Dimers on Riemann surfaces I: Temperleyan forests

This is the first article in a series of two papers in which we study the Temperleyan dimer model on an arbitrary bounded Riemann surface of finite topological type. The end goal of both papers is to prove the convergence of height fluctuations to a universal and conformally invariant scaling limit....

Full description

Saved in:
Bibliographic Details
Published inAnnales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions Vol. 12; no. 2; pp. 363 - 444
Main Authors Berestycki, Nathanaël, Laslier, Benoit, Ray, Gourab
Format Journal Article
LanguageEnglish
Published 01.01.2025
Online AccessGet full text
ISSN2308-5827
2308-5835
DOI10.4171/aihpd/193

Cover

Abstract This is the first article in a series of two papers in which we study the Temperleyan dimer model on an arbitrary bounded Riemann surface of finite topological type. The end goal of both papers is to prove the convergence of height fluctuations to a universal and conformally invariant scaling limit. In this part, we show that the dimer model on the Temperleyan superposition of a graph embedded on the surface and its dual is well posed, provided that we remove an appropriate number of punctures. We further show that the resulting dimer configuration is in bijection with an object which we call Temperleyan forest, whose law is characterised in terms of a certain topological condition. Finally, we discuss the relation between height differences and Temperleyan forest and prove that the convergence of the latter (which is the subject of the second paper in this series) implies the existence of a conformally invariant scaling limit of height fluctuations.
AbstractList This is the first article in a series of two papers in which we study the Temperleyan dimer model on an arbitrary bounded Riemann surface of finite topological type. The end goal of both papers is to prove the convergence of height fluctuations to a universal and conformally invariant scaling limit. In this part, we show that the dimer model on the Temperleyan superposition of a graph embedded on the surface and its dual is well posed, provided that we remove an appropriate number of punctures. We further show that the resulting dimer configuration is in bijection with an object which we call Temperleyan forest, whose law is characterised in terms of a certain topological condition. Finally, we discuss the relation between height differences and Temperleyan forest and prove that the convergence of the latter (which is the subject of the second paper in this series) implies the existence of a conformally invariant scaling limit of height fluctuations.
Author Berestycki, Nathanaël
Laslier, Benoit
Ray, Gourab
Author_xml – sequence: 1
  givenname: Nathanaël
  orcidid: 0000-0002-9475-9733
  surname: Berestycki
  fullname: Berestycki, Nathanaël
– sequence: 2
  givenname: Benoit
  orcidid: 0000-0001-5789-3821
  surname: Laslier
  fullname: Laslier, Benoit
– sequence: 3
  givenname: Gourab
  surname: Ray
  fullname: Ray, Gourab
BookMark eNo9z01LAzEUheEgFay1C_9Bti7G3ptkkow7qV-FgiB1HZKZGxzpZIakLvrv_cTVeVcHnnM2S2Mixi4RrhUaXPn-bepW2MgTNhcSbFVbWc_-W5gztizlHQAEoJS2njO86wfKhY-Jv_Q0-JR4-cjRt1T45obvaJgo7-noE49jpnIoF-w0-n2h5d8u2OvD_W79VG2fHzfr223VYq0OlSEU2qMNQMqGqOuuAwzBajCthYCaUGtvRGtQSSuVpyZGYSAY0VHXeLlgV7-_bR5LyRTdlPvB56NDcN9c98N1X1z5CRNASWs
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.4171/aihpd/193
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2308-5835
EndPage 444
ExternalDocumentID 10_4171_aihpd_193
GroupedDBID AAYXX
AKZPS
ALMA_UNASSIGNED_HOLDINGS
CITATION
EBS
EJD
FEDTE
GROUPED_DOAJ
HVGLF
REW
ID FETCH-LOGICAL-c154t-7e126a18b0e48bf65dd01bb8607c80b16e166a72c7143834ae9ff270b72ded9a3
ISSN 2308-5827
IngestDate Tue Jul 01 05:16:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c154t-7e126a18b0e48bf65dd01bb8607c80b16e166a72c7143834ae9ff270b72ded9a3
ORCID 0000-0002-9475-9733
0000-0001-5789-3821
OpenAccessLink https://doi.org/10.4171/aihpd/193
PageCount 82
ParticipantIDs crossref_primary_10_4171_aihpd_193
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions
PublicationYear 2025
SSID ssj0002013385
Score 2.2780318
Snippet This is the first article in a series of two papers in which we study the Temperleyan dimer model on an arbitrary bounded Riemann surface of finite topological...
SourceID crossref
SourceType Index Database
StartPage 363
Title Dimers on Riemann surfaces I: Temperleyan forests
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcoED4ineihCcomz9SOxdbpSCWkQrVLVSb6txMlGDIFtldw_wL_jHjO0kaxUOhUsUWZlEyUzGM-NvPjP2ukAyE65kVgOqLM-BZ5bPMVPIseTKmMKz8x8d64Oz_NN5cT6Z_IpQS5u1nZY__9pX8j9apTHSq-uS_QfNjjelATon_dKRNEzHa-l4v3FVZ1fvP2nwO7Rtutp0tQdZHYa6OQXFHf324OGENAGs4mDUkyfTtRWm395IM-AGUte40KRflk1bQr-SPk33p853UB4NnlbEqz-URVYDCrPpPPtEF3oltvV3dE_-UYYNso99sR78bfdGeMdnoHg3WM8etstmBOOcQGiloc8BNi5RyCIqUXhPRmmOa-8KJABTjMcCV8noimVkcjLyq6r3gmGKzgNl5FXvnwvjvD80F5dO32KutpPcsLB_Ze4bEYmUCznxhRdekOgNdlMaE1b--yz9q1-3dUl94bcs7F8q8FU56V0vvetRDGOUE4Urp3fZnT7PSN4Fo7nHJtjeZ7ePRpLe1QMmgvkkyzbpzScZzCc5fJtExpP0xvOQnX38cPr-IOt30MhKCo3XmUEhNYiZ5ZjPbK2LquLC2pnmppxxKzQKrcHI0ghHWZsDzutaGm6NrLCag3rEdtpli49ZApWDdFK4qykgxBwBsVS1tJVSWqCpn7BXwxsvLgNRyuKPj_r0Ohc9Y7e2RvSc7ay7Db6gyG9tX3pd_AY_41rP
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dimers+on+Riemann+surfaces+I%3A+Temperleyan+forests&rft.jtitle=Annales+de+l%27Institut+Henri+Poincar%C3%A9.+D.+Combinatorics%2C+physics+and+their+interactions&rft.au=Berestycki%2C+Nathana%C3%ABl&rft.au=Laslier%2C+Benoit&rft.au=Ray%2C+Gourab&rft.date=2025-01-01&rft.issn=2308-5827&rft.eissn=2308-5835&rft.volume=12&rft.issue=2&rft.spage=363&rft.epage=444&rft_id=info:doi/10.4171%2Faihpd%2F193&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_aihpd_193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2308-5827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2308-5827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2308-5827&client=summon