Semisimple Rings of Fractions
One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of fractions, that is, expressions a/b subject to an obvious equivalence relation. This leads to a very useful technique in commutative ring theo...
Saved in:
Published in | An Introduction to Noncommutative Noetherian Rings Vol. Series Number 61; pp. 105 - 122 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
United Kingdom
Cambridge University Press
12.07.2004
|
Subjects | |
Online Access | Get full text |
ISBN | 9780521836876 0521836875 0521545374 9780521545372 |
DOI | 10.1017/CBO9780511841699.009 |
Cover
Abstract | One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of fractions, that is, expressions a/b subject to an obvious equivalence relation. This leads to a very useful technique in commutative ring theory, namely, to pass from an arbitrary commutative ring R to a prime factor ring R/P and then to the quotient field of R/P. In the noncommutative case, we can ask whether it is possible to pass from a domain to a division ring built from fractions. While this is not always possible, it will turn out to be the case for any noetherian domain. However, since noncommutative noetherian rings need not have any factor rings that are domains, this is rather restrictive. Instead, recalling that prime rings are the most useful noncommutative analog of domains, we look for prime rings from which simple artinian rings can be built using fractions. The main result is Goldie's Theorem, which implies in particular that any prime noetherian ring has a simple artinian ring of fractions. It turns out to be little extra work to investigate rings from which semisimple rings of fractions can be built.Our first task is to see how a ring of fractions can be constructed, given an appropriate set X of elements in a ring R to be used as denominators. |
---|---|
AbstractList | One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of fractions, that is, expressions a/b subject to an obvious equivalence relation. This leads to a very useful technique in commutative ring theory, namely, to pass from an arbitrary commutative ring R to a prime factor ring R/P and then to the quotient field of R/P. In the noncommutative case, we can ask whether it is possible to pass from a domain to a division ring built from fractions. While this is not always possible, it will turn out to be the case for any noetherian domain. However, since noncommutative noetherian rings need not have any factor rings that are domains, this is rather restrictive. Instead, recalling that prime rings are the most useful noncommutative analog of domains, we look for prime rings from which simple artinian rings can be built using fractions. The main result is Goldie's Theorem, which implies in particular that any prime noetherian ring has a simple artinian ring of fractions. It turns out to be little extra work to investigate rings from which semisimple rings of fractions can be built.Our first task is to see how a ring of fractions can be constructed, given an appropriate set X of elements in a ring R to be used as denominators. |
Author | Goodearl, K. R. Warfield, Jr, R. B. |
Author_xml | – sequence: 1 givenname: K. R. surname: Goodearl fullname: Goodearl, K. R. organization: University of California, Santa Barbara – sequence: 2 givenname: R. B. surname: Warfield, Jr fullname: Warfield, Jr, R. B. |
BookMark | eNqNkM1OwzAQhI34EaXkDUDqC7R4Y3tti1OpKCBVqsTP2XJcpwSSOMSpxOMTaC-FC3tZzay-0WrOyFEdak_IBdAJUJBXs5ullooKAMUBtZ5Qqg9Isucd7nQKiqGSeEIGwDl-X_kpSWJ8o_2ASqXUA3L55KsiFlVT-tFjUa_jKOSjeWtdV4Q6npPj3JbRJ7s9JC_z2-fZ_XixvHuYTRdjB4LBGDMvBF85D4znkok80yznueapdoiuV2BF_4KzyJjKuOXccd_bSiBSJtmQpNvcpg0fGx8747MQ3p2vu9aW7tU2nW-jSRExlUYoAwx6aLqFnK2ytlitvXGh_QGj2avEfFal-d3dlArdZ1z_ycjCf-kv_xtuTw |
ContentType | Book Chapter |
Copyright | Cambridge University Press 2004 |
Copyright_xml | – notice: Cambridge University Press 2004 |
DBID | FFUUA |
DEWEY | 512/.4 |
DOI | 10.1017/CBO9780511841699.009 |
DatabaseName | ProQuest Ebook Central - Book Chapters - Demo use only |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 9780511841699 0511841698 0511211929 9780511211928 |
EndPage | 122 |
ExternalDocumentID | EBC266627_58_131 9780511841699_xml_CBO9780511841699A059 |
GroupedDBID | -G2 -VX 089 20A 38. A4I A4J AAAAZ AABBV AAFPH AAHFW ABARN ABESS ABIAV ABMRC ABZUC ACCTN ACLGV ACNOG ADCGF ADQZK ADVEM AEDFS AERYV AEWAL AEWQY AGSJN AHAWV AIAQS AIXPE AJFER AJXXZ AKHYG ALMA_UNASSIGNED_HOLDINGS AMJDZ AMYDA ANGWU ASYWF AZZ BBABE BFIBU BJUTA COBLI COXPH CZZ DUGUG EBSCA ECOWB FH2 FVPQW GEOUK HF4 ICERG IWG JJU MYL OLDIN OTBUH OZASK OZBHS PP- PQQKQ S36 SACVX SN- XI1 ZXKUE AHWGJ FFUUA |
ID | FETCH-LOGICAL-c1531-6be554dce134f735fb93f4f9429c66cb931a5461ca6338b4a44c4eb9385660373 |
ISBN | 9780521836876 0521836875 0521545374 9780521545372 |
IngestDate | Thu May 29 16:43:39 EDT 2025 Fri Feb 21 02:31:28 EST 2025 Wed Mar 12 03:53:41 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
LCCallNum | QA251.4.G6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1531-6be554dce134f735fb93f4f9429c66cb931a5461ca6338b4a44c4eb9385660373 |
OCLC | 144618414 |
PQID | EBC266627_58_131 |
PageCount | 18 |
ParticipantIDs | proquest_ebookcentralchapters_266627_58_131 cambridge_corebooks_9780511841699_xml_CBO9780511841699A059 cambridge_cbo_9780511841699_xml_CBO9780511841699A059 |
PublicationCentury | 2000 |
PublicationDate | 20040712 2004 |
PublicationDateYYYYMMDD | 2004-07-12 2004-01-01 |
PublicationDate_xml | – month: 07 year: 2004 text: 20040712 day: 12 |
PublicationDecade | 2000 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | An Introduction to Noncommutative Noetherian Rings |
PublicationYear | 2004 |
Publisher | Cambridge University Press |
Publisher_xml | – name: Cambridge University Press |
SSID | ssj0000182779 |
Score | 1.2789494 |
Snippet | One of the first constructions that an undergraduate student of algebra meets is the quotient field of a commutative integral domain, constructed as a set of... |
SourceID | proquest cambridge |
SourceType | Publisher |
StartPage | 105 |
SubjectTerms | Algebra Fields & rings |
Title | Semisimple Rings of Fractions |
URI | http://dx.doi.org/10.1017/CBO9780511841699.009 https://doi.org/10.1017/CBO9780511841699.009?locatt=mode:legacy http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=266627&ppg=131 |
Volume | Series Number 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46X9QXr3inD75JZ9OcJq1vOqYibIIX8K00WQKCrrBNEH-9J03XdroHLy9lyZa26Zf0fOcs3wkhx5oOQhMw6YMQmQ8y4n5spPITHgaZiAS6uVY73Ovz60e4eYqe6s0UC3XJRLbVx1xdyV9QxTrE1apkf4FsdVKswM-ILx4RYTx-Ib-zYdYy9bEN57mErRZDJJH9fKis4GPisnn380LNa6fwXTMgfpXnAxzgTpfTPrlrN8fNvd0A7tnmDHaNLJu8HDn5w2yMAGzwkdYe5Vz5V3OJh_MmrY43ZjwWzTcaDaKGcaRORPztveuSNXUubovToNOCPC-xmUCT2s5Uq_9mfpO-v76kXxueI-lbJIsihhZZQvvc7VVxswAdIiGSUnaM_I8JKAvFvUdlVqXpl2Fddn2b6iepOJ13v80cG9_sc0E6HtbIqhWieFYhgv1aJwt6uEFWelWe3fEmOazR8gq0vNx4FVpb5PGy-9C59ssNL3yFhof6XGpkdwOlKQMjWGRkwgyYBDmD4lxhiWYRcKoyzlgsIQNQoLE6RlIeMMG2SWuYD_UO8UKuErt5gZJ8gNPQZEorUFSwRBtgIHcJVN1MlczTn4GyS84azfJR8Y_--MeNT6aPMy0aluuPlXuO4xTJIg9FGsUpZXTvP5faJ8v1PDggrcnoTR8ie5zIo3JAfQKCf1oD |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=An+Introduction+to+Noncommutative+Noetherian+Rings&rft.au=Goodearl%2C+K.+R.&rft.atitle=Semisimple+Rings+of+Fractions&rft.date=2004-07-12&rft.pub=Cambridge+University+Press&rft.isbn=9780521836876&rft.spage=105&rft.epage=122&rft_id=info:doi/10.1017%2FCBO9780511841699.009&rft.externalDocID=9780511841699_xml_CBO9780511841699A059 |
thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fassets.cambridge.org%2F97805215%2F45372%2Fcover%2F9780521545372.jpg |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F266627-l.jpg |