Research on muscle fatigue of upper limb in overhead static work

To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency d...

Full description

Saved in:
Bibliographic Details
Published inXibei Gongye Daxue Xuebao Vol. 42; no. 3; pp. 567 - 576
Main Authors YANG, Yanpu, AN, Weilan, HAN, Zhongjian, FAN, Yu, YANG, Qinxia
Format Journal Article
LanguageChinese
English
Published EDP Sciences 01.06.2024
Subjects
Online AccessGet full text
ISSN1000-2758
2609-7125
DOI10.1051/jnwpu/20244230567

Cover

Loading…
Abstract To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine (SVM) was used to identify the state of muscle fatigue. By analyzing the muscular contribution, the correlation of subjective ratings and objective muscle fatigue features, ranking order of muscle fatigue accumulation, and muscular fatigue classification and identification, the results show that the muscles contribute above 10% on average are the biceps, deltoid and trapezius, and their cumulative contribution exceeds 70%; and the ranking orders of muscle fatigue accumulation in three heights are H 3 > H 2 > H 1 for biceps and trapezius and H 2 > H 3 > H 1 for deltoid; and with the time increase of overhand static operation, the muscle fatigue of upper limb gradually accumulates, resulting in the value of time domain features increases and the frequency domain features decreases, and their changes are consistent; and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work. 为探究手过头不同高度下静态作业的上肢肌肉疲劳特性, 通过实验设计采集了被试的表面肌电信号(surface electromyography, sEMG)及基于Borg CR-10量表的主观疲劳状态, 研究了sEMG的时域与频域特征处理方法, 并利用多分类支持向量机(support vector machine, SVM)识别肌肉疲劳状态。通过对肌肉贡献率、主客观肌肉疲劳特征的相关性、不同高度下的肌肉疲劳累积排序及肌肉疲劳分类识别进行分析, 结果表明: 肌肉平均贡献率超过10%的肌肉为肱二头肌、三角肌与斜方肌, 且其累积贡献率超过70%;对疲劳累积程度在3个高度下排序, 肱二头肌和斜方肌为 H 3 > H 2 > H 1 , 三角肌为 H 2 > H 3 > H 1 ; 随着手过头静态作业时间增加, 上肢肌肉疲劳逐渐积累, 时域特征值增加、频域特征值减小且其变化具有一致性; 多分类SVM对手过头静态作业中的上肢肌肉疲劳识别准确率大于90%。
AbstractList To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine (SVM) was used to identify the state of muscle fatigue. By analyzing the muscular contribution, the correlation of subjective ratings and objective muscle fatigue features, ranking order of muscle fatigue accumulation, and muscular fatigue classification and identification, the results show that the muscles contribute above 10% on average are the biceps, deltoid and trapezius, and their cumulative contribution exceeds 70%; and the ranking orders of muscle fatigue accumulation in three heights are H 3 > H 2 > H 1 for biceps and trapezius and H 2 > H 3 > H 1 for deltoid; and with the time increase of overhand static operation, the muscle fatigue of upper limb gradually accumulates, resulting in the value of time domain features increases and the frequency domain features decreases, and their changes are consistent; and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work. 为探究手过头不同高度下静态作业的上肢肌肉疲劳特性, 通过实验设计采集了被试的表面肌电信号(surface electromyography, sEMG)及基于Borg CR-10量表的主观疲劳状态, 研究了sEMG的时域与频域特征处理方法, 并利用多分类支持向量机(support vector machine, SVM)识别肌肉疲劳状态。通过对肌肉贡献率、主客观肌肉疲劳特征的相关性、不同高度下的肌肉疲劳累积排序及肌肉疲劳分类识别进行分析, 结果表明: 肌肉平均贡献率超过10%的肌肉为肱二头肌、三角肌与斜方肌, 且其累积贡献率超过70%;对疲劳累积程度在3个高度下排序, 肱二头肌和斜方肌为 H 3 > H 2 > H 1 , 三角肌为 H 2 > H 3 > H 1 ; 随着手过头静态作业时间增加, 上肢肌肉疲劳逐渐积累, 时域特征值增加、频域特征值减小且其变化具有一致性; 多分类SVM对手过头静态作业中的上肢肌肉疲劳识别准确率大于90%。
To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine (SVM) was used to identify the state of muscle fatigue. By analyzing the muscular contribution, the correlation of subjective ratings and objective muscle fatigue features, ranking order of muscle fatigue accumulation, and muscular fatigue classification and identification, the results show that the muscles contribute above 10% on average are the biceps, deltoid and trapezius, and their cumulative contribution exceeds 70%; and the ranking orders of muscle fatigue accumulation in three heights are H3>H2>H1 for biceps and trapezius and H2>H3>H1 for deltoid; and with the time increase of overhand static operation, the muscle fatigue of upper limb gradually accumulates, resulting in the value of time domain features increases and the frequency domain features decreases, and their changes are consistent; and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work.
Author YANG, Yanpu
YANG, Qinxia
HAN, Zhongjian
FAN, Yu
AN, Weilan
Author_xml – sequence: 1
  givenname: Yanpu
  surname: YANG
  fullname: YANG, Yanpu
– sequence: 2
  givenname: Weilan
  surname: AN
  fullname: AN, Weilan
– sequence: 3
  givenname: Zhongjian
  surname: HAN
  fullname: HAN, Zhongjian
– sequence: 4
  givenname: Yu
  surname: FAN
  fullname: FAN, Yu
– sequence: 5
  givenname: Qinxia
  surname: YANG
  fullname: YANG, Qinxia
BookMark eNpN0N1KwzAUwPEgE5xzD-BdXqAuJx9Nc6cMPwYDQfS6pM3J1tk1JVkdvr11inh14HD4cfhfkkkXOiTkGtgNMAWLXXfshwVnXEoumMr1GZnynJlMA1cTMgXGWMa1Ki7IPKWmYsoAk7yQU3L7ggltrLc0dHQ_pLpF6u2h2QxIg6dD32OkbbOvaNPR8IFxi9bRdBhPanoM8f2KnHvbJpz_zhl5e7h_XT5l6-fH1fJundWgQGegjHKCaVTKWgVWoXYFk9aAk1UNElUNwkgEzoB5b3NhUGqrBTfOCwtiRlY_rgt2V_ax2dv4WQbblKdFiJvSxvGpFstcmgK1dpWoR5xzq0RROF45rzBXxo0W_Fh1DClF9H8esPK7aHkqWv4rKr4AiE1rIg
Cites_doi 10.1109/TNSRE.2019.2945368
10.3233/OER-2008-8105
10.1016/j.irbm.2010.05.002
10.1016/j.apergo.2022.103760
10.1016/S0166-4115(08)62386-9
10.1016/B978-0-12-811318-9.00027-2
10.1080/01621459.1995.10476626
10.1249/00005768-198205000-00012
10.1016/j.apergo.2015.08.005
10.1007/b95439
10.1016/j.apergo.2020.103147
10.2486/indhealth.MS1294
10.1016/j.apergo.2018.02.009
10.1016/j.apergo.2020.103151
10.3390/s130912431
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1051/jnwpu/20244230567
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2609-7125
EndPage 576
ExternalDocumentID oai_doaj_org_article_6498e77db3cd4b22a5388d2bdf5e659d
10_1051_jnwpu_20244230567
GroupedDBID AAYXX
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
PHGZM
PHGZT
PIMPY
GROUPED_DOAJ
PUEGO
ID FETCH-LOGICAL-c1517-1595d307e55aa51a5e7d804a91d4bc14e5c1394e12010ffa639e47a7329df3a13
IEDL.DBID DOA
ISSN 1000-2758
IngestDate Wed Aug 27 01:26:53 EDT 2025
Tue Jul 01 02:41:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language Chinese
English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1517-1595d307e55aa51a5e7d804a91d4bc14e5c1394e12010ffa639e47a7329df3a13
OpenAccessLink https://doaj.org/article/6498e77db3cd4b22a5388d2bdf5e659d
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6498e77db3cd4b22a5388d2bdf5e659d
crossref_primary_10_1051_jnwpu_20244230567
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-00
PublicationDecade 2020
PublicationTitle Xibei Gongye Daxue Xuebao
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References ZHANG (R6) 2022; 43
R8
R9
BORG (R5) 1982; 14
SLIM (R17) 2010; 31
GRIEVE (R12) 2008; 8
CHOWDHURY (R19) 2013; 13
R21
GUO (R4) 2020; 25
VYAS (R15) 2011; 49
R11
R22
R13
LI (R20) 1995; 10
ZHANG (R7) 2019; 25
HART (R10) 1988; 52
TIAN (R14) 2022; 20
R18
MAURICE (R3) 2020; 28
HSU (R23) 2001; 13
DONOHO (R16) 1995; 90
WANG (R2) 2021; 31
R1
References_xml – volume: 28
  start-page: 152
  issue: 1
  year: 2020
  ident: R3
  publication-title: IEEE Trans on Neural Systems and Rehabiltation Engineering
  doi: 10.1109/TNSRE.2019.2945368
– volume: 25
  start-page: 1
  issue: 6
  year: 2019
  ident: R7
  publication-title: Chinese Journal of Ergonomics
– volume: 8
  start-page: 53
  issue: 1
  year: 2008
  ident: R12
  publication-title: Occupational Ergonomics
  doi: 10.3233/OER-2008-8105
– volume: 31
  start-page: 191
  issue: 3
  year: 2021
  ident: R2
  publication-title: China Safety Science Journal
– volume: 31
  start-page: 209
  issue: 4
  year: 2010
  ident: R17
  publication-title: IRBM
  doi: 10.1016/j.irbm.2010.05.002
– volume: 13
  start-page: 415
  year: 2001
  ident: R23
  publication-title: IEEE Trans on Neural Networks
– volume: 10
  start-page: 153
  issue: 4
  year: 1995
  ident: R20
  publication-title: Chinese Journal of Rehabilitation Medicine
– ident: R9
  doi: 10.1016/j.apergo.2022.103760
– volume: 52
  start-page: 139
  issue: 6
  year: 1988
  ident: R10
  publication-title: Advances in Psychology
  doi: 10.1016/S0166-4115(08)62386-9
– ident: R22
  doi: 10.1016/B978-0-12-811318-9.00027-2
– volume: 90
  start-page: 1200
  issue: 432
  year: 1995
  ident: R16
  publication-title: Journal of the American Statistic Association
  doi: 10.1080/01621459.1995.10476626
– volume: 14
  start-page: 377
  issue: 5
  year: 1982
  ident: R5
  publication-title: Medicine & Science in Sports & Exercise
  doi: 10.1249/00005768-198205000-00012
– ident: R13
  doi: 10.1016/j.apergo.2015.08.005
– volume: 20
  start-page: 221
  issue: 3
  year: 2022
  ident: R14
  publication-title: Chinese Journal of Construction Machinery
– ident: R21
  doi: 10.1007/b95439
– ident: R8
  doi: 10.1016/j.apergo.2020.103147
– volume: 49
  start-page: 642
  issue: 5
  year: 2011
  ident: R15
  publication-title: Industrial Health
  doi: 10.2486/indhealth.MS1294
– ident: R1
  doi: 10.1016/j.apergo.2018.02.009
– volume: 43
  start-page: 1
  issue: 16
  year: 2022
  ident: R6
  publication-title: Packaging Engineering
– volume: 25
  start-page: 1
  issue: 5
  year: 2020
  ident: R4
  publication-title: Industrial Engineering and Management
– ident: R11
  doi: 10.1016/j.apergo.2020.103151
– ident: R18
– volume: 13
  start-page: 12431
  issue: 9
  year: 2013
  ident: R19
  publication-title: Sensors
  doi: 10.3390/s130912431
SSID ssib059104284
ssib001129888
ssib046626106
ssib036436219
ssib044765131
ssib044604139
ssib051375596
ssib002258180
Score 2.28571
Snippet To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 567
SubjectTerms ergonomics
muscle fatigue
overhead static work
support vector machine
surface electromyography
Title Research on muscle fatigue of upper limb in overhead static work
URI https://doaj.org/article/6498e77db3cd4b22a5388d2bdf5e659d
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXryIomJ9lD14EkKb7Cu5aaWlCBYRC72FfUy0YtNQGwR_vbNJa-PJi8dNwpJ8O7vzbb6ZWUKuGJPWhD4bR4MLcMGzQZJYFlgTRUYBWK587vDDWI4m_H4qpo2jvnxMWF0euAauK3kSg1LOMOs4dqBxhsYuMi4TIEXi_OqLPq-xmaqIALqxuFmIKxI-qXnTZuiHZbQtZIZ7oh5v1MfkXEkRbvUxLpH3N_RIvKeQim_b6HSRx1cStk_VjpCFbyRUEXbf8s-i9L8ZOJIXZBzqlxNsnBVQObXhAdlfs1F6W6NwSHa-Xo_IzSYajy5yOi8_8A7NcABfSqCLjJZFAUv6PpsbOsupjwDF9dxRn5k0s9THeR2TyXDwfDcK1gctBBYdvgqQ0giHkx2E0FqEWoBycY_rJETIbchBWASHQ-il8yzTyGoAx1CxKHEZ0yE7Ia18kcMpocyA1EJBDKC5i3G297RNnPNynEDQ2-R68-VpUdfTSCsdXOA-xMOUNmBqk77H5udBXwq7uoAGkq4NJP3LQM7-o5Nzsuffq44RuyCt1bKES2QjK9Mhu_3B-PGpUxngN_J00KM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+muscle+fatigue+of+upper+limb+in+overhead+static+work&rft.jtitle=Xibei+Gongye+Daxue+Xuebao&rft.au=YANG+Yanpu&rft.au=AN+Weilan&rft.au=HAN+Zhongjian&rft.au=FAN+Yu&rft.date=2024-06-01&rft.pub=EDP+Sciences&rft.issn=1000-2758&rft.eissn=2609-7125&rft.volume=42&rft.issue=3&rft.spage=567&rft.epage=576&rft_id=info:doi/10.1051%2Fjnwpu%2F20244230567&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6498e77db3cd4b22a5388d2bdf5e659d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2758&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2758&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2758&client=summon