Trust in Artificial Intelligent Agent while Completing a Procedural Construction Task

The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy of such systems in providing effective suggestions is dependent on the quality of their training data. A within-subjects experimental study wa...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Human Factors and Ergonomics Society Annual Meeting Vol. 67; no. 1; pp. 2005 - 2006
Main Authors Bhanu, Aasish, Sharma, Harnish, Pathy, Soumya Ranjan, Ponathil, Amal, Rahimian, Hamed, Madathil, Kapil Chalil
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.09.2023
Subjects
Online AccessGet full text
ISSN1071-1813
2169-5067
DOI10.1177/21695067231193668

Cover

Loading…
Abstract The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy of such systems in providing effective suggestions is dependent on the quality of their training data. A within-subjects experimental study was conducted using a simulated recommender system for installation tasks to investigate the effect of system reliability and construction task complexity on worker trust, workload, and performance. Results indicate that overall trust in the AI agent was higher for the highly reliable condition but remained consistent across various levels of task complexity. The workload was found to be higher for low reliability and complex conditions, and the effect of reliability on performance was influenced by task complexity. These findings offer insights for designing recommender systems to support construction workers in completing procedural tasks.
AbstractList The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy of such systems in providing effective suggestions is dependent on the quality of their training data. A within-subjects experimental study was conducted using a simulated recommender system for installation tasks to investigate the effect of system reliability and construction task complexity on worker trust, workload, and performance. Results indicate that overall trust in the AI agent was higher for the highly reliable condition but remained consistent across various levels of task complexity. The workload was found to be higher for low reliability and complex conditions, and the effect of reliability on performance was influenced by task complexity. These findings offer insights for designing recommender systems to support construction workers in completing procedural tasks.
Author Sharma, Harnish
Pathy, Soumya Ranjan
Bhanu, Aasish
Madathil, Kapil Chalil
Ponathil, Amal
Rahimian, Hamed
Author_xml – sequence: 1
  givenname: Aasish
  surname: Bhanu
  fullname: Bhanu, Aasish
– sequence: 2
  givenname: Harnish
  surname: Sharma
  fullname: Sharma, Harnish
– sequence: 3
  givenname: Soumya Ranjan
  surname: Pathy
  fullname: Pathy, Soumya Ranjan
– sequence: 4
  givenname: Amal
  surname: Ponathil
  fullname: Ponathil, Amal
– sequence: 5
  givenname: Hamed
  surname: Rahimian
  fullname: Rahimian, Hamed
– sequence: 6
  givenname: Kapil Chalil
  surname: Madathil
  fullname: Madathil, Kapil Chalil
BookMark eNp9kM1qwzAQhEVJoUnaB-hNL-BUa0eWfAymP4FAe3DORt7IrlJHCpJM6dvXbnor9LILw37DzizIzDqrCbkHtgIQ4iGFvOAsF2kGUGR5Lq_IfNKSSZyROTABCUjIbsgihCNjaSay9ZzsKz-ESI2lGx9Na9Conm5t1H1vOm0j3fzMz3fTa1q607nX0diOKvrmHerD4Mf70tkQ_YDROEsrFT5uyXWr-qDvfveS7J8eq_Il2b0-b8vNLkHgEBOUHGUuFBSy1byRbb6Wh1Qy1sA6lQ2qBsc0iA2DgvPiAJhi23ClmdRSCJYtCVx80bsQvG7rszcn5b9qYPXUS_2nl5FZXZigOl0f3eDt-OI_wDfBF2U8
Cites_doi 10.1016/j.apergo.2015.07.012
10.1145/3406499.3415063
10.1177/1071181322661167
10.1518/hfes.46.1.50_30392
10.1007/s11747-019-00710-5
ContentType Journal Article
Copyright Copyright © 2023 Human Factors and Ergonomics Society
Copyright_xml – notice: Copyright © 2023 Human Factors and Ergonomics Society
DBID AAYXX
CITATION
DOI 10.1177/21695067231193668
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-5067
EndPage 2006
ExternalDocumentID 10_1177_21695067231193668
10.1177_21695067231193668
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1900956
  funderid: https://doi.org/10.13039/100000001
GroupedDBID -TM
.2G
.2L
.2N
01A
09Z
0R~
1~K
29P
4.4
54M
85S
88I
8AF
8FI
8FJ
8R4
8R5
AABOD
AACKU
AACTG
AADIR
AADUE
AAGGD
AAGLT
AAJOX
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAQXI
AARIX
AATAA
AATBZ
AAWLO
AAYTG
ABAWP
ABCCA
ABCJG
ABDWY
ABEIX
ABFWQ
ABFXH
ABHKI
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQPY
ABQXT
ABRHV
ABUJY
ABUWG
ABYTW
ACAEP
ACDXX
ACFUR
ACFZE
ACGBL
ACGFS
ACGOD
ACJER
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUFS
ACUIR
ACXKE
ADBBV
ADDLC
ADEBD
ADEIA
ADNON
ADPEE
ADRRZ
ADTBJ
ADTOS
ADUKL
ADVBO
AEDXQ
AEOBU
AEPTA
AEQLS
AESMA
AESZF
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFKBI
AFKRA
AFKRG
AFMOU
AFQAA
AFUIA
AGDVU
AGKLV
AGNHF
AGNWV
AGWFA
AHDMH
AHWHD
AJEFB
AJUZI
ALFTD
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUVAJ
AYPQM
AZFZN
AZQEC
BBRGL
BDDNI
BENPR
BMVBW
BPACV
BPHCQ
BVXVI
BYIEH
CBRKF
CCGJY
CCPQU
CEADM
CFDXU
CORYS
CS3
DD0
DD~
DE-
DG~
DO-
DOPDO
DV7
DV8
DWQXO
D~Y
EBS
EJD
FHBDP
FYUFA
GNUQQ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HCIFZ
HF~
HVGLF
J8X
K.F
KQ4
M2M
M2P
O9-
P.B
PHGZM
PHGZT
PQQKQ
PROAC
PSYQQ
Q1R
Q2X
Q7O
Q7P
Q7V
Q7X
Q82
Q83
ROL
S01
SASJQ
SAUOL
SCNPE
SFC
SPV
SSDHQ
UKHRP
ZPLXX
ZPPRI
ZRKOI
~32
AAEJI
AAPII
AAYXX
ACCVC
AJGYC
AJVBE
AMNSR
CITATION
ID FETCH-LOGICAL-c151t-c85c867a198fe5b8f648d2800b1428bcabc119ccb019559d1c2cfb5ae08e87703
ISSN 1071-1813
IngestDate Tue Aug 05 12:05:43 EDT 2025
Tue Jun 17 22:27:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Construction task
Augmented Reality
Artificial Intelligence
AI agent
Procedural task
Performance
Trust
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c151t-c85c867a198fe5b8f648d2800b1428bcabc119ccb019559d1c2cfb5ae08e87703
PageCount 2
ParticipantIDs crossref_primary_10_1177_21695067231193668
sage_journals_10_1177_21695067231193668
PublicationCentury 2000
PublicationDate 20230900
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 9
  year: 2023
  text: 20230900
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
PublicationTitle Proceedings of the Human Factors and Ergonomics Society Annual Meeting
PublicationYear 2023
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Rai 2020; 48
Chavaillaz, Wastell, Sauer 2016; 52
Lee, See 2004; 46
Bhanu, Sharma, Piratla, Chalil Madathil 2022; 66
bibr2-21695067231193668
bibr3-21695067231193668
bibr5-21695067231193668
bibr1-21695067231193668
bibr4-21695067231193668
References_xml – volume: 52
  start-page: 333
  year: 2016
  end-page: 342
  article-title: System reliability, performance and trust in adaptable automation
  publication-title: Applied Ergonomics
– volume: 46
  start-page: 50
  issue: 1
  year: 2004
  end-page: 80
  article-title: Trust in Automation: Designing for Appropriate Reliance
  publication-title: Human Factors
– volume: 66
  start-page: 1829
  issue: 1
  year: 2022
  end-page: 1833
  article-title: Application of Augmented Reality for Remote Collaborative Work in Architecture, Engineering, and Construction – A Systematic Review
  publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting
– volume: 48
  start-page: 137
  issue: 1
  year: 2020
  end-page: 141
  article-title: Explainable AI: from black box to glass box
  publication-title: Journal of the Academy of Marketing Science
– ident: bibr2-21695067231193668
  doi: 10.1016/j.apergo.2015.07.012
– ident: bibr3-21695067231193668
  doi: 10.1145/3406499.3415063
– ident: bibr1-21695067231193668
  doi: 10.1177/1071181322661167
– ident: bibr4-21695067231193668
  doi: 10.1518/hfes.46.1.50_30392
– ident: bibr5-21695067231193668
  doi: 10.1007/s11747-019-00710-5
SSID ssj0023734
Score 2.23128
Snippet The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy...
SourceID crossref
sage
SourceType Index Database
Publisher
StartPage 2005
Title Trust in Artificial Intelligent Agent while Completing a Procedural Construction Task
URI https://journals.sagepub.com/doi/full/10.1177/21695067231193668
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA7r-mIfxLZKbVXyUCh0icwtM9nHRRQpWLbtLtinJclkvOFYnF2k_jh_mycnmYtVofoy7GaXDJPz5dzmnC-EfM4zBXFHrBj44gFLZKaYkqlmgZJcSBVHsUa2z-_p4TT5dsyPe727TtXSYq529e2TfSWvkSqMgVxtl-wLJNtMCgPwGeQLV5AwXP9PxrZhAjMW11jy44gzao7N-WCE15tT2Pm48ZFo-2QgXXtAjowb9sTOmkN2MJHVRdddHTfmraqLCVzW_8Af02PT7vvXJ665uWpqQD1r_5HBGzYh_6ksF6iMZHVWNXnoX8iejTbQpmnaH8bgnbpStKvF5V85-CnL8xbMY8z7uxT26NIvlc9fRHFToFWrXHByGPgZTs0ZHIvCdMh44A7qqPW0_9bFo1e6QcA7BtwmSZ42Dvh62s5tpwbHFpzX1B3q85CI-x8D2ZQthp4b_dEUS2Q5gjAl6JPl0e_xj6Mm5I8zV9dQP6N_r24pvx5N8sAz6pQVoqczWSOrPkShI4e3t6RnynfkTYe48j2ZIvLoWUlb5NEO8igijyLyaIs8KmmLPNpFHrXIWyfTg_3J3iHzB3QwDY7inGnBtUgzGQ5FYbgSRZqIPIIQxGYWhdJSaXg2rZXtSuXDPNSRLhSXJhBGZGBrNki_vCrNB0KjMDegNcDbzUxS8HiYZ2D_bBt3mheJ4Jvka704sz-Oh2X2rDg2yRe7fDO_Vavn__nxJdN-IistgLdIH5bIbINLOlc7Xu73gL6GbQ
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH32J97kEQhK3NY7ObYxFLq21RSKHiIexuEpVCFBoR_PXO5lHqC8RLTkuYfMzOfJuZ-RbgJOIKzx2OosjFW9SVXFElPU1bSjIhlWM7Olf7HHrdkXs1ZuOyq9LMwpQITpumrQotyoP1bHdzfm5bns9M_dCxkHt4nliEujBEoQb19t3N7WB23HJ4UVPGJEoxjzllTfPHl3zKSnMtXXmW6azBfWVf0Vwyab5maNr7F-nG_33AOqyW5JO0C2_ZgIU43YSVOUnCLRgFZgiDPKX5qkJegvRmup0ZaefPt0eMJsQEk1y8-4FIko8cREbFg5hbQCtdWhLI6WQbRp3L4KJLy6sXqEYKkFEtmBYel5YvkpgpkXiuiGzE2fwzEkpLpdF6rZWZN2R-ZGlbJ4rJuCViwTGK7EAtfU7jXSC2FcXoD8hjeOwmzPEjjpHNDOh6UeIK1oCzCvrwpVDYCK1ShPwbVg04NbiGFcq_r9z788pjWOoGg37Y7w2v92HZ3CdfNJEdQA2xig-RdWTqqHSvD0gnyZ4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60BdEHb7Ge-yAIwtZcm2wei1paj1KhhfoU9khUCrHQiOCvdzZHqReIL3kawmSYzHy7M_MNwIkOJJ47XEkRi1vUE4GkUviKWlIwLqTruCpn--z5naF3PWKj8sLNzMKUFpw2TVsVapQHa_N3T3RyXtYYzx3bD5mpIbo24g_f54tQx0TlWDWotx7693ezI5cbFHVlTKQUc5lb1jV_fMmnzDTX1pVnmvYaRJWORYPJuPmaoXrvX-gb__8R67BaglDSKrxmAxbidBNW5qgJt2A4MMMY5DnNpQqaCdKd8XdmpJU_354wqhATVHIS70ciSD56oA2bBzHbQCt-WjIQ0_E2DNtXg4sOLVcwUIVQIKOKM8X9QNghT2ImeeJ7XDsIMs3dEZdKSIXaKyXN3CELta0clUgmYovHPMBosgO19CWNd4E4to7RLxDPBLGXMDfUAUY4M6jr68TjrAFnlfmjScG0EdklGfk3WzXg1Ng2qiz9u-TenyWPYal_2Y5uu72bfVg2a-WLXrIDqKGp4kMEH5k8Kj3sAx9OzBM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust+in+Artificial+Intelligent+Agent+while+Completing+a+Procedural+Construction+Task&rft.jtitle=Proceedings+of+the+Human+Factors+and+Ergonomics+Society+Annual+Meeting&rft.au=Bhanu%2C+Aasish&rft.au=Sharma%2C+Harnish&rft.au=Pathy%2C+Soumya+Ranjan&rft.au=Ponathil%2C+Amal&rft.date=2023-09-01&rft.issn=1071-1813&rft.eissn=2169-5067&rft.volume=67&rft.issue=1&rft.spage=2005&rft.epage=2006&rft_id=info:doi/10.1177%2F21695067231193668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_21695067231193668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-1813&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-1813&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-1813&client=summon