Direct Numerical Simulation of Turbulent Flows Containing Solid Particles

The turbulence modulation, that means influences of dispersed particles to the fluid turbulence, is one of the challenging subjects in the multiphase flow research. In recent decades, experimental and numerical researches have been conducted extensively. Especially the direct numerical simulation (D...

Full description

Saved in:
Bibliographic Details
Published inJAPANESE JOURNAL OF MULTIPHASE FLOW Vol. 31; no. 2; pp. 135 - 138
Main Author KAJISHIMA, Takeo
Format Journal Article
LanguageEnglish
Published Osaka City THE JAPANESE SOCIETY FOR MULTIPHASE FLOW 15.06.2017
Japan Science and Technology Agency
Subjects
Online AccessGet full text
ISSN0914-2843
1881-5790
DOI10.3811/jjmf.31.135

Cover

Abstract The turbulence modulation, that means influences of dispersed particles to the fluid turbulence, is one of the challenging subjects in the multiphase flow research. In recent decades, experimental and numerical researches have been conducted extensively. Especially the direct numerical simulation (DNS) became a powerful means to reveal the multiphase turbulence phenomena. But DNS cannot become a practical tool for multiphase flows in industry or in nature. In this review article, an example of particle-laden flow by the immersed solid method and our recent progress for the application to the two-phase heat transfer are shown. Then, considering the current status, it is pointed out that some moderately-averaged equation, which includes momentum exchange and residual stress terms, is essential for semi-DNS including finite-sized particles (e.g., Kolmogorov scale particle) to deal with large-scale multiphase flow fields.
AbstractList The turbulence modulation, that means influences of dispersed particles to the fluid turbulence, is one of the challenging subjects in the multiphase flow research. In recent decades, experimental and numerical researches have been conducted extensively. Especially the direct numerical simulation (DNS) became a powerful means to reveal the multiphase turbulence phenomena. But DNS cannot become a practical tool for multiphase flows in industry or in nature. In this review article, an example of particle-laden flow by the immersed solid method and our recent progress for the application to the two-phase heat transfer are shown. Then, considering the current status, it is pointed out that some moderately-averaged equation, which includes momentum exchange and residual stress terms, is essential for semi-DNS including finite-sized particles (e.g., Kolmogorov scale particle) to deal with large-scale multiphase flow fields.
Author KAJISHIMA, Takeo
Author_xml – sequence: 1
  fullname: KAJISHIMA, Takeo
BookMark eNo90E1LAzEQBuAgFay1J_9AwKNs3XztJhdBqtVCUaH1HLJpUrPsJjXZRfz3bmnpaQ7zzAzzXoORD94AcIvyGeEIPdR1a2cEzRBhF2CMOEcZK0U-AuNcIJphTskVmKbkqjzHlFNW4DFYPrtodAff-9ZEp1UD167tG9W54GGwcNPHqm-M7-CiCb8JzoPvlPPO7-A6NG4LP1XsnG5MugGXVjXJTE91Ar4WL5v5W7b6eF3On1aZRqxgmbCUYMWYwXSrmLas5IjiwhDCK66pprnR1lalFYoLZbGlRSkqVFFeCko4JhNwd9y7j-GnN6mTdeijH05KJHCBS0w4GdT9UekYUorGyn10rYp_EuXyEJc8xCUJkkNcg3486jp1amfO9vTb2eLTwLmhv1WUxpN_MVV1tg
Cites_doi 10.1252/kakoronbunshu.32.331
10.1016/S0142-727X(02)00159-5
10.1299/jfst.2.1
10.1006/jcph.1993.1081
10.1016/j.jcp.2010.09.032
10.1016/j.jcp.2007.05.028
10.1016/0021-9991(77)90100-0
10.1299/kikaib.77.803
10.1017/CBO9780511607486
ContentType Journal Article
Copyright 2017 by The Japanese Society for Multiphase Flow
Copyright Japan Science and Technology Agency 2017
Copyright_xml – notice: 2017 by The Japanese Society for Multiphase Flow
– notice: Copyright Japan Science and Technology Agency 2017
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.3811/jjmf.31.135
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1881-5790
EndPage 138
ExternalDocumentID 10_3811_jjmf_31_135
article_jjmf_31_2_31_135_article_char_en
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
ARCSS
CS3
JSF
KQ8
OK1
RJT
TUS
2WC
AAYXX
CITATION
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c1565-9f432a55e24da5cf5781426e338b8c4c40ecffb7f9a89af2f4679b1b487943823
ISSN 0914-2843
IngestDate Mon Jun 30 09:57:21 EDT 2025
Tue Jul 01 01:36:12 EDT 2025
Wed Apr 05 06:36:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1565-9f432a55e24da5cf5781426e338b8c4c40ecffb7f9a89af2f4679b1b487943823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.jstage.jst.go.jp/article/jjmf/31/2/31_135/_article/-char/en
PQID 1926272383
PQPubID 2028997
PageCount 4
ParticipantIDs proquest_journals_1926272383
crossref_primary_10_3811_jjmf_31_135
jstage_primary_article_jjmf_31_2_31_135_article_char_en
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017/06/15
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017/06/15
  day: 15
PublicationDecade 2010
PublicationPlace Osaka City
PublicationPlace_xml – name: Osaka City
PublicationTitle JAPANESE JOURNAL OF MULTIPHASE FLOW
PublicationYear 2017
Publisher THE JAPANESE SOCIETY FOR MULTIPHASE FLOW
Japan Science and Technology Agency
Publisher_xml – name: THE JAPANESE SOCIETY FOR MULTIPHASE FLOW
– name: Japan Science and Technology Agency
References [5] Schneiders, L., Menke, M. and Schroeder, W., Direct Particle-Fluid Simulation of Kolmogorov-Length-Scale Size Particles in Decaying Isotropic Turbulence, J. Fluid Mech., Vol. 819, 188-227 (2017).
[7] Goldstein, D., Handler, R. and Sirovich, L., Modeling a No-Slip Flow Boundary with an External Force Field, J. Comput. Phys., Vol. 105(2), 354-366 (1993).
[1] Prosperetti, A and Tryggvason, G. (eds.), Computational Methods for Multiphase Flow, Cambridge Univ. Press (2007).
[16] Ueyama, A., Moriya, S., Nakamura, M. and Kajishima, T., Immersed Boundary Method for Liquid-Solid Two-Phase Flow with Heat Transfer, Trans JSME, Ser.B (in Japanese), Vol.77(775), 803-814 (2011).
[17] Takeuchi, S., Tsutsumi, T. and Kajishima, T., Effect of Temperature Gradient within a Solid Particle on the Rotation and Oscillation Modes in Solid-Dispersed Two-Phase Flows, Int. J. Heat and Fluid Flow, Vol. 43, 15-25 (2013).
[6] Peskin, C. S., Numerical Analysis of Blood Flow in the Heart, J. Comput. Phys., Vol. 25(3), 220-252 (1977).
[2] van der Hoef, M.A., van Sint Annaland, M., Deen, N.G. and Kuipers, J.A.M., Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy, Annu. Rev. Fluid Mech., Vol. 40, 47-70 (2008).
[13] Nishino, K. and Matsushita, H., Columnar Particle Accumulation in Homogeneous Turbulence, 5th Int. Conf. Multiphase Flows, 248 (2004).
[14] Nishiura, D., Shimosaka, A., Shirakawa, Y. and Hidaka, J., Hybrid Simulation of Hindered Settling Behavior of Particles Using Discrete Element Method and Direct Numerical Simulation, Kagaku Kogaku Ronbunshu (in Japanese), Vol. 32(4), 331-340 (2006).
[10] Sato, N., Takeuchi, S., Kajishima, T., Inagaki, M., Horinouchi, N., A Consistent Direct Discretization Scheme on Cartesian Grids for Convective and Conjugate Heat Transfer, J. Comput. Phys., Vol. 321, 76-104 (2016).
[11] Kajishima, T. and Takiguchi, S., Interaction between Particle Clusters and Fluid Turbulence, Int. J. Heat and Fluid Flow, Vol. 23(5), 639-646 (2002).
[12] Yuki, Y., Takeuchi, S. and Kajishima, T., Efficient Immersed Boundary Method for Strong Interaction Problem of Arbitrary Shape Object with the Self-Induced Flow, J. Fluid Sci. Tech., Vol. 2(1), 1-11 (2007).
[15] Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. and Matsumoto, Y., A full Eulerian Finite Difference Approach for Solving Fluid-Structure Coupling Problems, J. Comput. Phys., Vol. 230(3), 596-627 (2011).
[19] Fukada, T., Takeuchi, S. and Kajishima, T., Interaction Force and Residual Stress Models for Volume-Averaged Momentum Equation for Flow Laden with Particles of Comparable Diameter to Computational Grid Width, Int. J. Multiphase Flow, Vol.85, 298-313 (2016).
[4] Maxey, M., Simulation Methods for Particulate Flows and Concentrated Suspensions, Annu. Rev. Fluid Mech., Vol. 49, 171-193 (2017).
[9] Ikeno, T. and Kajishima, T., Finite-Difference Immersed Boundary Method Consistent with Wall Conditions for Incompressible Turbulent Flow Simulations, J. Comput. Phys., Vol.226(2), 1485-1508 (2007).
[3] Tenneti, S. and Subramaniam, S., Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development, Annu. Rev. Fluid Mech., Vol. 46, 199-230 (2014).
[18] Gu, J-C., Kondo, K., Takeuchi, S. and Kajishima, T., Direct Numerical Simulation of Heat Transfer in Dense Particle-Liquid Two-Phase Media, 9th Int. Conf. Multiphase Flow, 235 (2016).
[8] Fadlun, E. A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J., Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow simulations, J. Comput. Phys., Vol. 161, 35-60 (2000).
11
12
13
14
15
16
17
18
19
1
2
3
4
5
6
7
8
9
10
References_xml – reference: [15] Sugiyama, K., Ii, S., Takeuchi, S., Takagi, S. and Matsumoto, Y., A full Eulerian Finite Difference Approach for Solving Fluid-Structure Coupling Problems, J. Comput. Phys., Vol. 230(3), 596-627 (2011).
– reference: [1] Prosperetti, A and Tryggvason, G. (eds.), Computational Methods for Multiphase Flow, Cambridge Univ. Press (2007).
– reference: [19] Fukada, T., Takeuchi, S. and Kajishima, T., Interaction Force and Residual Stress Models for Volume-Averaged Momentum Equation for Flow Laden with Particles of Comparable Diameter to Computational Grid Width, Int. J. Multiphase Flow, Vol.85, 298-313 (2016).
– reference: [10] Sato, N., Takeuchi, S., Kajishima, T., Inagaki, M., Horinouchi, N., A Consistent Direct Discretization Scheme on Cartesian Grids for Convective and Conjugate Heat Transfer, J. Comput. Phys., Vol. 321, 76-104 (2016).
– reference: [12] Yuki, Y., Takeuchi, S. and Kajishima, T., Efficient Immersed Boundary Method for Strong Interaction Problem of Arbitrary Shape Object with the Self-Induced Flow, J. Fluid Sci. Tech., Vol. 2(1), 1-11 (2007).
– reference: [16] Ueyama, A., Moriya, S., Nakamura, M. and Kajishima, T., Immersed Boundary Method for Liquid-Solid Two-Phase Flow with Heat Transfer, Trans JSME, Ser.B (in Japanese), Vol.77(775), 803-814 (2011).
– reference: [11] Kajishima, T. and Takiguchi, S., Interaction between Particle Clusters and Fluid Turbulence, Int. J. Heat and Fluid Flow, Vol. 23(5), 639-646 (2002).
– reference: [5] Schneiders, L., Menke, M. and Schroeder, W., Direct Particle-Fluid Simulation of Kolmogorov-Length-Scale Size Particles in Decaying Isotropic Turbulence, J. Fluid Mech., Vol. 819, 188-227 (2017).
– reference: [17] Takeuchi, S., Tsutsumi, T. and Kajishima, T., Effect of Temperature Gradient within a Solid Particle on the Rotation and Oscillation Modes in Solid-Dispersed Two-Phase Flows, Int. J. Heat and Fluid Flow, Vol. 43, 15-25 (2013).
– reference: [6] Peskin, C. S., Numerical Analysis of Blood Flow in the Heart, J. Comput. Phys., Vol. 25(3), 220-252 (1977).
– reference: [4] Maxey, M., Simulation Methods for Particulate Flows and Concentrated Suspensions, Annu. Rev. Fluid Mech., Vol. 49, 171-193 (2017).
– reference: [2] van der Hoef, M.A., van Sint Annaland, M., Deen, N.G. and Kuipers, J.A.M., Numerical Simulation of Dense Gas-Solid Fluidized Beds: A Multiscale Modeling Strategy, Annu. Rev. Fluid Mech., Vol. 40, 47-70 (2008).
– reference: [3] Tenneti, S. and Subramaniam, S., Particle-Resolved Direct Numerical Simulation for Gas-Solid Flow Model Development, Annu. Rev. Fluid Mech., Vol. 46, 199-230 (2014).
– reference: [8] Fadlun, E. A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J., Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow simulations, J. Comput. Phys., Vol. 161, 35-60 (2000).
– reference: [18] Gu, J-C., Kondo, K., Takeuchi, S. and Kajishima, T., Direct Numerical Simulation of Heat Transfer in Dense Particle-Liquid Two-Phase Media, 9th Int. Conf. Multiphase Flow, 235 (2016).
– reference: [9] Ikeno, T. and Kajishima, T., Finite-Difference Immersed Boundary Method Consistent with Wall Conditions for Incompressible Turbulent Flow Simulations, J. Comput. Phys., Vol.226(2), 1485-1508 (2007).
– reference: [14] Nishiura, D., Shimosaka, A., Shirakawa, Y. and Hidaka, J., Hybrid Simulation of Hindered Settling Behavior of Particles Using Discrete Element Method and Direct Numerical Simulation, Kagaku Kogaku Ronbunshu (in Japanese), Vol. 32(4), 331-340 (2006).
– reference: [7] Goldstein, D., Handler, R. and Sirovich, L., Modeling a No-Slip Flow Boundary with an External Force Field, J. Comput. Phys., Vol. 105(2), 354-366 (1993).
– reference: [13] Nishino, K. and Matsushita, H., Columnar Particle Accumulation in Homogeneous Turbulence, 5th Int. Conf. Multiphase Flows, 248 (2004).
– ident: 2
– ident: 17
– ident: 3
– ident: 18
– ident: 14
  doi: 10.1252/kakoronbunshu.32.331
– ident: 5
– ident: 4
– ident: 11
  doi: 10.1016/S0142-727X(02)00159-5
– ident: 10
– ident: 12
  doi: 10.1299/jfst.2.1
– ident: 19
– ident: 13
– ident: 7
  doi: 10.1006/jcph.1993.1081
– ident: 15
  doi: 10.1016/j.jcp.2010.09.032
– ident: 9
  doi: 10.1016/j.jcp.2007.05.028
– ident: 6
  doi: 10.1016/0021-9991(77)90100-0
– ident: 16
  doi: 10.1299/kikaib.77.803
– ident: 8
– ident: 1
  doi: 10.1017/CBO9780511607486
SSID ssib002484562
ssib000961619
ssib005901927
ssj0069034
Score 1.9925448
Snippet The turbulence modulation, that means influences of dispersed particles to the fluid turbulence, is one of the challenging subjects in the multiphase flow...
SourceID proquest
crossref
jstage
SourceType Aggregation Database
Index Database
Publisher
StartPage 135
SubjectTerms Computational fluid dynamics
Computer simulation
Direct numerical simulation
Dispersions
Fluid flow
Heat exchange
Heat transfer
Immersed boundary method
Mathematical models
Multiphase flow
Particle-laden flow
Residual stress
Turbulence
Turbulent flow
Title Direct Numerical Simulation of Turbulent Flows Containing Solid Particles
URI https://www.jstage.jst.go.jp/article/jjmf/31/2/31_135/_article/-char/en
https://www.proquest.com/docview/1926272383
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX JAPANESE JOURNAL OF MULTIPHASE FLOW, 2017/06/15, Vol.31(2), pp.135-138
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdg8AAPiE_RsSE_7C1yqWPn67GaVo0xhtBSqW9WnNmso2sQdJrEX8-d7bopIAS8RFViOcrdr3e_s313hBxIawEpecaEEJJJKzVr0rxhXIN_kC12snPVPs_y46k8mWWzdTf7kF2y0sP2-2_zSv5Hq3AP9IpZsv-g2Tgp3IDfoF-4gobh-lc69vYKIn6_7bJIzufXoR0XksD6BkSGXiWZLLpb15xz5RtCJOfdYn4B9DEci9uiqOA-sS1lv6iEP3Z4CR4vsTBVtNLjE1zvej92Wm8-m66_iMDdiTefRukNPM4crQmu2G8W9pOxSwLtrxxyycCrebtkvN0sS86ywnf-XBvWYN7nvfjWW0nuK5T8bL2BPDjrfXVth4IPw6jtGtlnH9Rkenqq6qNZfZfcS4vCbc6_-9gjlVUONLZXlKxCGhvD8LwaubMG8TN81ia-_E3v1Vs85f4VUPVPv_prR0Lqx-RRiB7o2KvtCbljlk_Jw15NyWfkrQcFjaCgG1DQztIICupAQTegoA4UNILiOZlOjurDYxb6ZbAWovCMVVaKtMkyk8qLJmtthuXM0twIUeqyla0cmdZaXdiqKavGphacZKW5hpi1cvvBL8jOslual4QCqRVGY4qK2xoGmY2kETnu-lshUjsgB2vpqC--LIqCcBKFqFCISnAFQhyQwksuDgqfEAelYWR8gMmG8N8ekL21qFWA-zfFsbgldskTu39-_Io82KB8j-ysvt6YfSCPK_3aYeUHmVFuSA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+Numerical+Simulation+of+Turbulent+Flows+Containing+Solid+Particles&rft.jtitle=Japanese+journal+of+multiphase+flow&rft.au=KAJISHIMA%2C+Takeo&rft.date=2017-06-15&rft.pub=Japan+Science+and+Technology+Agency&rft.issn=0914-2843&rft.eissn=1881-5790&rft.volume=31&rft.issue=2&rft.spage=135&rft_id=info:doi/10.3811%2Fjjmf.31.135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0914-2843&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0914-2843&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0914-2843&client=summon