New equivalent resistance formula of $$m\times n$$ rectangular resistor network represented by Chebyshev polynomials

Abstract In the process of exploring the field of circuits, obtaining the exact solution of the equivalent resistance between two nodes in a resistor network has become an important problem. This paper aims to introduce Chebyshev polynomial of the second kind to improve the equivalent resistance for...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 14; no. 1; pp. 1 - 14
Main Authors Wang, Ru, Jiang, Xiaoyu, Zheng, Yanpeng, Jiang, Zhaolin, Xiang, Deliang
Format Journal Article
LanguageEnglish
Published Nature Portfolio 27.11.2024
Online AccessGet full text

Cover

Loading…
Abstract Abstract In the process of exploring the field of circuits, obtaining the exact solution of the equivalent resistance between two nodes in a resistor network has become an important problem. This paper aims to introduce Chebyshev polynomial of the second kind to improve the equivalent resistance formula of $$m\times n$$ rectangular resistor network, thereby improving the calculation efficiency. Additionally, the discrete sine transform of the first kind (DST-I) is utilized to solve the modeling equation. Under the condition of applying the new equivalent resistance formula, several equivalent resistance formulas with different parameters are given, and three-dimensional views are used to illustrate them. Six comparison tables are provided to showcase the advantages of the improved explicit formula in terms of computational efficiency, as well as the relationship between resistivity and the maximum size of the resistor network that the formula can effectively handle. This may provide more convenient and effective technical support for research and practice in electronic engineering and other related fields.
AbstractList Abstract In the process of exploring the field of circuits, obtaining the exact solution of the equivalent resistance between two nodes in a resistor network has become an important problem. This paper aims to introduce Chebyshev polynomial of the second kind to improve the equivalent resistance formula of $$m\times n$$ rectangular resistor network, thereby improving the calculation efficiency. Additionally, the discrete sine transform of the first kind (DST-I) is utilized to solve the modeling equation. Under the condition of applying the new equivalent resistance formula, several equivalent resistance formulas with different parameters are given, and three-dimensional views are used to illustrate them. Six comparison tables are provided to showcase the advantages of the improved explicit formula in terms of computational efficiency, as well as the relationship between resistivity and the maximum size of the resistor network that the formula can effectively handle. This may provide more convenient and effective technical support for research and practice in electronic engineering and other related fields.
ArticleNumber 29461
Author Jiang, Zhaolin
Jiang, Xiaoyu
Wang, Ru
Zheng, Yanpeng
Xiang, Deliang
Author_xml – sequence: 1
  givenname: Ru
  surname: Wang
  fullname: Wang, Ru
– sequence: 2
  givenname: Xiaoyu
  surname: Jiang
  fullname: Jiang, Xiaoyu
– sequence: 3
  givenname: Yanpeng
  surname: Zheng
  fullname: Zheng, Yanpeng
– sequence: 4
  givenname: Zhaolin
  surname: Jiang
  fullname: Jiang, Zhaolin
– sequence: 5
  givenname: Deliang
  surname: Xiang
  fullname: Xiang, Deliang
BookMark eNpNkctOwzAQRS1UJKD0B1h50W3Aj5jYS1TxqFTBBnZIlmNP2kASFztt1L_HfQgxmxnduToa-16hUec7QOiGkltKuLyLORVKZoTlmSRSqWw4Q5eM5CJjnLHRv_kCTWL8IqkEUzlVl6h_hQHDz6bemga6HgeIdexNZwFXPrSbxmBf4em0_ezrFiLuptPkscmxTLtw8vuAO-gHH76TsE5aQoHD5Q7PVlDu4gq2eO2bXefb2jTxGp1XqcHk1Mfo4-nxffaSLd6e57OHRWap4ENWAbGKc1VYIcBKEFBVhDrljCtZUSaTcJSkZ-f3IEVas4JIaRhhlCgngI_R_Mh13nzpdahbE3bam1ofBB-W2oS-tg3ovCwZkwVXvKhyxxNGKcmhsPsfLZ1JLHZk2eBjDFD98SjR-xj0MQad7tGHGPTAfwHhA37e
Cites_doi 10.1038/s41598-018-24164-x
10.1007/s10773-012-1196-5
10.1016/j.aam.2010.10.006
10.1515/spma-2020-0012
10.1103/PhysRevE.90.012130
10.1088/1674-1056/26/9/090503
10.1103/PhysRevE.90.032130
10.1109/TIE.2016.2590379
10.1109/78.539053
10.1088/1751-8113/46/19/195202
10.1088/1751-8113/42/2/025205
10.1002/cta.2035
10.1038/s41928-018-0042-z
10.1080/00927872.2018.1424866
10.1103/PhysRevE.82.011125
10.1080/00150517.1965.12431416
10.1007/s10955-014-0916-z
10.1119/1.1285881
10.1088/1751-8113/47/3/035003
10.1038/s41598-024-72196-3
10.3390/math7100893
10.1016/j.aop.2013.11.012
10.1109/TASE.2021.3126385
10.1088/0253-6102/63/1/07
10.3390/math7100939
10.1006/jcph.2001.6720
10.1109/TNNLS.2021.3108050
10.1002/andp.18471481202
10.1007/BF01164627
10.1142/S0218126607003794
10.1088/0305-4470/39/27/002
10.1109/TNNLS.2020.3028136
10.1002/cta.335
10.1002/num.1038
10.1103/RevModPhys.45.574
10.1007/s40314-021-01738-6
10.1063/1.1665785
10.1103/PhysRevB.70.174305
10.1007/s12190-022-01700-7
10.1038/srep11266
10.1038/s41598-018-27402-4
10.1088/1674-1056/25/5/050504
10.1016/j.compstruct.2021.114587
10.1016/j.eswa.2021.116272
10.1007/s12190-021-01532-x
10.1038/s41598-023-39478-8
10.1201/9781420036114
10.1016/j.eswa.2023.122157
10.1016/j.engappai.2021.104306
10.1038/s41598-022-25724-y
10.1186/s13662-019-2335-6
10.1088/0305-4470/37/26/004
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1038/s41598-024-80899-w
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 14
ExternalDocumentID oai_doaj_org_article_4bb22873937f4d388a9983e7c8089bda
10_1038_s41598_024_80899_w
GroupedDBID 0R~
4.4
53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
AASML
AAYXX
ABDBF
ABUWG
ACGFS
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AFPKN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
CITATION
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NAO
OK1
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
PJZUB
PPXIY
PQGLB
PUEGO
ID FETCH-LOGICAL-c153w-fe0c93397c55ec8e5eff01d9dadb27bc155d1002446e85e5e27088a202109d5e3
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:29:09 EDT 2025
Tue Jul 01 02:06:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c153w-fe0c93397c55ec8e5eff01d9dadb27bc155d1002446e85e5e27088a202109d5e3
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-024-80899-w
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_4bb22873937f4d388a9983e7c8089bda
crossref_primary_10_1038_s41598_024_80899_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-27
PublicationDateYYYYMMDD 2024-11-27
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-27
  day: 27
PublicationDecade 2020
PublicationTitle Scientific reports
PublicationYear 2024
Publisher Nature Portfolio
Publisher_xml – name: Nature Portfolio
References S Kose (80899_CR46) 2011; 58
Q-Y Meng (80899_CR63) 2021; 11
S Kirkpatrick (80899_CR17) 1973; 45
W Kook (80899_CR42) 2011; 46
Z Tan (80899_CR10) 2018; 8
Y-L Wei (80899_CR58) 2019; 7
R Bairamkulov (80899_CR45) 2019; 66
Z-Z Tan (80899_CR2) 2015; 5
X-Y Jiang (80899_CR47) 2024; 238
X Meng (80899_CR52) 2024; 14
Y Hadad (80899_CR11) 2018; 1
W-J Zhao (80899_CR51) 2023; 13
Y Shi (80899_CR21) 2021; 34
N Chair (80899_CR39) 2014; 341
Q-Y Meng (80899_CR61) 2022; 41
S Katsura (80899_CR43) 1971; 12
Y-R Fu (80899_CR55) 2020; 8
L Borges (80899_CR35) 2001; 169
Z-Z Tan (80899_CR3) 2014; 90
K-P Liu (80899_CR22) 2021; 103
L Jin (80899_CR24) 2022; 19
N Chair (80899_CR40) 2014; 154
X Wang (80899_CR27) 2017; 223
Y-F Zhou (80899_CR50) 2023; 13
L Jin (80899_CR25) 2016; 63
Z-L Jiang (80899_CR60) 2019; 7
AF Horadam (80899_CR64) 1965; 3
Y Shi (80899_CR20) 2022; 33
JW Essam (80899_CR4) 2014; 90
Y-L Wei (80899_CR59) 2019; 2019
S Giordano (80899_CR29) 2005; 33
Y-F Zhou (80899_CR48) 2022; 12
M-C Lai (80899_CR34) 2002; 18
G Kirchhoff (80899_CR13) 1847; 148
NS Izmailian (80899_CR36) 2014; 47
Z-L Jiang (80899_CR49) 2023; 107
NS Izmailian (80899_CR38) 2015; 53
L Jin (80899_CR26) 2022; 9
JW Essam (80899_CR32) 2008; 42
W Kook (80899_CR19) 2011; 46
Y-L Wei (80899_CR56) 2022; 68
G Ferri (80899_CR15) 2007; 16
Z-Z Tan (80899_CR1) 2013; 46
Z-Z Tan (80899_CR8) 2017; 26
SR Garcia (80899_CR67) 2018; 46
Q-Y Meng (80899_CR62) 2022; 68
D Zhang (80899_CR12) 2021; 276
Z-Z Tan (80899_CR5) 2015; 63
Z-B Sun (80899_CR23) 2022; 192
V Winstead (80899_CR14) 2012; 60
J-J Wang (80899_CR53) 2023; 13
G Udrea (80899_CR65) 1996; 53
NS Izmailian (80899_CR37) 2014; 9
80899_CR66
NS Izmailian (80899_CR33) 2010; 82
Y-L Wei (80899_CR57) 2020; 10
V Sanchez (80899_CR68) 1996; 44
FY Wu (80899_CR30) 2004; 37
DJ Klein (80899_CR28) 1993; 12
Z Tan (80899_CR9) 2018; 8
R Bairamkulov (80899_CR44) 2020; 67
Y-R Fu (80899_CR54) 2020; 10
WJ Tzeng (80899_CR31) 2006; 39
Z-Z Tan (80899_CR7) 2016; 25
MQ Owaidat (80899_CR16) 2012; 51
C Pennetta (80899_CR18) 2004; 70
Z-Z Tan (80899_CR6) 2015; 43
J Cserti (80899_CR41) 2000; 68
References_xml – volume: 8
  start-page: 5798
  year: 2018
  ident: 80899_CR9
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24164-x
– volume: 223
  start-page: 77
  year: 2017
  ident: 80899_CR27
  publication-title: Neuron
– volume: 51
  start-page: 3152
  year: 2012
  ident: 80899_CR16
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-012-1196-5
– volume: 46
  start-page: 417
  year: 2011
  ident: 80899_CR42
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2010.10.006
– volume: 8
  start-page: 131
  year: 2020
  ident: 80899_CR55
  publication-title: Spec. Matrices.
  doi: 10.1515/spma-2020-0012
– volume: 90
  start-page: 012130
  issue: 1
  year: 2014
  ident: 80899_CR3
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.90.012130
– volume: 26
  start-page: 090503
  issue: 9
  year: 2017
  ident: 80899_CR8
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/26/9/090503
– volume: 10
  start-page: 178
  issue: 1
  year: 2020
  ident: 80899_CR57
  publication-title: J. Appl. Anal. Comput.
– volume: 9
  start-page: 854
  issue: 5
  year: 2022
  ident: 80899_CR26
  publication-title: IEEE-CAA J. Autom.
– volume: 90
  start-page: 032130
  issue: 3
  year: 2014
  ident: 80899_CR4
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.90.032130
– volume: 63
  start-page: 6978
  issue: 11
  year: 2016
  ident: 80899_CR25
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2016.2590379
– volume: 44
  start-page: 2644
  issue: 10
  year: 1996
  ident: 80899_CR68
  publication-title: IEEE T. Signal. Process.
  doi: 10.1109/78.539053
– volume: 46
  start-page: 195202
  issue: 19
  year: 2013
  ident: 80899_CR1
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/46/19/195202
– volume: 42
  start-page: 025205
  year: 2008
  ident: 80899_CR32
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/42/2/025205
– volume: 43
  start-page: 1687
  issue: 11
  year: 2015
  ident: 80899_CR6
  publication-title: Int. J. Circ. Theor. Appl.
  doi: 10.1002/cta.2035
– volume: 1
  start-page: 178
  year: 2018
  ident: 80899_CR11
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0042-z
– volume: 46
  start-page: 3745
  issue: 9
  year: 2018
  ident: 80899_CR67
  publication-title: Commun. Algebra.
  doi: 10.1080/00927872.2018.1424866
– volume: 82
  start-page: 011125
  year: 2010
  ident: 80899_CR33
  publication-title: Phys. Rev. E.
  doi: 10.1103/PhysRevE.82.011125
– volume: 3
  start-page: 161
  year: 1965
  ident: 80899_CR64
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.1965.12431416
– volume: 154
  start-page: 1177
  year: 2014
  ident: 80899_CR40
  publication-title: J. Stat. Phys.
  doi: 10.1007/s10955-014-0916-z
– volume: 68
  start-page: 896
  year: 2000
  ident: 80899_CR41
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1285881
– volume: 60
  start-page: 703
  issue: 3
  year: 2012
  ident: 80899_CR14
  publication-title: IEEE T. Circ.-I.
– volume: 47
  start-page: 035003
  year: 2014
  ident: 80899_CR36
  publication-title: J. Phys. A: Math. Theor.
  doi: 10.1088/1751-8113/47/3/035003
– volume: 14
  start-page: 21254
  issue: 1
  year: 2024
  ident: 80899_CR52
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-72196-3
– volume: 7
  start-page: 893
  issue: 10
  year: 2019
  ident: 80899_CR58
  publication-title: Mathematics.
  doi: 10.3390/math7100893
– volume: 341
  start-page: 56
  year: 2014
  ident: 80899_CR39
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2013.11.012
– volume: 19
  start-page: 3575
  issue: 4
  year: 2022
  ident: 80899_CR24
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2021.3126385
– volume: 63
  start-page: 36
  issue: 1
  year: 2015
  ident: 80899_CR5
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/0253-6102/63/1/07
– volume: 7
  start-page: 939
  issue: 10
  year: 2019
  ident: 80899_CR60
  publication-title: Mathematics.
  doi: 10.3390/math7100939
– volume: 169
  start-page: 151
  year: 2001
  ident: 80899_CR35
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6720
– volume: 66
  start-page: 4368
  issue: 11
  year: 2019
  ident: 80899_CR45
  publication-title: IEEE T. Circuits-I
– volume: 34
  start-page: 2781
  issue: 6
  year: 2021
  ident: 80899_CR21
  publication-title: IEEE Trans. Neur. Net. Lear.
  doi: 10.1109/TNNLS.2021.3108050
– volume: 148
  start-page: 497
  year: 1847
  ident: 80899_CR13
  publication-title: Ann. Phys.
  doi: 10.1002/andp.18471481202
– volume: 12
  start-page: 81
  year: 1993
  ident: 80899_CR28
  publication-title: J. Math. Chem.
  doi: 10.1007/BF01164627
– volume: 16
  start-page: 489
  year: 2007
  ident: 80899_CR15
  publication-title: J. Circuit. Syst. Comp.
  doi: 10.1142/S0218126607003794
– volume: 39
  start-page: 8579
  year: 2006
  ident: 80899_CR31
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/27/002
– volume: 11
  start-page: 2947
  year: 2021
  ident: 80899_CR63
  publication-title: J. Appl. Anal. Comput.
– volume: 9
  start-page: 1742
  year: 2014
  ident: 80899_CR37
  publication-title: J. Stat. Mech: Theor. E.
– volume: 67
  start-page: 3224
  issue: 9
  year: 2020
  ident: 80899_CR44
  publication-title: IEEE T. Circuits-I
– volume: 10
  start-page: 1599
  issue: 4
  year: 2020
  ident: 80899_CR54
  publication-title: J. Appl. Anal. Comput.
– volume: 33
  start-page: 587
  issue: 2
  year: 2022
  ident: 80899_CR20
  publication-title: IEEE Trans. Neur. Net. Lear.
  doi: 10.1109/TNNLS.2020.3028136
– volume: 33
  start-page: 519
  year: 2005
  ident: 80899_CR29
  publication-title: Int. J. Circ. Theor. Appl.
  doi: 10.1002/cta.335
– volume: 18
  start-page: 56
  year: 2002
  ident: 80899_CR34
  publication-title: Numer. Meth. Part. D. E.
  doi: 10.1002/num.1038
– volume: 58
  start-page: 739
  issue: 11
  year: 2011
  ident: 80899_CR46
  publication-title: IEEE T. Circuits-II
– volume: 45
  start-page: 497
  year: 1973
  ident: 80899_CR17
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.45.574
– volume: 41
  start-page: 35
  year: 2022
  ident: 80899_CR61
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-021-01738-6
– volume: 13
  start-page: 671
  issue: 2
  year: 2023
  ident: 80899_CR53
  publication-title: J. Appl. Anal. Comput.
– volume: 53
  start-page: 040703
  issue: 2
  year: 2015
  ident: 80899_CR38
  publication-title: Chin. J. Phys.
– volume: 12
  start-page: 1622
  year: 1971
  ident: 80899_CR43
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1665785
– volume: 70
  start-page: 174305
  year: 2004
  ident: 80899_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.174305
– volume: 107
  start-page: 044123
  issue: 4
  year: 2023
  ident: 80899_CR49
  publication-title: Phys. Phys. E.
– volume: 68
  start-page: 3999
  year: 2022
  ident: 80899_CR62
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-022-01700-7
– volume: 53
  start-page: 143
  year: 1996
  ident: 80899_CR65
  publication-title: Horadam. Port. Math.
– volume: 5
  start-page: 11266
  year: 2015
  ident: 80899_CR2
  publication-title: Sci. Rep.
  doi: 10.1038/srep11266
– volume: 13
  start-page: 9
  year: 2023
  ident: 80899_CR50
  publication-title: Aip. Adv.
– volume: 8
  start-page: 9937
  issue: 1
  year: 2018
  ident: 80899_CR10
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27402-4
– volume: 25
  start-page: 050504
  issue: 5
  year: 2016
  ident: 80899_CR7
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/25/5/050504
– volume: 276
  start-page: 114587
  year: 2021
  ident: 80899_CR12
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2021.114587
– volume: 192
  start-page: 116272
  year: 2022
  ident: 80899_CR23
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2021.116272
– volume: 68
  start-page: 623
  year: 2022
  ident: 80899_CR56
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-021-01532-x
– volume: 13
  start-page: 12417
  issue: 1
  year: 2023
  ident: 80899_CR51
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-39478-8
– ident: 80899_CR66
  doi: 10.1201/9781420036114
– volume: 238
  start-page: 122157
  year: 2024
  ident: 80899_CR47
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2023.122157
– volume: 103
  start-page: 104306
  year: 2021
  ident: 80899_CR22
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2021.104306
– volume: 46
  start-page: 417
  year: 2011
  ident: 80899_CR19
  publication-title: Adv. Appl. Math.
  doi: 10.1016/j.aam.2010.10.006
– volume: 12
  start-page: 21260
  issue: 1
  year: 2022
  ident: 80899_CR48
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-25724-y
– volume: 2019
  start-page: 410
  issue: 1
  year: 2019
  ident: 80899_CR59
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/s13662-019-2335-6
– volume: 37
  start-page: 6653
  year: 2004
  ident: 80899_CR30
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/37/26/004
SSID ssj0000529419
Score 2.4340627
Snippet Abstract In the process of exploring the field of circuits, obtaining the exact solution of the equivalent resistance between two nodes in a resistor network...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 1
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJSQWxFOUlzxkQ1ETx27sESqqioGJSh2QLDu-CKSSltJS9d9ztgMqEwtr4jx059x9n-P7jpAksyZjDr80WyHT4cyx1EgOyFprBQJTShk3yD72R2P-MBGTrVZffk9YlAeOhutxaxmieq_bVnNXSGmQIBRQVjKTyroAjTDnbZGpqOrNFM9VWyWTFbL3gZnKV5MxnvorVbr-lYm2BPtDZhkekP0WEtLb-CqHZAeaI7Ibm0RujskS4xCF99UrzgnMEBT5scd86CzqAedqauispkny9hz6xNMmSagPY34hEmlrO362oE3c8U2DjqWvOQJH7YYOXsCvUcMnnc-mG1-ljDPyhIyH90-DUdr2SkgrjFnrtIasUgWCi0oIqCQIqOssd8oZZ1lpcZBwXm0V2R9IgadZifHFME_5lBNQnJJOM2vgjFAwoKqSW15Zw3NXG2GQI4m8L0OjHtElN9920_MoiaHDr-xC6mhljc_Rwcp63SV33rQ_I72cdTiATtatk_VfTj7_j5tckD3m3Z_nKSsvSWe5WMEVIoqlvQ6T5wvwVMjy
  priority: 102
  providerName: Directory of Open Access Journals
Title New equivalent resistance formula of $$m\times n$$ rectangular resistor network represented by Chebyshev polynomials
URI https://doaj.org/article/4bb22873937f4d388a9983e7c8089bda
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7riuBFfOJzyaE3qW7TZNseRFRcFkFPLngQStJMVVhb9-W6_96ZtCsKe_Tapq9JMjNfmvk-xry20W1hcaaZDJGOFFb4OpaAqDVPQGFIiaoNsg-dXl_ePamnBlvIHdUGHC-FdqQn1R8Nzr6G80uc8BdVyXh8PsYgRIViQqK_Rfzgz1bYKkamiBQN7ut0v-L6FokMkrp2Zvmlf-LTLxp_F2-6m2yjThT5VdWzW6wBxTZbq6Qj5ztsgt6Jw3D6hiMF4wZH1EyZIHYhpzR0OtC8zLnnvT879XheeB4n50bLk_jFdftyxItqHzh37JZUiQSWmzm_eQVauYZP_lEO5lS7jPbaZf3u7eNNz68VFPwMPdnMz6GdJSGmHJlSkMWgIM_bgU2stkZEBhspSxysiAkhVnhaROh1tCAgmFgF4R5rFmUB-4yDhiSLpJGZ0TKwuVYakZMKOrGT71EH7HRht_SjIspI3Q_uME4rK6f4nNRZOZ0dsGsy7U9LIrl2B8rRS1rPmVQaIxDQEWVfLm2IL4bYMIQoo5sYqw__4yZHbF1Q9weBL6Jj1pyMpnCCecbEtBw-b7kh9A1rkdIk
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+equivalent+resistance+formula+of+%24%24m%5Ctimes+n%24%24+rectangular+resistor+network+represented+by+Chebyshev+polynomials&rft.jtitle=Scientific+reports&rft.au=Ru+Wang&rft.au=Xiaoyu+Jiang&rft.au=Yanpeng+Zheng&rft.au=Zhaolin+Jiang&rft.date=2024-11-27&rft.pub=Nature+Portfolio&rft.eissn=2045-2322&rft.volume=14&rft.issue=1&rft.spage=1&rft.epage=14&rft_id=info:doi/10.1038%2Fs41598-024-80899-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4bb22873937f4d388a9983e7c8089bda
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon