Semisimple Rings of Fractions

One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of fractions, that is, expressions a/b subject to an obvious equivalence relation. This leads to a very useful technique in commutative ring theo...

Full description

Saved in:
Bibliographic Details
Published inAn Introduction to Noncommutative Noetherian Rings Vol. Series Number 61; pp. 105 - 122
Main Authors Goodearl, K. R., Warfield, Jr, R. B.
Format Book Chapter
LanguageEnglish
Published United Kingdom Cambridge University Press 12.07.2004
Subjects
Online AccessGet full text
ISBN9780521836876
0521836875
0521545374
9780521545372
DOI10.1017/CBO9780511841699.009

Cover

Abstract One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of fractions, that is, expressions a/b subject to an obvious equivalence relation. This leads to a very useful technique in commutative ring theory, namely, to pass from an arbitrary commutative ring R to a prime factor ring R/P and then to the quotient field of R/P. In the noncommutative case, we can ask whether it is possible to pass from a domain to a division ring built from fractions. While this is not always possible, it will turn out to be the case for any noetherian domain. However, since noncommutative noetherian rings need not have any factor rings that are domains, this is rather restrictive. Instead, recalling that prime rings are the most useful noncommutative analog of domains, we look for prime rings from which simple artinian rings can be built using fractions. The main result is Goldie's Theorem, which implies in particular that any prime noetherian ring has a simple artinian ring of fractions. It turns out to be little extra work to investigate rings from which semisimple rings of fractions can be built.Our first task is to see how a ring of fractions can be constructed, given an appropriate set X of elements in a ring R to be used as denominators.
AbstractList One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of fractions, that is, expressions a/b subject to an obvious equivalence relation. This leads to a very useful technique in commutative ring theory, namely, to pass from an arbitrary commutative ring R to a prime factor ring R/P and then to the quotient field of R/P. In the noncommutative case, we can ask whether it is possible to pass from a domain to a division ring built from fractions. While this is not always possible, it will turn out to be the case for any noetherian domain. However, since noncommutative noetherian rings need not have any factor rings that are domains, this is rather restrictive. Instead, recalling that prime rings are the most useful noncommutative analog of domains, we look for prime rings from which simple artinian rings can be built using fractions. The main result is Goldie's Theorem, which implies in particular that any prime noetherian ring has a simple artinian ring of fractions. It turns out to be little extra work to investigate rings from which semisimple rings of fractions can be built.Our first task is to see how a ring of fractions can be constructed, given an appropriate set X of elements in a ring R to be used as denominators.
Author Goodearl, K. R.
Warfield, Jr, R. B.
Author_xml – sequence: 1
  givenname: K. R.
  surname: Goodearl
  fullname: Goodearl, K. R.
  organization: University of California, Santa Barbara
– sequence: 2
  givenname: R. B.
  surname: Warfield, Jr
  fullname: Warfield, Jr, R. B.
BookMark eNqNkM1OwzAQhI34EaXkDUDqC7R4Y3tti1OpKCBVqsTP2XJcpwSSOMSpxOMTaC-FC3tZzay-0WrOyFEdak_IBdAJUJBXs5ullooKAMUBtZ5Qqg9Isucd7nQKiqGSeEIGwDl-X_kpSWJ8o_2ASqXUA3L55KsiFlVT-tFjUa_jKOSjeWtdV4Q6npPj3JbRJ7s9JC_z2-fZ_XixvHuYTRdjB4LBGDMvBF85D4znkok80yznueapdoiuV2BF_4KzyJjKuOXccd_bSiBSJtmQpNvcpg0fGx8747MQ3p2vu9aW7tU2nW-jSRExlUYoAwx6aLqFnK2ytlitvXGh_QGj2avEfFal-d3dlArdZ1z_ycjCf-kv_xtuTw
ContentType Book Chapter
Copyright Cambridge University Press 2004
Copyright_xml – notice: Cambridge University Press 2004
DBID FFUUA
DEWEY 512/.4
DOI 10.1017/CBO9780511841699.009
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9780511841699
0511841698
0511211929
9780511211928
EndPage 122
ExternalDocumentID EBC266627_58_131
9780511841699_xml_CBO9780511841699A059
GroupedDBID -G2
-VX
089
20A
38.
A4I
A4J
AAAAZ
AABBV
AAFPH
AAHFW
ABARN
ABESS
ABIAV
ABMRC
ABZUC
ACCTN
ACLGV
ACNOG
ADCGF
ADQZK
ADVEM
AEDFS
AERYV
AEWAL
AEWQY
AGSJN
AHAWV
AIAQS
AIXPE
AJFER
AJXXZ
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
AMYDA
ANGWU
ASYWF
AZZ
BBABE
BFIBU
BJUTA
COBLI
COXPH
CZZ
DUGUG
EBSCA
ECOWB
FH2
FVPQW
GEOUK
HF4
ICERG
IWG
JJU
MYL
OLDIN
OTBUH
OZASK
OZBHS
PP-
PQQKQ
S36
SACVX
SN-
XI1
ZXKUE
AHWGJ
FFUUA
ID FETCH-LOGICAL-c1531-6be554dce134f735fb93f4f9429c66cb931a5461ca6338b4a44c4eb9385660373
ISBN 9780521836876
0521836875
0521545374
9780521545372
IngestDate Thu May 29 16:43:39 EDT 2025
Fri Feb 21 02:31:28 EST 2025
Wed Mar 12 03:53:41 EDT 2025
IsPeerReviewed false
IsScholarly false
LCCallNum QA251.4.G6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1531-6be554dce134f735fb93f4f9429c66cb931a5461ca6338b4a44c4eb9385660373
OCLC 144618414
PQID EBC266627_58_131
PageCount 18
ParticipantIDs proquest_ebookcentralchapters_266627_58_131
cambridge_corebooks_9780511841699_xml_CBO9780511841699A059
cambridge_cbo_9780511841699_xml_CBO9780511841699A059
PublicationCentury 2000
PublicationDate 20040712
2004
PublicationDateYYYYMMDD 2004-07-12
2004-01-01
PublicationDate_xml – month: 07
  year: 2004
  text: 20040712
  day: 12
PublicationDecade 2000
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle An Introduction to Noncommutative Noetherian Rings
PublicationYear 2004
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0000182779
Score 1.2789494
Snippet One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of...
SourceID proquest
cambridge
SourceType Publisher
StartPage 105
SubjectTerms Algebra
Fields & rings
Title Semisimple Rings of Fractions
URI http://dx.doi.org/10.1017/CBO9780511841699.009
https://doi.org/10.1017/CBO9780511841699.009?locatt=mode:legacy
http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=266627&ppg=131
Volume Series Number 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46X9QXr3inD75JZ9OcJq1vOqYibIIX8K00WQKCrrBNEH-9J03XdroHLy9lyZa26Zf0fOcs3wkhx5oOQhMw6YMQmQ8y4n5spPITHgaZiAS6uVY73Ovz60e4eYqe6s0UC3XJRLbVx1xdyV9QxTrE1apkf4FsdVKswM-ILx4RYTx-Ib-zYdYy9bEN57mErRZDJJH9fKis4GPisnn380LNa6fwXTMgfpXnAxzgTpfTPrlrN8fNvd0A7tnmDHaNLJu8HDn5w2yMAGzwkdYe5Vz5V3OJh_MmrY43ZjwWzTcaDaKGcaRORPztveuSNXUubovToNOCPC-xmUCT2s5Uq_9mfpO-v76kXxueI-lbJIsihhZZQvvc7VVxswAdIiGSUnaM_I8JKAvFvUdlVqXpl2Fddn2b6iepOJ13v80cG9_sc0E6HtbIqhWieFYhgv1aJwt6uEFWelWe3fEmOazR8gq0vNx4FVpb5PGy-9C59ssNL3yFhof6XGpkdwOlKQMjWGRkwgyYBDmD4lxhiWYRcKoyzlgsIQNQoLE6RlIeMMG2SWuYD_UO8UKuErt5gZJ8gNPQZEorUFSwRBtgIHcJVN1MlczTn4GyS84azfJR8Y_--MeNT6aPMy0aluuPlXuO4xTJIg9FGsUpZXTvP5faJ8v1PDggrcnoTR8ie5zIo3JAfQKCf1oD
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=An+Introduction+to+Noncommutative+Noetherian+Rings&rft.au=Goodearl%2C+K.+R.&rft.atitle=Semisimple+Rings+of+Fractions&rft.date=2004-07-12&rft.pub=Cambridge+University+Press&rft.isbn=9780521836876&rft.spage=105&rft.epage=122&rft_id=info:doi/10.1017%2FCBO9780511841699.009&rft.externalDocID=9780511841699_xml_CBO9780511841699A059
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805215%2F45372%2Fcover%2F9780521545372.jpg
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F266627-l.jpg