M Abd Elaziz (1448_CR29) 2021; 2021
W Yue (1448_CR23) 2024; 25
M Mokni (1448_CR1) 2023; 123
FA Saif (1448_CR46) 2023; 11
E Wang (1448_CR9) 2017; 17
X Zhang (1448_CR16) 2024; 13
V De Maio (1448_CR41) 2020; 106
J Yang (1448_CR24) 2018; 46
G Sun (1448_CR8) 2019; 21
C Torres-Machi (1448_CR52) 2017; 148
C Li (1448_CR7) 2024
G Sun (1448_CR25) 2015; 11
I Attiya (1448_CR14) 2020; 2020
H Zhao (1448_CR39) 2024; 675
S Nazemi (1448_CR35) 2024
M Nazeri (1448_CR33) 2024; 247
J Cai (1448_CR47) 2024
References_xml – year: 2024
  ident: 1448_CR3
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2024.3478730
– volume: 25
  start-page: 141
  issue: 1
  year: 2022
  ident: 1448_CR43
  publication-title: Clust Comput
  doi: 10.1007/s10586-021-03371-8
– volume: 54
  start-page: 1823
  issue: 3
  year: 2022
  ident: 1448_CR44
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10708-2
– volume: 2021
  start-page: 9114113
  issue: 1
  year: 2021
  ident: 1448_CR29
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/9114113
– volume: 21
  start-page: 2409
  issue: 6
  year: 2019
  ident: 1448_CR8
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2918255
– volume: 106
  start-page: 109
  issue: 1
  year: 2024
  ident: 1448_CR31
  publication-title: Computing
  doi: 10.1007/s00607-023-01215-4
– ident: 1448_CR4
  doi: 10.1145/3589132.3625569
– volume: 675
  start-page: 120756
  year: 2024
  ident: 1448_CR39
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2024.120756
– volume: 17
  start-page: 473
  issue: 5
  year: 2022
  ident: 1448_CR49
  publication-title: Curr Bioinform
  doi: 10.2174/1574893617666220404145517
– volume: 13
  start-page: 3454
  issue: 17
  year: 2024
  ident: 1448_CR40
  publication-title: Electronics
  doi: 10.3390/electronics13173454
– volume: 601
  start-page: 128176
  year: 2024
  ident: 1448_CR51
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128176
– volume: 35
  start-page: e4905
  issue: 1
  year: 2024
  ident: 1448_CR6
  publication-title: Trans Emerg Telecommun Technol
  doi: 10.1002/ett.4905
– volume: 148
  start-page: 90
  year: 2017
  ident: 1448_CR52
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2017.01.100
– volume: 133
  start-page: 102913
  year: 2024
  ident: 1448_CR53
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2024.102913
– volume: 72
  start-page: 103404
  year: 2023
  ident: 1448_CR11
  publication-title: J Inf Secur Appl
– volume: 34
  start-page: 7948
  issue: 10
  year: 2022
  ident: 1448_CR13
  publication-title: J King Saud Univ-Comput Inf Sci
  doi: 10.1016/j.jksuci.2022.07.012
– volume: 13
  start-page: 3044
  issue: 15
  year: 2024
  ident: 1448_CR16
  publication-title: Electronics
  doi: 10.3390/electronics13153044
– volume: 106
  start-page: 171
  year: 2020
  ident: 1448_CR41
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.12.054
– volume: 32
  start-page: 206
  issue: 2
  year: 2022
  ident: 1448_CR27
  publication-title: J Log Comput
  doi: 10.1093/logcom/exab083
– volume: 17
  start-page: 16
  issue: 1
  year: 2017
  ident: 1448_CR9
  publication-title: IEEE Trans Mob Comput
  doi: 10.1109/TMC.2017.2702613
– volume: 9
  start-page: 356
  issue: 1
  year: 2021
  ident: 1448_CR17
  publication-title: IEEE Trans Control Netw Syst
  doi: 10.1109/TCNS.2021.3104103
– volume: 11
  start-page: 20635
  year: 2023
  ident: 1448_CR46
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3241240
– volume: 156
  start-page: 64
  year: 2024
  ident: 1448_CR36
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2024.03.013
– volume: 123
  start-page: 102687
  year: 2023
  ident: 1448_CR1
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2022.102687
– year: 2024
  ident: 1448_CR35
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2024.3384094
– volume: 2020
  start-page: 3504642
  issue: 1
  year: 2020
  ident: 1448_CR14
  publication-title: Comput Intell Neurosci
– ident: 1448_CR19
  doi: 10.1109/ICDEW.2019.00-34
– volume: 41
  start-page: 1031
  issue: 7–8
  year: 2010
  ident: 1448_CR38
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2010.03.003
– volume: 17
  start-page: 7155
  issue: 10
  year: 2020
  ident: 1448_CR20
  publication-title: IEEE Trans Industr Inf
  doi: 10.1109/TII.2020.3042872
– volume: 247
  start-page: 123192
  year: 2024
  ident: 1448_CR33
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.123192
– ident: 1448_CR15
  doi: 10.1145/3580305.3599801
– volume: 79
  start-page: 18569
  issue: 16
  year: 2023
  ident: 1448_CR30
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05330-z
– volume: 11
  start-page: 17021
  issue: 10
  year: 2024
  ident: 1448_CR12
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2024.3360110
– volume: 175
  start-page: 108835
  year: 2023
  ident: 1448_CR10
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108835
– volume: 20
  start-page: 2443
  issue: 5
  year: 2023
  ident: 1448_CR32
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-023-00389-z
– volume: 11
  start-page: 279
  issue: 2
  year: 2015
  ident: 1448_CR25
  publication-title: IEEE Trans Serv Comput
  doi: 10.1109/TSC.2015.2477825
– volume: 50
  start-page: D1123
  issue: D1
  year: 2022
  ident: 1448_CR50
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkab957
– volume: 240
  start-page: 110161
  year: 2024
  ident: 1448_CR18
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2023.110161
– volume: 18
  start-page: 1681
  issue: 3
  year: 2024
  ident: 1448_CR45
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2024.3433023
– year: 2024
  ident: 1448_CR48
  publication-title: ACS Cent Sci
  doi: 10.1021/acscentsci.4c01385
– volume: 25
  start-page: 18734
  issue: 11
  year: 2024
  ident: 1448_CR23
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2024.3409415
– volume: 151
  start-page: 111142
  year: 2024
  ident: 1448_CR28
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2023.111142
– volume: 23
  start-page: 24524
  issue: 12
  year: 2022
  ident: 1448_CR5
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3210170
– volume: 78
  start-page: 18405
  issue: 17
  year: 2022
  ident: 1448_CR2
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04594-1
– volume: 10
  start-page: 3968
  issue: 5
  year: 2022
  ident: 1448_CR26
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2022.3165646
– year: 2024
  ident: 1448_CR47
  publication-title: Meas Control
  doi: 10.1177/0020294024128921
– volume: 20
  start-page: 727
  issue: 2
  year: 2016
  ident: 1448_CR37
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1536-x
– volume: 80
  start-page: 3382
  issue: 3
  year: 2024
  ident: 1448_CR54
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05592-7
– volume: 15
  start-page: 1175
  issue: 3
  year: 2018
  ident: 1448_CR42
  publication-title: IEEE Trans Netw Serv Manag
  doi: 10.1109/TNSM.2018.2861717
– year: 2024
  ident: 1448_CR7
  publication-title: IEEE/ACM Trans Comput Biol Bioinf
  doi: 10.1109/TCBB.2024.3459870
– ident: 1448_CR21
  doi: 10.1145/3583780.3615043
– volume: 46
  start-page: 173
  year: 2018
  ident: 1448_CR24
  publication-title: Int J Parallel Prog
  doi: 10.1007/s10766-016-0484-8
– year: 2024
  ident: 1448_CR34
  publication-title: Clust Comput
  doi: 10.1007/s10586-024-04522-3
– volume: 113
  start-page: 474
  year: 2020
  ident: 1448_CR22
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2020.07.018
SSID ssj0002389
Score 2.372403
Snippet Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 90
SubjectTerms Algorithms
Data processing
Edge computing
Energy consumption
Heuristic methods
Internet of Things
Multiple objective analysis
Optimization
Pareto optimization
Performance evaluation
Quality of service
Resource management
Resource scheduling
Resource utilization
Scheduling
System reliability
User experience
Workflow
Title Towards an efficient scheduling strategy based on multi-objective optimization in fog environments
URI https://www.proquest.com/docview/3174608936
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60XvTgLi5V5uAtjLRJZjI9FqkWQU8WegszyUQrNRHbCvrrfbMkaV3AegkhhZc078vbF4TOw4ApLrkiEqxREopOmwjeFiRKAxoFHSFCU4x5e8f6g_BmSIf1mjvTXTKVF8nHj30l_-EqXAO-6i7ZJThbEYULcA78hSNwGI5_47GpedVTlnVdxsj0NnrgroL6GNs4gRkE8e5pXZXqvICpHySFfLJyzitAYjy7Vkwd-siKh4Xet3nb1S6AKFWdyWWYaOj1rBirUZW5UR9vdk-U1xuLR_U4H1fwaV1YVcpKkNAhp0OrKax4BNYS7dIsyE-7ttYBJfhRLttSDL18XUdG9c3AkeOE1lqozLx_UU5VyWA1XtnQiIFGbGjEdBWt-VFkcvQDv1upYbBFrO_j_obrmDJ9k9-eY9EqWVTKxtK430abzkXAXcvvHbSi8l20Va7fwE4a76KN22rk7mQPSQcGLHJcgQHXYMAlGLABAy5y_AUMeB4MeJRjAAOeB8M-Glz17i_7xC3QIAm45VNC2zzrdKQuLZACNCKnTAYiDXyagKFNVdJK_ChVmUxFwlgGH6rS68vgB9_XjkNwgBp5katDhHmaMUbTDOzvMFQRFwruoCKfyZbeiECPkFe-wPjFzkmJf2fZEWqW7zh239MkBks2ZC2wn9nxUsRO0HqN3yZqTF9n6hQsxak8M4j4BEIvZnM
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+efficient+scheduling+strategy+based+on+multi-objective+optimization+in+fog+environments&rft.jtitle=Computing&rft.au=Nie%2C+Guolei&rft.au=Rezvani%2C+Elaheh&rft.date=2025-03-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=3&rft_id=info:doi/10.1007%2Fs00607-025-01448-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_025_01448_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon