Towards an efficient scheduling strategy based on multi-objective optimization in fog environments
Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and intelligent transportation, due to their diverse and often critical nature. Meeting QoS requirements is crucial for IoT applications due to their d...
Saved in:
Published in | Computing Vol. 107; no. 3; p. 90 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Wien
Springer Nature B.V
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0010-485X 1436-5057 |
DOI | 10.1007/s00607-025-01448-5 |
Cover
Abstract | Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and intelligent transportation, due to their diverse and often critical nature. Meeting QoS requirements is crucial for IoT applications due to their diverse and often critical nature. Ensuring high QoS guarantees that these applications function smoothly and efficiently, leading to enhanced user experiences and system reliability. With the rapid growth of the IoT and the increasing demand for data processing near the source, fog computing environments emerged as an intermediate layer between cloud and edge devices. Hence, robust QoS management is essential for IoT systems’ successful deployment and operation. Meanwhile, utilizing computing resources in the cloud-fog ecosystem is increasingly important and requires an efficient workflow scheduling strategy. This paper proposes an efficient Workflow Scheduling strategy based on Multi-objective Optimization considering Pareto front in fog environments (WSMOP) to address this issue. Our strategy addresses the challenges of resource management and workflow scheduling in fog environments by optimizing multiple objectives, including makespan (total time needed to complete all tasks), energy consumption, latency, throughput, and resource utilization. WSMOP uses an advanced meta-heuristic technique named Open-Source Development Model Algorithm (ODMA) for optimization work. We used the CloudSim simulator for performance evaluation, comparing WSMOP against advanced methods, including NSGA-II, AOAM, HDSOS-GOA, PSO-SA, and BAHA-KHA. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our proposed strategy in enhancing overall system performance and meeting QoS demands in fog computing scenarios. Specifically, WSMOP reduces the average makespan and energy consumption by 1.5% and 2.3% compared to the best existing method, respectively. |
---|---|
AbstractList | Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and intelligent transportation, due to their diverse and often critical nature. Meeting QoS requirements is crucial for IoT applications due to their diverse and often critical nature. Ensuring high QoS guarantees that these applications function smoothly and efficiently, leading to enhanced user experiences and system reliability. With the rapid growth of the IoT and the increasing demand for data processing near the source, fog computing environments emerged as an intermediate layer between cloud and edge devices. Hence, robust QoS management is essential for IoT systems’ successful deployment and operation. Meanwhile, utilizing computing resources in the cloud-fog ecosystem is increasingly important and requires an efficient workflow scheduling strategy. This paper proposes an efficient Workflow Scheduling strategy based on Multi-objective Optimization considering Pareto front in fog environments (WSMOP) to address this issue. Our strategy addresses the challenges of resource management and workflow scheduling in fog environments by optimizing multiple objectives, including makespan (total time needed to complete all tasks), energy consumption, latency, throughput, and resource utilization. WSMOP uses an advanced meta-heuristic technique named Open-Source Development Model Algorithm (ODMA) for optimization work. We used the CloudSim simulator for performance evaluation, comparing WSMOP against advanced methods, including NSGA-II, AOAM, HDSOS-GOA, PSO-SA, and BAHA-KHA. Extensive simulations and real-world experiments demonstrate the effectiveness and efficiency of our proposed strategy in enhancing overall system performance and meeting QoS demands in fog computing scenarios. Specifically, WSMOP reduces the average makespan and energy consumption by 1.5% and 2.3% compared to the best existing method, respectively. |
ArticleNumber | 90 |
Author | Nie, Guolei Rezvani, Elaheh |
Author_xml | – sequence: 1 givenname: Guolei surname: Nie fullname: Nie, Guolei – sequence: 2 givenname: Elaheh surname: Rezvani fullname: Rezvani, Elaheh |
BookMark | eNotkE1PAyEYhImpiW31D3gi8Yy-sAu7HE3jV9LES028EZaFStOFCrSm_npX62kOM5mZPDM0CTFYhK4p3FKA5i4DCGgIME6A1nVL-Bma0roShANvJmgKQIHULX-_QLOcNwDAqlZOUbeKXzr1GeuArXPeeBsKzubD9vutD2ucS9LFro-409n2OAY87LfFk9htrCn-YHHcFT_4b138aPqAXVxjGw4-xTCMZfkSnTu9zfbqX-fo7fFhtXgmy9enl8X9khjKRSGctk7KrhmfdroWTctFV-m-Yty0nHJrwLCmt67rtRHCaUktr5kcDcaklLSao5tT7y7Fz73NRW3iPoVxUlW0qQW0shJjip1SJsWck3Vql_yg01FRUL8s1YmlGlmqP5aKVz-QXmp- |
Cites_doi | 10.1109/TSC.2024.3478730 10.1007/s10586-021-03371-8 10.1007/s11063-021-10708-2 10.1155/2021/9114113 10.1109/TITS.2019.2918255 10.1007/s00607-023-01215-4 10.1145/3589132.3625569 10.1016/j.ins.2024.120756 10.2174/1574893617666220404145517 10.3390/electronics13173454 10.1016/j.neucom.2024.128176 10.1002/ett.4905 10.1016/j.jclepro.2017.01.100 10.1016/j.simpat.2024.102913 10.1016/j.jksuci.2022.07.012 10.3390/electronics13153044 10.1016/j.future.2019.12.054 10.1093/logcom/exab083 10.1109/TMC.2017.2702613 10.1109/TCNS.2021.3104103 10.1109/ACCESS.2023.3241240 10.1016/j.future.2024.03.013 10.1016/j.simpat.2022.102687 10.1109/TSC.2024.3384094 10.1109/ICDEW.2019.00-34 10.1016/j.advengsoft.2010.03.003 10.1109/TII.2020.3042872 10.1016/j.eswa.2024.123192 10.1145/3580305.3599801 10.1007/s11227-023-05330-z 10.1109/JIOT.2024.3360110 10.1016/j.cie.2022.108835 10.1007/s42235-023-00389-z 10.1109/TSC.2015.2477825 10.1093/nar/gkab957 10.1016/j.comnet.2023.110161 10.1109/JSYST.2024.3433023 10.1021/acscentsci.4c01385 10.1109/TITS.2024.3409415 10.1016/j.asoc.2023.111142 10.1109/TITS.2022.3210170 10.1007/s11227-022-04594-1 10.1109/JIOT.2022.3165646 10.1177/0020294024128921 10.1007/s00500-014-1536-x 10.1007/s11227-023-05592-7 10.1109/TNSM.2018.2861717 10.1109/TCBB.2024.3459870 10.1145/3583780.3615043 10.1007/s10766-016-0484-8 10.1007/s10586-024-04522-3 10.1016/j.future.2020.07.018 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. Mar 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. Mar 2025 |
DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1007/s00607-025-01448-5 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Computer Science |
EISSN | 1436-5057 |
ExternalDocumentID | 10_1007_s00607_025_01448_5 |
GroupedDBID | -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMOZ AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EJD EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW LAS LLZTM M0C M2O M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PHGZM PHGZT PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS QWB R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ~8M ~EX 7SC 8FD ABRTQ AFKWF JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c156t-518f99b7001ba467856b3ad325c8515ec0c27defbdac66fa91e54295ec2299913 |
ISSN | 0010-485X |
IngestDate | Sat Aug 16 18:52:09 EDT 2025 Tue Jul 01 05:14:33 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c156t-518f99b7001ba467856b3ad325c8515ec0c27defbdac66fa91e54295ec2299913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3174608936 |
PQPubID | 48322 |
ParticipantIDs | proquest_journals_3174608936 crossref_primary_10_1007_s00607_025_01448_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-03-00 20250301 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-00 |
PublicationDecade | 2020 |
PublicationPlace | Wien |
PublicationPlace_xml | – name: Wien |
PublicationTitle | Computing |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | H Li (1448_CR36) 2024; 156 A Han (1448_CR40) 2024; 13 N Khaledian (1448_CR31) 2024; 106 J Hájek (1448_CR38) 2010; 41 G Sun (1448_CR3) 2024 Y Zhang (1448_CR13) 2022; 34 S Karami (1448_CR28) 2024; 151 Y Huang (1448_CR22) 2020; 113 X Peng (1448_CR12) 2024; 11 P Li (1448_CR17) 2021; 9 Y Rong (1448_CR5) 2022; 23 C Cao (1448_CR50) 2022; 50 1448_CR4 G Sun (1448_CR42) 2018; 15 H Zhang (1448_CR49) 2022; 17 1448_CR19 AO Abdalrahman (1448_CR32) 2023; 20 S Bansal (1448_CR34) 2024 JL Herrera (1448_CR26) 2022; 10 1448_CR15 H Hajipour (1448_CR37) 2016; 20 B Xue (1448_CR48) 2024 S Javanmardi (1448_CR53) 2024; 133 X Gu (1448_CR54) 2024; 80 C Guo (1448_CR6) 2024; 35 S Javanmardi (1448_CR11) 2023; 72 C Liu (1448_CR44) 2022; 54 A Najafizadeh (1448_CR43) 2022; 25 1448_CR21 X Xu (1448_CR10) 2023; 175 G Sun (1448_CR20) 2020; 17 S Forti (1448_CR27) 2022; 32 B Zhu (1448_CR45) 2024; 18 S Seifhosseini (1448_CR18) 2024; 240 Y Zhong (1448_CR2) 2022; 78 T Wang (1448_CR51) 2024; 601 A Mohammadzadeh (1448_CR30) 2023; 79 M Abd Elaziz (1448_CR29) 2021; 2021 W Yue (1448_CR23) 2024; 25 M Mokni (1448_CR1) 2023; 123 FA Saif (1448_CR46) 2023; 11 E Wang (1448_CR9) 2017; 17 X Zhang (1448_CR16) 2024; 13 V De Maio (1448_CR41) 2020; 106 J Yang (1448_CR24) 2018; 46 G Sun (1448_CR8) 2019; 21 C Torres-Machi (1448_CR52) 2017; 148 C Li (1448_CR7) 2024 G Sun (1448_CR25) 2015; 11 I Attiya (1448_CR14) 2020; 2020 H Zhao (1448_CR39) 2024; 675 S Nazemi (1448_CR35) 2024 M Nazeri (1448_CR33) 2024; 247 J Cai (1448_CR47) 2024 |
References_xml | – year: 2024 ident: 1448_CR3 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2024.3478730 – volume: 25 start-page: 141 issue: 1 year: 2022 ident: 1448_CR43 publication-title: Clust Comput doi: 10.1007/s10586-021-03371-8 – volume: 54 start-page: 1823 issue: 3 year: 2022 ident: 1448_CR44 publication-title: Neural Process Lett doi: 10.1007/s11063-021-10708-2 – volume: 2021 start-page: 9114113 issue: 1 year: 2021 ident: 1448_CR29 publication-title: Comput Intell Neurosci doi: 10.1155/2021/9114113 – volume: 21 start-page: 2409 issue: 6 year: 2019 ident: 1448_CR8 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2918255 – volume: 106 start-page: 109 issue: 1 year: 2024 ident: 1448_CR31 publication-title: Computing doi: 10.1007/s00607-023-01215-4 – ident: 1448_CR4 doi: 10.1145/3589132.3625569 – volume: 675 start-page: 120756 year: 2024 ident: 1448_CR39 publication-title: Inf Sci doi: 10.1016/j.ins.2024.120756 – volume: 17 start-page: 473 issue: 5 year: 2022 ident: 1448_CR49 publication-title: Curr Bioinform doi: 10.2174/1574893617666220404145517 – volume: 13 start-page: 3454 issue: 17 year: 2024 ident: 1448_CR40 publication-title: Electronics doi: 10.3390/electronics13173454 – volume: 601 start-page: 128176 year: 2024 ident: 1448_CR51 publication-title: Neurocomputing doi: 10.1016/j.neucom.2024.128176 – volume: 35 start-page: e4905 issue: 1 year: 2024 ident: 1448_CR6 publication-title: Trans Emerg Telecommun Technol doi: 10.1002/ett.4905 – volume: 148 start-page: 90 year: 2017 ident: 1448_CR52 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2017.01.100 – volume: 133 start-page: 102913 year: 2024 ident: 1448_CR53 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2024.102913 – volume: 72 start-page: 103404 year: 2023 ident: 1448_CR11 publication-title: J Inf Secur Appl – volume: 34 start-page: 7948 issue: 10 year: 2022 ident: 1448_CR13 publication-title: J King Saud Univ-Comput Inf Sci doi: 10.1016/j.jksuci.2022.07.012 – volume: 13 start-page: 3044 issue: 15 year: 2024 ident: 1448_CR16 publication-title: Electronics doi: 10.3390/electronics13153044 – volume: 106 start-page: 171 year: 2020 ident: 1448_CR41 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.12.054 – volume: 32 start-page: 206 issue: 2 year: 2022 ident: 1448_CR27 publication-title: J Log Comput doi: 10.1093/logcom/exab083 – volume: 17 start-page: 16 issue: 1 year: 2017 ident: 1448_CR9 publication-title: IEEE Trans Mob Comput doi: 10.1109/TMC.2017.2702613 – volume: 9 start-page: 356 issue: 1 year: 2021 ident: 1448_CR17 publication-title: IEEE Trans Control Netw Syst doi: 10.1109/TCNS.2021.3104103 – volume: 11 start-page: 20635 year: 2023 ident: 1448_CR46 publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3241240 – volume: 156 start-page: 64 year: 2024 ident: 1448_CR36 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2024.03.013 – volume: 123 start-page: 102687 year: 2023 ident: 1448_CR1 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2022.102687 – year: 2024 ident: 1448_CR35 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2024.3384094 – volume: 2020 start-page: 3504642 issue: 1 year: 2020 ident: 1448_CR14 publication-title: Comput Intell Neurosci – ident: 1448_CR19 doi: 10.1109/ICDEW.2019.00-34 – volume: 41 start-page: 1031 issue: 7–8 year: 2010 ident: 1448_CR38 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2010.03.003 – volume: 17 start-page: 7155 issue: 10 year: 2020 ident: 1448_CR20 publication-title: IEEE Trans Industr Inf doi: 10.1109/TII.2020.3042872 – volume: 247 start-page: 123192 year: 2024 ident: 1448_CR33 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.123192 – ident: 1448_CR15 doi: 10.1145/3580305.3599801 – volume: 79 start-page: 18569 issue: 16 year: 2023 ident: 1448_CR30 publication-title: J Supercomput doi: 10.1007/s11227-023-05330-z – volume: 11 start-page: 17021 issue: 10 year: 2024 ident: 1448_CR12 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2024.3360110 – volume: 175 start-page: 108835 year: 2023 ident: 1448_CR10 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108835 – volume: 20 start-page: 2443 issue: 5 year: 2023 ident: 1448_CR32 publication-title: J Bionic Eng doi: 10.1007/s42235-023-00389-z – volume: 11 start-page: 279 issue: 2 year: 2015 ident: 1448_CR25 publication-title: IEEE Trans Serv Comput doi: 10.1109/TSC.2015.2477825 – volume: 50 start-page: D1123 issue: D1 year: 2022 ident: 1448_CR50 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkab957 – volume: 240 start-page: 110161 year: 2024 ident: 1448_CR18 publication-title: Comput Netw doi: 10.1016/j.comnet.2023.110161 – volume: 18 start-page: 1681 issue: 3 year: 2024 ident: 1448_CR45 publication-title: IEEE Syst J doi: 10.1109/JSYST.2024.3433023 – year: 2024 ident: 1448_CR48 publication-title: ACS Cent Sci doi: 10.1021/acscentsci.4c01385 – volume: 25 start-page: 18734 issue: 11 year: 2024 ident: 1448_CR23 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2024.3409415 – volume: 151 start-page: 111142 year: 2024 ident: 1448_CR28 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2023.111142 – volume: 23 start-page: 24524 issue: 12 year: 2022 ident: 1448_CR5 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2022.3210170 – volume: 78 start-page: 18405 issue: 17 year: 2022 ident: 1448_CR2 publication-title: J Supercomput doi: 10.1007/s11227-022-04594-1 – volume: 10 start-page: 3968 issue: 5 year: 2022 ident: 1448_CR26 publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2022.3165646 – year: 2024 ident: 1448_CR47 publication-title: Meas Control doi: 10.1177/0020294024128921 – volume: 20 start-page: 727 issue: 2 year: 2016 ident: 1448_CR37 publication-title: Soft Comput doi: 10.1007/s00500-014-1536-x – volume: 80 start-page: 3382 issue: 3 year: 2024 ident: 1448_CR54 publication-title: J Supercomput doi: 10.1007/s11227-023-05592-7 – volume: 15 start-page: 1175 issue: 3 year: 2018 ident: 1448_CR42 publication-title: IEEE Trans Netw Serv Manag doi: 10.1109/TNSM.2018.2861717 – year: 2024 ident: 1448_CR7 publication-title: IEEE/ACM Trans Comput Biol Bioinf doi: 10.1109/TCBB.2024.3459870 – ident: 1448_CR21 doi: 10.1145/3583780.3615043 – volume: 46 start-page: 173 year: 2018 ident: 1448_CR24 publication-title: Int J Parallel Prog doi: 10.1007/s10766-016-0484-8 – year: 2024 ident: 1448_CR34 publication-title: Clust Comput doi: 10.1007/s10586-024-04522-3 – volume: 113 start-page: 474 year: 2020 ident: 1448_CR22 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2020.07.018 |
SSID | ssj0002389 |
Score | 2.372403 |
Snippet | Meeting Quality of Service (QoS) requirements is crucial for Internet of Things (IoT) applications, such as smart healthcare, industrial automation, and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 90 |
SubjectTerms | Algorithms Data processing Edge computing Energy consumption Heuristic methods Internet of Things Multiple objective analysis Optimization Pareto optimization Performance evaluation Quality of service Resource management Resource scheduling Resource utilization Scheduling System reliability User experience Workflow |
Title | Towards an efficient scheduling strategy based on multi-objective optimization in fog environments |
URI | https://www.proquest.com/docview/3174608936 |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB60XvTgLi5V5uAtjLRJZjI9FqkWQU8WegszyUQrNRHbCvrrfbMkaV3AegkhhZc078vbF4TOw4ApLrkiEqxREopOmwjeFiRKAxoFHSFCU4x5e8f6g_BmSIf1mjvTXTKVF8nHj30l_-EqXAO-6i7ZJThbEYULcA78hSNwGI5_47GpedVTlnVdxsj0NnrgroL6GNs4gRkE8e5pXZXqvICpHySFfLJyzitAYjy7Vkwd-siKh4Xet3nb1S6AKFWdyWWYaOj1rBirUZW5UR9vdk-U1xuLR_U4H1fwaV1YVcpKkNAhp0OrKax4BNYS7dIsyE-7ttYBJfhRLttSDL18XUdG9c3AkeOE1lqozLx_UU5VyWA1XtnQiIFGbGjEdBWt-VFkcvQDv1upYbBFrO_j_obrmDJ9k9-eY9EqWVTKxtK430abzkXAXcvvHbSi8l20Va7fwE4a76KN22rk7mQPSQcGLHJcgQHXYMAlGLABAy5y_AUMeB4MeJRjAAOeB8M-Glz17i_7xC3QIAm45VNC2zzrdKQuLZACNCKnTAYiDXyagKFNVdJK_ChVmUxFwlgGH6rS68vgB9_XjkNwgBp5katDhHmaMUbTDOzvMFQRFwruoCKfyZbeiECPkFe-wPjFzkmJf2fZEWqW7zh239MkBks2ZC2wn9nxUsRO0HqN3yZqTF9n6hQsxak8M4j4BEIvZnM |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+an+efficient+scheduling+strategy+based+on+multi-objective+optimization+in+fog+environments&rft.jtitle=Computing&rft.au=Nie%2C+Guolei&rft.au=Rezvani%2C+Elaheh&rft.date=2025-03-01&rft.issn=0010-485X&rft.eissn=1436-5057&rft.volume=107&rft.issue=3&rft_id=info:doi/10.1007%2Fs00607-025-01448-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00607_025_01448_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0010-485X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0010-485X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0010-485X&client=summon |