Trust in Artificial Intelligent Agent while Completing a Procedural Construction Task
The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy of such systems in providing effective suggestions is dependent on the quality of their training data. A within-subjects experimental study wa...
Saved in:
Published in | Proceedings of the Human Factors and Ergonomics Society Annual Meeting Vol. 67; no. 1; pp. 2005 - 2006 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1071-1813 2169-5067 |
DOI | 10.1177/21695067231193668 |
Cover
Loading…
Abstract | The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy of such systems in providing effective suggestions is dependent on the quality of their training data. A within-subjects experimental study was conducted using a simulated recommender system for installation tasks to investigate the effect of system reliability and construction task complexity on worker trust, workload, and performance. Results indicate that overall trust in the AI agent was higher for the highly reliable condition but remained consistent across various levels of task complexity. The workload was found to be higher for low reliability and complex conditions, and the effect of reliability on performance was influenced by task complexity. These findings offer insights for designing recommender systems to support construction workers in completing procedural tasks. |
---|---|
AbstractList | The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy of such systems in providing effective suggestions is dependent on the quality of their training data. A within-subjects experimental study was conducted using a simulated recommender system for installation tasks to investigate the effect of system reliability and construction task complexity on worker trust, workload, and performance. Results indicate that overall trust in the AI agent was higher for the highly reliable condition but remained consistent across various levels of task complexity. The workload was found to be higher for low reliability and complex conditions, and the effect of reliability on performance was influenced by task complexity. These findings offer insights for designing recommender systems to support construction workers in completing procedural tasks. |
Author | Sharma, Harnish Pathy, Soumya Ranjan Bhanu, Aasish Madathil, Kapil Chalil Ponathil, Amal Rahimian, Hamed |
Author_xml | – sequence: 1 givenname: Aasish surname: Bhanu fullname: Bhanu, Aasish – sequence: 2 givenname: Harnish surname: Sharma fullname: Sharma, Harnish – sequence: 3 givenname: Soumya Ranjan surname: Pathy fullname: Pathy, Soumya Ranjan – sequence: 4 givenname: Amal surname: Ponathil fullname: Ponathil, Amal – sequence: 5 givenname: Hamed surname: Rahimian fullname: Rahimian, Hamed – sequence: 6 givenname: Kapil Chalil surname: Madathil fullname: Madathil, Kapil Chalil |
BookMark | eNp9kM1qwzAQhEVJoUnaB-hNL-BUa0eWfAymP4FAe3DORt7IrlJHCpJM6dvXbnor9LILw37DzizIzDqrCbkHtgIQ4iGFvOAsF2kGUGR5Lq_IfNKSSZyROTABCUjIbsgihCNjaSay9ZzsKz-ESI2lGx9Na9Conm5t1H1vOm0j3fzMz3fTa1q607nX0diOKvrmHerD4Mf70tkQ_YDROEsrFT5uyXWr-qDvfveS7J8eq_Il2b0-b8vNLkHgEBOUHGUuFBSy1byRbb6Wh1Qy1sA6lQ2qBsc0iA2DgvPiAJhi23ClmdRSCJYtCVx80bsQvG7rszcn5b9qYPXUS_2nl5FZXZigOl0f3eDt-OI_wDfBF2U8 |
Cites_doi | 10.1016/j.apergo.2015.07.012 10.1145/3406499.3415063 10.1177/1071181322661167 10.1518/hfes.46.1.50_30392 10.1007/s11747-019-00710-5 |
ContentType | Journal Article |
Copyright | Copyright © 2023 Human Factors and Ergonomics Society |
Copyright_xml | – notice: Copyright © 2023 Human Factors and Ergonomics Society |
DBID | AAYXX CITATION |
DOI | 10.1177/21695067231193668 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2169-5067 |
EndPage | 2006 |
ExternalDocumentID | 10_1177_21695067231193668 10.1177_21695067231193668 |
GrantInformation_xml | – fundername: National Science Foundation grantid: 1900956 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | -TM .2G .2L .2N 01A 09Z 0R~ 1~K 29P 4.4 54M 85S 88I 8AF 8FI 8FJ 8R4 8R5 AABOD AACKU AACTG AADIR AADUE AAGGD AAGLT AAJOX AAJPV AAKTJ AAMFR AANSI AAPEO AAQXI AARIX AATAA AATBZ AAWLO AAYTG ABAWP ABCCA ABCJG ABDWY ABEIX ABFWQ ABFXH ABHKI ABIDT ABJNI ABKRH ABLUO ABPNF ABQKF ABQPY ABQXT ABRHV ABUJY ABUWG ABYTW ACAEP ACDXX ACFUR ACFZE ACGBL ACGFS ACGOD ACJER ACLZU ACOFE ACOXC ACROE ACSIQ ACUAV ACUFS ACUIR ACXKE ADBBV ADDLC ADEBD ADEIA ADNON ADPEE ADRRZ ADTBJ ADTOS ADUKL ADVBO AEDXQ AEOBU AEPTA AEQLS AESMA AESZF AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AGDVU AGKLV AGNHF AGNWV AGWFA AHDMH AHWHD AJEFB AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ARTOV AUVAJ AYPQM AZFZN AZQEC BBRGL BDDNI BENPR BMVBW BPACV BPHCQ BVXVI BYIEH CBRKF CCGJY CCPQU CEADM CFDXU CORYS CS3 DD0 DD~ DE- DG~ DO- DOPDO DV7 DV8 DWQXO D~Y EBS EJD FHBDP FYUFA GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF J8X K.F KQ4 M2M M2P O9- P.B PHGZM PHGZT PQQKQ PROAC PSYQQ Q1R Q2X Q7O Q7P Q7V Q7X Q82 Q83 ROL S01 SASJQ SAUOL SCNPE SFC SPV SSDHQ UKHRP ZPLXX ZPPRI ZRKOI ~32 AAEJI AAPII AAYXX ACCVC AJGYC AJVBE AMNSR CITATION |
ID | FETCH-LOGICAL-c151t-c85c867a198fe5b8f648d2800b1428bcabc119ccb019559d1c2cfb5ae08e87703 |
ISSN | 1071-1813 |
IngestDate | Tue Aug 05 12:05:43 EDT 2025 Tue Jun 17 22:27:44 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Construction task Augmented Reality Artificial Intelligence AI agent Procedural task Performance Trust |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c151t-c85c867a198fe5b8f648d2800b1428bcabc119ccb019559d1c2cfb5ae08e87703 |
PageCount | 2 |
ParticipantIDs | crossref_primary_10_1177_21695067231193668 sage_journals_10_1177_21695067231193668 |
PublicationCentury | 2000 |
PublicationDate | 20230900 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 9 year: 2023 text: 20230900 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA |
PublicationTitle | Proceedings of the Human Factors and Ergonomics Society Annual Meeting |
PublicationYear | 2023 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Rai 2020; 48 Chavaillaz, Wastell, Sauer 2016; 52 Lee, See 2004; 46 Bhanu, Sharma, Piratla, Chalil Madathil 2022; 66 bibr2-21695067231193668 bibr3-21695067231193668 bibr5-21695067231193668 bibr1-21695067231193668 bibr4-21695067231193668 |
References_xml | – volume: 52 start-page: 333 year: 2016 end-page: 342 article-title: System reliability, performance and trust in adaptable automation publication-title: Applied Ergonomics – volume: 46 start-page: 50 issue: 1 year: 2004 end-page: 80 article-title: Trust in Automation: Designing for Appropriate Reliance publication-title: Human Factors – volume: 66 start-page: 1829 issue: 1 year: 2022 end-page: 1833 article-title: Application of Augmented Reality for Remote Collaborative Work in Architecture, Engineering, and Construction – A Systematic Review publication-title: Proceedings of the Human Factors and Ergonomics Society Annual Meeting – volume: 48 start-page: 137 issue: 1 year: 2020 end-page: 141 article-title: Explainable AI: from black box to glass box publication-title: Journal of the Academy of Marketing Science – ident: bibr2-21695067231193668 doi: 10.1016/j.apergo.2015.07.012 – ident: bibr3-21695067231193668 doi: 10.1145/3406499.3415063 – ident: bibr1-21695067231193668 doi: 10.1177/1071181322661167 – ident: bibr4-21695067231193668 doi: 10.1518/hfes.46.1.50_30392 – ident: bibr5-21695067231193668 doi: 10.1007/s11747-019-00710-5 |
SSID | ssj0023734 |
Score | 2.23128 |
Snippet | The use of AI-enabled recommender systems in construction activities has the potential to improve worker performance and reduce errors; however, the accuracy... |
SourceID | crossref sage |
SourceType | Index Database Publisher |
StartPage | 2005 |
Title | Trust in Artificial Intelligent Agent while Completing a Procedural Construction Task |
URI | https://journals.sagepub.com/doi/full/10.1177/21695067231193668 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bSxwxFA7r-mIfxLZKbVXyUCh0icwtM9nHRRQpWLbtLtinJclkvOFYnF2k_jh_mycnmYtVofoy7GaXDJPz5dzmnC-EfM4zBXFHrBj44gFLZKaYkqlmgZJcSBVHsUa2z-_p4TT5dsyPe727TtXSYq529e2TfSWvkSqMgVxtl-wLJNtMCgPwGeQLV5AwXP9PxrZhAjMW11jy44gzao7N-WCE15tT2Pm48ZFo-2QgXXtAjowb9sTOmkN2MJHVRdddHTfmraqLCVzW_8Af02PT7vvXJ665uWpqQD1r_5HBGzYh_6ksF6iMZHVWNXnoX8iejTbQpmnaH8bgnbpStKvF5V85-CnL8xbMY8z7uxT26NIvlc9fRHFToFWrXHByGPgZTs0ZHIvCdMh44A7qqPW0_9bFo1e6QcA7BtwmSZ42Dvh62s5tpwbHFpzX1B3q85CI-x8D2ZQthp4b_dEUS2Q5gjAl6JPl0e_xj6Mm5I8zV9dQP6N_r24pvx5N8sAz6pQVoqczWSOrPkShI4e3t6RnynfkTYe48j2ZIvLoWUlb5NEO8igijyLyaIs8KmmLPNpFHrXIWyfTg_3J3iHzB3QwDY7inGnBtUgzGQ5FYbgSRZqIPIIQxGYWhdJSaXg2rZXtSuXDPNSRLhSXJhBGZGBrNki_vCrNB0KjMDegNcDbzUxS8HiYZ2D_bBt3mheJ4Jvka704sz-Oh2X2rDg2yRe7fDO_Vavn__nxJdN-IistgLdIH5bIbINLOlc7Xu73gL6GbQ |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60PagH32J97kEQhK3NY7ObYxFLq21RSKHiIexuEpVCFBoR_PXO5lHqC8RLTkuYfMzOfJuZ-RbgJOIKzx2OosjFW9SVXFElPU1bSjIhlWM7Olf7HHrdkXs1ZuOyq9LMwpQITpumrQotyoP1bHdzfm5bns9M_dCxkHt4nliEujBEoQb19t3N7WB23HJ4UVPGJEoxjzllTfPHl3zKSnMtXXmW6azBfWVf0Vwyab5maNr7F-nG_33AOqyW5JO0C2_ZgIU43YSVOUnCLRgFZgiDPKX5qkJegvRmup0ZaefPt0eMJsQEk1y8-4FIko8cREbFg5hbQCtdWhLI6WQbRp3L4KJLy6sXqEYKkFEtmBYel5YvkpgpkXiuiGzE2fwzEkpLpdF6rZWZN2R-ZGlbJ4rJuCViwTGK7EAtfU7jXSC2FcXoD8hjeOwmzPEjjpHNDOh6UeIK1oCzCvrwpVDYCK1ShPwbVg04NbiGFcq_r9z788pjWOoGg37Y7w2v92HZ3CdfNJEdQA2xig-RdWTqqHSvD0gnyZ4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB60BdEHb7Ge-yAIwtZcm2wei1paj1KhhfoU9khUCrHQiOCvdzZHqReIL3kawmSYzHy7M_MNwIkOJJ47XEkRi1vUE4GkUviKWlIwLqTruCpn--z5naF3PWKj8sLNzMKUFpw2TVsVapQHa_N3T3RyXtYYzx3bD5mpIbo24g_f54tQx0TlWDWotx7693ezI5cbFHVlTKQUc5lb1jV_fMmnzDTX1pVnmvYaRJWORYPJuPmaoXrvX-gb__8R67BaglDSKrxmAxbidBNW5qgJt2A4MMMY5DnNpQqaCdKd8XdmpJU_354wqhATVHIS70ciSD56oA2bBzHbQCt-WjIQ0_E2DNtXg4sOLVcwUIVQIKOKM8X9QNghT2ImeeJ7XDsIMs3dEZdKSIXaKyXN3CELta0clUgmYovHPMBosgO19CWNd4E4to7RLxDPBLGXMDfUAUY4M6jr68TjrAFnlfmjScG0EdklGfk3WzXg1Ng2qiz9u-TenyWPYal_2Y5uu72bfVg2a-WLXrIDqKGp4kMEH5k8Kj3sAx9OzBM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Trust+in+Artificial+Intelligent+Agent+while+Completing+a+Procedural+Construction+Task&rft.jtitle=Proceedings+of+the+Human+Factors+and+Ergonomics+Society+Annual+Meeting&rft.au=Bhanu%2C+Aasish&rft.au=Sharma%2C+Harnish&rft.au=Pathy%2C+Soumya+Ranjan&rft.au=Ponathil%2C+Amal&rft.date=2023-09-01&rft.issn=1071-1813&rft.eissn=2169-5067&rft.volume=67&rft.issue=1&rft.spage=2005&rft.epage=2006&rft_id=info:doi/10.1177%2F21695067231193668&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_21695067231193668 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-1813&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-1813&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-1813&client=summon |