Research on muscle fatigue of upper limb in overhead static work
To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency d...
Saved in:
Published in | Xibei Gongye Daxue Xuebao Vol. 42; no. 3; pp. 567 - 576 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | Chinese English |
Published |
EDP Sciences
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1000-2758 2609-7125 |
DOI | 10.1051/jnwpu/20244230567 |
Cover
Loading…
Abstract | To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine (SVM) was used to identify the state of muscle fatigue. By analyzing the muscular contribution, the correlation of subjective ratings and objective muscle fatigue features, ranking order of muscle fatigue accumulation, and muscular fatigue classification and identification, the results show that the muscles contribute above 10% on average are the biceps, deltoid and trapezius, and their cumulative contribution exceeds 70%; and the ranking orders of muscle fatigue accumulation in three heights are
H
3
>
H
2
>
H
1
for biceps and trapezius and
H
2
>
H
3
>
H
1
for deltoid; and with the time increase of overhand static operation, the muscle fatigue of upper limb gradually accumulates, resulting in the value of time domain features increases and the frequency domain features decreases, and their changes are consistent; and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work.
为探究手过头不同高度下静态作业的上肢肌肉疲劳特性, 通过实验设计采集了被试的表面肌电信号(surface electromyography, sEMG)及基于Borg CR-10量表的主观疲劳状态, 研究了sEMG的时域与频域特征处理方法, 并利用多分类支持向量机(support vector machine, SVM)识别肌肉疲劳状态。通过对肌肉贡献率、主客观肌肉疲劳特征的相关性、不同高度下的肌肉疲劳累积排序及肌肉疲劳分类识别进行分析, 结果表明: 肌肉平均贡献率超过10%的肌肉为肱二头肌、三角肌与斜方肌, 且其累积贡献率超过70%;对疲劳累积程度在3个高度下排序, 肱二头肌和斜方肌为
H
3
>
H
2
>
H
1
, 三角肌为
H
2
>
H
3
>
H
1
; 随着手过头静态作业时间增加, 上肢肌肉疲劳逐渐积累, 时域特征值增加、频域特征值减小且其变化具有一致性; 多分类SVM对手过头静态作业中的上肢肌肉疲劳识别准确率大于90%。 |
---|---|
AbstractList | To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine (SVM) was used to identify the state of muscle fatigue. By analyzing the muscular contribution, the correlation of subjective ratings and objective muscle fatigue features, ranking order of muscle fatigue accumulation, and muscular fatigue classification and identification, the results show that the muscles contribute above 10% on average are the biceps, deltoid and trapezius, and their cumulative contribution exceeds 70%; and the ranking orders of muscle fatigue accumulation in three heights are
H
3
>
H
2
>
H
1
for biceps and trapezius and
H
2
>
H
3
>
H
1
for deltoid; and with the time increase of overhand static operation, the muscle fatigue of upper limb gradually accumulates, resulting in the value of time domain features increases and the frequency domain features decreases, and their changes are consistent; and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work.
为探究手过头不同高度下静态作业的上肢肌肉疲劳特性, 通过实验设计采集了被试的表面肌电信号(surface electromyography, sEMG)及基于Borg CR-10量表的主观疲劳状态, 研究了sEMG的时域与频域特征处理方法, 并利用多分类支持向量机(support vector machine, SVM)识别肌肉疲劳状态。通过对肌肉贡献率、主客观肌肉疲劳特征的相关性、不同高度下的肌肉疲劳累积排序及肌肉疲劳分类识别进行分析, 结果表明: 肌肉平均贡献率超过10%的肌肉为肱二头肌、三角肌与斜方肌, 且其累积贡献率超过70%;对疲劳累积程度在3个高度下排序, 肱二头肌和斜方肌为
H
3
>
H
2
>
H
1
, 三角肌为
H
2
>
H
3
>
H
1
; 随着手过头静态作业时间增加, 上肢肌肉疲劳逐渐积累, 时域特征值增加、频域特征值减小且其变化具有一致性; 多分类SVM对手过头静态作业中的上肢肌肉疲劳识别准确率大于90%。 To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface electromyography (sEMG) of subjects and their subjective fatigue state based on Borg CR-10 scale. The processing methods of time domain and frequency domain features of sEMG were studied and the multiclass support vector machine (SVM) was used to identify the state of muscle fatigue. By analyzing the muscular contribution, the correlation of subjective ratings and objective muscle fatigue features, ranking order of muscle fatigue accumulation, and muscular fatigue classification and identification, the results show that the muscles contribute above 10% on average are the biceps, deltoid and trapezius, and their cumulative contribution exceeds 70%; and the ranking orders of muscle fatigue accumulation in three heights are H3>H2>H1 for biceps and trapezius and H2>H3>H1 for deltoid; and with the time increase of overhand static operation, the muscle fatigue of upper limb gradually accumulates, resulting in the value of time domain features increases and the frequency domain features decreases, and their changes are consistent; and the accuracy of multiclass SVM is above 90% for identifying muscle fatigue of upper limb in overhead static work. |
Author | YANG, Yanpu YANG, Qinxia HAN, Zhongjian FAN, Yu AN, Weilan |
Author_xml | – sequence: 1 givenname: Yanpu surname: YANG fullname: YANG, Yanpu – sequence: 2 givenname: Weilan surname: AN fullname: AN, Weilan – sequence: 3 givenname: Zhongjian surname: HAN fullname: HAN, Zhongjian – sequence: 4 givenname: Yu surname: FAN fullname: FAN, Yu – sequence: 5 givenname: Qinxia surname: YANG fullname: YANG, Qinxia |
BookMark | eNpN0N1KwzAUwPEgE5xzD-BdXqAuJx9Nc6cMPwYDQfS6pM3J1tk1JVkdvr11inh14HD4cfhfkkkXOiTkGtgNMAWLXXfshwVnXEoumMr1GZnynJlMA1cTMgXGWMa1Ki7IPKWmYsoAk7yQU3L7ggltrLc0dHQ_pLpF6u2h2QxIg6dD32OkbbOvaNPR8IFxi9bRdBhPanoM8f2KnHvbJpz_zhl5e7h_XT5l6-fH1fJundWgQGegjHKCaVTKWgVWoXYFk9aAk1UNElUNwkgEzoB5b3NhUGqrBTfOCwtiRlY_rgt2V_ax2dv4WQbblKdFiJvSxvGpFstcmgK1dpWoR5xzq0RROF45rzBXxo0W_Fh1DClF9H8esPK7aHkqWv4rKr4AiE1rIg |
Cites_doi | 10.1109/TNSRE.2019.2945368 10.3233/OER-2008-8105 10.1016/j.irbm.2010.05.002 10.1016/j.apergo.2022.103760 10.1016/S0166-4115(08)62386-9 10.1016/B978-0-12-811318-9.00027-2 10.1080/01621459.1995.10476626 10.1249/00005768-198205000-00012 10.1016/j.apergo.2015.08.005 10.1007/b95439 10.1016/j.apergo.2020.103147 10.2486/indhealth.MS1294 10.1016/j.apergo.2018.02.009 10.1016/j.apergo.2020.103151 10.3390/s130912431 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1051/jnwpu/20244230567 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2609-7125 |
EndPage | 576 |
ExternalDocumentID | oai_doaj_org_article_6498e77db3cd4b22a5388d2bdf5e659d 10_1051_jnwpu_20244230567 |
GroupedDBID | AAYXX AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION PHGZM PHGZT PIMPY GROUPED_DOAJ PUEGO |
ID | FETCH-LOGICAL-c1517-1595d307e55aa51a5e7d804a91d4bc14e5c1394e12010ffa639e47a7329df3a13 |
IEDL.DBID | DOA |
ISSN | 1000-2758 |
IngestDate | Wed Aug 27 01:26:53 EDT 2025 Tue Jul 01 02:41:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | Chinese English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1517-1595d307e55aa51a5e7d804a91d4bc14e5c1394e12010ffa639e47a7329df3a13 |
OpenAccessLink | https://doaj.org/article/6498e77db3cd4b22a5388d2bdf5e659d |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6498e77db3cd4b22a5388d2bdf5e659d crossref_primary_10_1051_jnwpu_20244230567 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-00 |
PublicationDecade | 2020 |
PublicationTitle | Xibei Gongye Daxue Xuebao |
PublicationYear | 2024 |
Publisher | EDP Sciences |
Publisher_xml | – name: EDP Sciences |
References | ZHANG (R6) 2022; 43 R8 R9 BORG (R5) 1982; 14 SLIM (R17) 2010; 31 GRIEVE (R12) 2008; 8 CHOWDHURY (R19) 2013; 13 R21 GUO (R4) 2020; 25 VYAS (R15) 2011; 49 R11 R22 R13 LI (R20) 1995; 10 ZHANG (R7) 2019; 25 HART (R10) 1988; 52 TIAN (R14) 2022; 20 R18 MAURICE (R3) 2020; 28 HSU (R23) 2001; 13 DONOHO (R16) 1995; 90 WANG (R2) 2021; 31 R1 |
References_xml | – volume: 28 start-page: 152 issue: 1 year: 2020 ident: R3 publication-title: IEEE Trans on Neural Systems and Rehabiltation Engineering doi: 10.1109/TNSRE.2019.2945368 – volume: 25 start-page: 1 issue: 6 year: 2019 ident: R7 publication-title: Chinese Journal of Ergonomics – volume: 8 start-page: 53 issue: 1 year: 2008 ident: R12 publication-title: Occupational Ergonomics doi: 10.3233/OER-2008-8105 – volume: 31 start-page: 191 issue: 3 year: 2021 ident: R2 publication-title: China Safety Science Journal – volume: 31 start-page: 209 issue: 4 year: 2010 ident: R17 publication-title: IRBM doi: 10.1016/j.irbm.2010.05.002 – volume: 13 start-page: 415 year: 2001 ident: R23 publication-title: IEEE Trans on Neural Networks – volume: 10 start-page: 153 issue: 4 year: 1995 ident: R20 publication-title: Chinese Journal of Rehabilitation Medicine – ident: R9 doi: 10.1016/j.apergo.2022.103760 – volume: 52 start-page: 139 issue: 6 year: 1988 ident: R10 publication-title: Advances in Psychology doi: 10.1016/S0166-4115(08)62386-9 – ident: R22 doi: 10.1016/B978-0-12-811318-9.00027-2 – volume: 90 start-page: 1200 issue: 432 year: 1995 ident: R16 publication-title: Journal of the American Statistic Association doi: 10.1080/01621459.1995.10476626 – volume: 14 start-page: 377 issue: 5 year: 1982 ident: R5 publication-title: Medicine & Science in Sports & Exercise doi: 10.1249/00005768-198205000-00012 – ident: R13 doi: 10.1016/j.apergo.2015.08.005 – volume: 20 start-page: 221 issue: 3 year: 2022 ident: R14 publication-title: Chinese Journal of Construction Machinery – ident: R21 doi: 10.1007/b95439 – ident: R8 doi: 10.1016/j.apergo.2020.103147 – volume: 49 start-page: 642 issue: 5 year: 2011 ident: R15 publication-title: Industrial Health doi: 10.2486/indhealth.MS1294 – ident: R1 doi: 10.1016/j.apergo.2018.02.009 – volume: 43 start-page: 1 issue: 16 year: 2022 ident: R6 publication-title: Packaging Engineering – volume: 25 start-page: 1 issue: 5 year: 2020 ident: R4 publication-title: Industrial Engineering and Management – ident: R11 doi: 10.1016/j.apergo.2020.103151 – ident: R18 – volume: 13 start-page: 12431 issue: 9 year: 2013 ident: R19 publication-title: Sensors doi: 10.3390/s130912431 |
SSID | ssib059104284 ssib001129888 ssib046626106 ssib036436219 ssib044765131 ssib044604139 ssib051375596 ssib002258180 |
Score | 2.28571 |
Snippet | To explore the muscle fatigue features of upper limb at different heights in overhead static work, an experiment was conducted to obtain the surface... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 567 |
SubjectTerms | ergonomics muscle fatigue overhead static work support vector machine surface electromyography |
Title | Research on muscle fatigue of upper limb in overhead static work |
URI | https://doaj.org/article/6498e77db3cd4b22a5388d2bdf5e659d |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kXryIomJ9lD14EkKb7Cu5aaWlCBYRC72FfUy0YtNQGwR_vbNJa-PJi8dNwpJ8O7vzbb6ZWUKuGJPWhD4bR4MLcMGzQZJYFlgTRUYBWK587vDDWI4m_H4qpo2jvnxMWF0euAauK3kSg1LOMOs4dqBxhsYuMi4TIEXi_OqLPq-xmaqIALqxuFmIKxI-qXnTZuiHZbQtZIZ7oh5v1MfkXEkRbvUxLpH3N_RIvKeQim_b6HSRx1cStk_VjpCFbyRUEXbf8s-i9L8ZOJIXZBzqlxNsnBVQObXhAdlfs1F6W6NwSHa-Xo_IzSYajy5yOi8_8A7NcABfSqCLjJZFAUv6PpsbOsupjwDF9dxRn5k0s9THeR2TyXDwfDcK1gctBBYdvgqQ0giHkx2E0FqEWoBycY_rJETIbchBWASHQ-il8yzTyGoAx1CxKHEZ0yE7Ia18kcMpocyA1EJBDKC5i3G297RNnPNynEDQ2-R68-VpUdfTSCsdXOA-xMOUNmBqk77H5udBXwq7uoAGkq4NJP3LQM7-o5Nzsuffq44RuyCt1bKES2QjK9Mhu_3B-PGpUxngN_J00KM |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+muscle+fatigue+of+upper+limb+in+overhead+static+work&rft.jtitle=Xibei+Gongye+Daxue+Xuebao&rft.au=YANG+Yanpu&rft.au=AN+Weilan&rft.au=HAN+Zhongjian&rft.au=FAN+Yu&rft.date=2024-06-01&rft.pub=EDP+Sciences&rft.issn=1000-2758&rft.eissn=2609-7125&rft.volume=42&rft.issue=3&rft.spage=567&rft.epage=576&rft_id=info:doi/10.1051%2Fjnwpu%2F20244230567&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6498e77db3cd4b22a5388d2bdf5e659d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1000-2758&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1000-2758&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1000-2758&client=summon |