Comparison of commercial and original methods for denoising electrical waveforms with constant or linearly variable magnitudes

Acquired electrical waveforms can be affected by white noise. The 1-st part of the paper analysis deals with the denoising of multi-period steady signals by using 3 methods: mean signal method, an original method relying on wavelet packet trees and the method implemented by the wavelet-based Matlab...

Full description

Saved in:
Bibliographic Details
Published inITM web of conferences Vol. 49; p. 1005
Main Authors Nicolae, Ileana-Diana V.D., Kostic, Dusan, Nicolae, Petre-Marian T., Popescu, Paul P.
Format Journal Article
LanguageEnglish
Published EDP Sciences 2022
Online AccessGet full text

Cover

Loading…
Abstract Acquired electrical waveforms can be affected by white noise. The 1-st part of the paper analysis deals with the denoising of multi-period steady signals by using 3 methods: mean signal method, an original method relying on wavelet packet trees and the method implemented by the wavelet-based Matlab function wden. The signal length influence over the mean signal method’s accuracy is studied. The results yielded by the other 2 methods are also analyzed considering signals with 7 periods. Afterward the wavelet-based methods are used to denoise segments of 7 periods with linearly variable magnitudes (ascending or descending) for 3 different slopes. Artificial test signals, with rich harmonic content, were used. They were polluted by sets of 10 white noises with different powers. Maximum absolute deviations and mean square root deviations were computed considering the original signals, before pollution, versus the corresponding denoised signal. The metrics were computed relative to the maximum absolute value of the noise and allowed to determine the most accurate method.
AbstractList Acquired electrical waveforms can be affected by white noise. The 1-st part of the paper analysis deals with the denoising of multi-period steady signals by using 3 methods: mean signal method, an original method relying on wavelet packet trees and the method implemented by the wavelet-based Matlab function wden. The signal length influence over the mean signal method’s accuracy is studied. The results yielded by the other 2 methods are also analyzed considering signals with 7 periods. Afterward the wavelet-based methods are used to denoise segments of 7 periods with linearly variable magnitudes (ascending or descending) for 3 different slopes. Artificial test signals, with rich harmonic content, were used. They were polluted by sets of 10 white noises with different powers. Maximum absolute deviations and mean square root deviations were computed considering the original signals, before pollution, versus the corresponding denoised signal. The metrics were computed relative to the maximum absolute value of the noise and allowed to determine the most accurate method.
Author Nicolae, Ileana-Diana V.D.
Kostic, Dusan
Nicolae, Petre-Marian T.
Popescu, Paul P.
Author_xml – sequence: 1
  givenname: Ileana-Diana V.D.
  surname: Nicolae
  fullname: Nicolae, Ileana-Diana V.D.
– sequence: 2
  givenname: Dusan
  surname: Kostic
  fullname: Kostic, Dusan
– sequence: 3
  givenname: Petre-Marian T.
  surname: Nicolae
  fullname: Nicolae, Petre-Marian T.
– sequence: 4
  givenname: Paul P.
  surname: Popescu
  fullname: Popescu, Paul P.
BookMark eNpNkctOwzAQRS0EEuXxBWz8AwWPHcfJElW8pEpsYB2NX6mrxK7sAGLDtxMoQl3NzJ3RmcU5I8cxRUfIFbBrYBJuwjSaFP0NZ5xXLQPG5BFZcK5gyVmrjg_6U3JZypYxBrKpgdcL8rVK4w5zKCnS5KlJ4-iyCThQjJamHPoQ52F00ybZQn3K1LqYQgmxp25wZsrBzAcf-O7m5VjoR5g2MyeWCeM0E-gQosM8fNL3-Q_qwdER-ximN-vKBTnxOBR3-VfPyev93cvqcbl-fnha3a6XBqSUS1AOuPCWGaE8KgmiVlwh040VYBr0WkujKwnWcMWBO9WAUS1TXkrVVrU4J097rk247XY5jJg_u4Sh-w1S7jvMUzCD65i3WklfW2xFZQTqulGc6do2vtIAcmaJPcvkVEp2_p8HrPsx0v0Z6Q6MiG-fyoTW
Cites_doi 10.1109/IREP.2007.4410516
10.1109/MPS.2017.7974412
10.1109/EMC/SI/PI/EMCEurope52599.2021.9559219
10.1155/2016/3195492
10.1080/01621459.1995.10476626
10.1109/ICHQP.2012.6381273
10.1109/SIELMEN.2019.8905839
10.1093/biomet/81.3.425
10.1109/EMCSI39492.2022.9889407
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1051/itmconf/20224901005
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2271-2097
Editor Vladimirescu, C.
Constantinescu, D.
Popescu, P.
Boureanu, M.-M.
Popescu, M.
Munteanu, F.
Editor_xml – sequence: 1
  givenname: M.-M.
  surname: Boureanu
  fullname: Boureanu, M.-M.
– sequence: 2
  givenname: D.
  surname: Constantinescu
  fullname: Constantinescu, D.
– sequence: 3
  givenname: F.
  surname: Munteanu
  fullname: Munteanu, F.
– sequence: 4
  givenname: M.
  surname: Popescu
  fullname: Popescu, M.
– sequence: 5
  givenname: P.
  surname: Popescu
  fullname: Popescu, P.
– sequence: 6
  givenname: C.
  surname: Vladimirescu
  fullname: Vladimirescu, C.
ExternalDocumentID oai_doaj_org_article_0fdb75f6da934c3ab68720b6d8f4b115
10_1051_itmconf_20224901005
GroupedDBID 3V.
5VS
8FE
8FG
AAFWJ
AAYXX
ABJCF
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
EBS
EJD
GI~
GNUQQ
GROUPED_DOAJ
HCIFZ
IPNFZ
K6V
K7-
L6V
M0N
M7S
M~E
OK1
P62
PIMPY
PQQKQ
PROAC
PTHSS
RED
RIG
ID FETCH-LOGICAL-c1555-17e123fd0c37fa75136727a0b8d31c8afbb5cb451dc27212e781c7907f5579463
IEDL.DBID DOA
ISSN 2271-2097
IngestDate Tue Oct 22 15:11:36 EDT 2024
Fri Aug 23 01:12:00 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1555-17e123fd0c37fa75136727a0b8d31c8afbb5cb451dc27212e781c7907f5579463
OpenAccessLink https://doaj.org/article/0fdb75f6da934c3ab68720b6d8f4b115
ParticipantIDs doaj_primary_oai_doaj_org_article_0fdb75f6da934c3ab68720b6d8f4b115
crossref_primary_10_1051_itmconf_20224901005
PublicationCentury 2000
PublicationDate 2022-00-00
2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationTitle ITM web of conferences
PublicationYear 2022
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References R2
R3
R4
Donoho (R5) 1994; 81
R7
R8
R10
R12
R11
R13
Donoho (R6) 1995; 90
R1
Nicolae (R9) 2020; 34
References_xml – ident: R12
– volume: 34
  start-page: 02005
  year: 2020
  ident: R9
  publication-title: Third ICAMNM 2020, ITM Web of Conferences
  contributor:
    fullname: Nicolae
– ident: R1
  doi: 10.1109/IREP.2007.4410516
– ident: R3
  doi: 10.1109/MPS.2017.7974412
– ident: R11
  doi: 10.1109/EMC/SI/PI/EMCEurope52599.2021.9559219
– ident: R4
  doi: 10.1155/2016/3195492
– volume: 90
  start-page: 1200
  issue: 432
  year: 1995
  ident: R6
  publication-title: Journal of the American Statistical Association
  doi: 10.1080/01621459.1995.10476626
  contributor:
    fullname: Donoho
– ident: R7
– ident: R13
  doi: 10.1109/ICHQP.2012.6381273
– ident: R2
– ident: R10
  doi: 10.1109/SIELMEN.2019.8905839
– volume: 81
  start-page: 425
  issue: 3
  year: 1994
  ident: R5
  publication-title: Biometrika
  doi: 10.1093/biomet/81.3.425
  contributor:
    fullname: Donoho
– ident: R8
  doi: 10.1109/EMCSI39492.2022.9889407
SSID ssj0001586126
Score 2.2165437
Snippet Acquired electrical waveforms can be affected by white noise. The 1-st part of the paper analysis deals with the denoising of multi-period steady signals by...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 1005
Title Comparison of commercial and original methods for denoising electrical waveforms with constant or linearly variable magnitudes
URI https://doaj.org/article/0fdb75f6da934c3ab68720b6d8f4b115
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUQFQ03YrnkgpKI2I7jpAQELEhQsRJd5PEhbbG7iD3o-HZm4ixKR0OTIkoca8bJvOfY7zF2KUtto7Mhk6WMWWGUywBqm7m6hhIgWNW6KLy8lsNR8fyu33tWX7QmLMkDp8Bd59GD0bH0tlaFUxbKysgcSl_FAoRI6qV53SNTaX9whaW7XMsMaXE9XkyQYEYi-8g4kIWQYV2vFPUU-9vS8rDLtjtMyG9SX_bYRpjus5213wLvXr8D9n33axrIZ5HjWJmQXxLeaqeery2ueDKFnnOEoxy_KrMxTQfw5HdDKeFfdhUIq845zcJiOy1EXGALnEAnSR7zFT6HdlXxiaX1RUsf5ods9HD_djfMOv-EzCFK0JkwAetS9LlTJlqjSZ1NGptD5ZVwlY0A2kGhhXcSiaAMphLOIFuOWpPuvDpim9PZNBwzHr3yEYIGZxHiRQXC-ALT4ENde1nLAbtah7L5SDIZTft7W4umi3zTi_yA3VK4fy8ljev2BGa-6TLf_JX5k_9o5JRtUb_SpMoZ21x8LsM5wowFXLQjCo-PT98_jKfWHg
link.rule.ids 315,783,787,867,2109,4031,27935,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+commercial+and+original+methods+for+denoising+electrical+waveforms+with+constant+or+linearly+variable+magnitudes&rft.jtitle=ITM+web+of+conferences&rft.au=Nicolae%2C+Ileana-Diana+V.D.&rft.au=Kostic%2C+Dusan&rft.au=Nicolae%2C+Petre-Marian+T.&rft.au=Popescu%2C+Paul+P.&rft.date=2022&rft.issn=2271-2097&rft.eissn=2271-2097&rft.volume=49&rft.spage=1005&rft_id=info:doi/10.1051%2Fitmconf%2F20224901005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1051_itmconf_20224901005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2271-2097&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2271-2097&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2271-2097&client=summon