Quasinormal modes, thermodynamics and shadow of black holes in Hu–Sawicki $$\varvec{f(R)}$$ gravity theory

We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of f ( R ) gravity. After obtaining the black hole solution, we study the horizon radius of the black hole from the metric and then analyse the dependence of the model parameters on the horizon. We then us...

Full description

Saved in:
Bibliographic Details
Published inThe European physical journal. C, Particles and fields Vol. 84; no. 9
Main Authors Karmakar, Ronit, Goswami, Umananda Dev
Format Journal Article
LanguageEnglish
Published 27.09.2024
Online AccessGet full text
ISSN1434-6052
1434-6052
DOI10.1140/epjc/s10052-024-13359-4

Cover

Loading…
Abstract We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of f ( R ) gravity. After obtaining the black hole solution, we study the horizon radius of the black hole from the metric and then analyse the dependence of the model parameters on the horizon. We then use the 6th order WKB method to study the quasinormal modes of oscillations (QNMs) of the black hole perturbed by a scalar field. The dependence of the amplitude and damping part of the QNMs are analysed with respect to variations in model parameters and the error associated with the QNMs are also computed. After that we study some thermodynamic properties associated with the black hole such as its thermodynamic temperature as well as greybody factors. It is found that the black hole has the possibility of showcasing negative temperatures and is thermodynamically unstable for feasible values of model parameters. Then we analyse the geodesics and derive the photon sphere radius as well as the shadow radius of the black hole. The photon radius is independent of the model parameters while shadow radius showed fair amount of dependence on the model parameters. We tried to constrain the parameters with the help of Keck and VLTI observational data and obtained some bounds on m and $$c_{2}$$ c 2 parameters.
AbstractList We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of f ( R ) gravity. After obtaining the black hole solution, we study the horizon radius of the black hole from the metric and then analyse the dependence of the model parameters on the horizon. We then use the 6th order WKB method to study the quasinormal modes of oscillations (QNMs) of the black hole perturbed by a scalar field. The dependence of the amplitude and damping part of the QNMs are analysed with respect to variations in model parameters and the error associated with the QNMs are also computed. After that we study some thermodynamic properties associated with the black hole such as its thermodynamic temperature as well as greybody factors. It is found that the black hole has the possibility of showcasing negative temperatures and is thermodynamically unstable for feasible values of model parameters. Then we analyse the geodesics and derive the photon sphere radius as well as the shadow radius of the black hole. The photon radius is independent of the model parameters while shadow radius showed fair amount of dependence on the model parameters. We tried to constrain the parameters with the help of Keck and VLTI observational data and obtained some bounds on m and $$c_{2}$$ c 2 parameters.
ArticleNumber 969
Author Karmakar, Ronit
Goswami, Umananda Dev
Author_xml – sequence: 1
  givenname: Ronit
  orcidid: 0000-0002-9531-7435
  surname: Karmakar
  fullname: Karmakar, Ronit
– sequence: 2
  givenname: Umananda Dev
  orcidid: 0000-0003-0012-7549
  surname: Goswami
  fullname: Goswami, Umananda Dev
BookMark eNqFkE9LwzAYxoNMcE4_gzn0oGBd0qRre_AgQ50wEP_dhPA2TVy2rhlJt1FE8Dv4Df0kds6DePH0Prw8v-fw20edylYKoSNKzijlpK8WU9n3lJA4CknEQ8pYnIV8B3UpZzwctP_Or7yH9r2fEtJWSdpF5d0SvKmsm0OJ57ZQ_hTXE-Xa2FQwN9JjqArsJ1DYNbYa5yXIGZ7YUnlsKjxafr5_PMDayJnBQfC8ArdS8lUf35-8BQF-cbAydbOZtK45QLsaSq8Of24PPV1dPg5H4fj2-mZ4MQ4ljSkPM6K41jylqY5Vkg8KFkdRGhU0ymPKEiBpLpUmOkrStJBASJbwDAiPGRtwqTPWQ-fbXems905pIU0NtbFV7cCUghKxUSc26sRWnWh9iG91grd88odfODMH1_xLfgH_lnhU
CitedBy_id crossref_primary_10_3390_sym17010042
crossref_primary_10_1016_j_physletb_2025_139390
crossref_primary_10_1016_j_dark_2025_101874
Cites_doi 10.1140/epjc/s10052-020-08684-3
10.1088/1475-7516/2022/09/057
10.1140/epjc/s10052-022-10823-x
10.1103/PhysRevD.105.083002
10.1016/j.physletb.2020.135830
10.1103/PhysRevD.75.083504
10.1016/j.aop.2022.169126
10.1103/PhysRevLett.116.031101
10.1088/0256-307X/14/2/001
10.1016/j.dark.2022.101053
10.1103/RevModPhys.82.451
10.1088/1674-1137/43/10/105101
10.1140/epjc/s10052-011-1752-9
10.1007/BF02345020
10.7208/chicago/9780226870373.001.0001
10.1103/PhysRevD.104.084015
10.1088/0264-9381/32/12/124001
10.1088/1572-9494/ac624c
10.1103/PhysRevLett.119.161101
10.1103/PhysRevD.101.084055
10.1103/PhysRevLett.116.061102
10.3390/sym12101648
10.1140/epjc/s10052-019-7004-0
10.1007/s10509-014-1949-0
10.1088/1475-7516/2022/01/009
10.48550/arXiv.1409.7871
10.1086/300499
10.1016/j.physletb.2017.05.064
10.1016/j.physletb.2019.05.043
10.1016/j.dark.2023.101249
10.1140/epjc/s10052-024-12606-y
10.3847/2041-8213/ab0c96
10.1143/PTP.110.901
10.1142/S0218271814500369
10.1103/PhysRevLett.120.191101
10.1007/s10714-022-02902-x
10.1134/S1063776122070093
10.1103/PhysRevD.6.3357
10.1088/1361-6382/acd97b
10.1088/1361-6382/ab2e25
10.1088/1402-4896/ad350e
10.1134/S0021364007150027
10.1016/j.dark.2021.100900
10.1016/j.physletb.2008.04.009
10.1142/S0217751X22501809
10.3847/2041-8213/ac082e
10.1007/s11433-023-2153-6
10.1103/PhysRevD.102.043015
10.1088/1475-7516/2012/02/030
10.3847/2041-8213/ab0e85
10.1016/j.dark.2023.101209
10.1142/S021988782350007X
10.3847/2041-8213/ab0ec7
10.1140/epjc/s10052-023-11568-x
10.1103/PhysRevD.74.064022
10.1016/j.dark.2019.100375
10.1103/PhysRevLett.116.241103
10.1093/ptep/ptae035
10.1007/JHEP02(2019)127
10.3847/2041-8213/ab0f43
10.1140/epjc/s10052-022-10457-z
10.1103/PhysRevD.84.024020
10.1007/BF01208266
10.1103/PhysRevD.76.064004
10.3390/universe6020023
10.1016/j.physletb.2018.11.020
10.1007/978-94-007-0165-6
10.1007/BF01645742
10.1126/science.284.5419.1481
10.1103/PhysRevD.73.064030
10.3847/2041-8213/ab1141
10.1007/s10714-012-1368-x
10.1140/epjc/s10052-022-10266-4
10.1103/PhysRevD.77.124011
10.1140/epjc/s10052-020-8342-7
10.1103/PhysRevD.77.104028
10.3847/2041-8213/ab0c57
10.12942/lrr-2010-3
10.1103/PhysRevD.79.123516
10.1016/j.physrep.2017.06.001
10.1088/1361-6382/ab7965
10.1086/307221
10.1103/PhysRevD.100.044012
10.1103/PhysRevD.68.024018
10.1140/epjc/s10052-023-11881-5
10.1142/S0217732321502655
10.1007/s10714-019-2611-5
10.1088/1475-7516/2022/06/029
10.1103/PhysRevD.103.104047
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1140/epjc/s10052-024-13359-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1434-6052
ExternalDocumentID 10_1140_epjc_s10052_024_13359_4
GroupedDBID -~X
.86
0R~
199
29G
2JY
30V
4.4
408
409
40D
5GY
5VS
67Z
6NX
78A
8FE
8FG
8TC
8UJ
95.
95~
AAFWJ
AAKKN
AAYXX
ABDBF
ABEEZ
ABMNI
ACACY
ACGFS
ACNCT
ACUHS
ACULB
ADBBV
ADMLS
AENEX
AFBBN
AFGXO
AFKRA
AFPKN
AFWTZ
AGWIL
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
ASPBG
AVWKF
AZFZN
B0M
BA0
BCNDV
BENPR
BGLVJ
BGNMA
C24
C6C
CCPQU
CITATION
CS3
CSCUP
DL5
DU5
EAD
EAP
EAS
EBS
EMK
EPL
ER.
ESX
FEDTE
GQ8
GROUPED_DOAJ
GXS
HCIFZ
HF~
HG5
HMJXF
HVGLF
HZ~
I-F
I09
IAO
IGS
IHE
ISR
IXC
IZIGR
IZQ
I~X
KDC
KOV
LAS
M4Y
MA-
NB0
O9-
O93
OK1
P62
P9T
PHGZM
PHGZT
PIMPY
QOS
R89
R9I
RED
RID
RNS
ROL
RPX
RSV
S27
S3B
SDH
SOJ
SPH
T13
TN5
TSK
TSV
TUC
TUS
U2A
VC2
WK8
Z45
~8M
ID FETCH-LOGICAL-c1514-90e4ff4818f5e7b6d352282d12b5137a08bcef0f2788dca009749a0453364cf93
ISSN 1434-6052
IngestDate Thu Apr 24 22:51:55 EDT 2025
Tue Jul 01 01:30:51 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1514-90e4ff4818f5e7b6d352282d12b5137a08bcef0f2788dca009749a0453364cf93
ORCID 0000-0003-0012-7549
0000-0002-9531-7435
OpenAccessLink https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13359-4.pdf
ParticipantIDs crossref_citationtrail_10_1140_epjc_s10052_024_13359_4
crossref_primary_10_1140_epjc_s10052_024_13359_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-27
PublicationDateYYYYMMDD 2024-09-27
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-27
  day: 27
PublicationDecade 2020
PublicationTitle The European physical journal. C, Particles and fields
PublicationYear 2024
References BP Abbott (13359_CR5) 2016; 116
SW Hawking (13359_CR80) 1975; 43
R Myrzakulov (13359_CR33) 2011; 71
DJ Gogoi (13359_CR40) 2020; 80
13359_CR74
TP Sotiriou (13359_CR30) 2010; 82
T Harko (13359_CR25) 2011; 84
13359_CR2
K Jusufi (13359_CR71) 2020; 101
D Psaltis (13359_CR95) 2019; 51
13359_CR1
M Martinelli (13359_CR88) 2009; 79
H Su (13359_CR85) 2022; 74
F Atamurotov (13359_CR56) 2021; 104
RA Konoplya (13359_CR76) 2003; 68
J-Y Cen (13359_CR39) 2019; 26
P Bessa (13359_CR41) 2022; 82
S Vagnozzi (13359_CR70) 2023; 40
S Fernando (13359_CR51) 2012; 44
13359_CR83
13359_CR86
T Johannsen (13359_CR94) 2016; 116
M Park (13359_CR92) 2008; 663
N Parbin (13359_CR32) 2023; 83
R Solanki (13359_CR47) 2022; 36
S Capozziello (13359_CR48) 2023; 82
V Faraoni (13359_CR16) 2010; 170
P Sarmah (13359_CR26) 2023; 40
T Katsuragawa (13359_CR46) 2019; 43
13359_CR87
DJ Gogoi (13359_CR53) 2023; 20
P Rastall (13359_CR35) 1972; 6
13359_CR45
RA Konoplya (13359_CR78) 2019; 36
R Roy (13359_CR67) 2022; 105
E Berti (13359_CR72) 2006; 73
R Solanki (13359_CR28) 2022; 36
K Jusufi (13359_CR69) 2019; 100
M Okyay (13359_CR65) 2022; 01
S Vagnozzi (13359_CR68) 2020; 37
DJ Gogoi (13359_CR29) 2023; 83
R Karmakar (13359_CR58) 2023; 41
SW Hawking (13359_CR81) 1983; 87
13359_CR50
JM Bardeen (13359_CR82) 1973; 31
BP Abbott (13359_CR8) 2020; 102
13359_CR90
DJ Gogoi (13359_CR75) 2022; 06
R Karmakar (13359_CR79) 2024; 99
13359_CR15
PV Ky (13359_CR42) 2024; 84
R Karmakar (13359_CR52) 2022; 37
13359_CR14
13359_CR11
W Hu (13359_CR37) 2007; 76
P Kocherlakota (13359_CR96) 2021; 103
13359_CR10
13359_CR13
13359_CR57
13359_CR12
L Amendola (13359_CR44) 2007; 75
AG Riess (13359_CR17) 1998; 116
R Abbott (13359_CR9) 2021; 915
S Haroon (13359_CR64) 2020; 6
JQ Guo (13359_CR89) 2014; 23
BP Abbott (13359_CR6) 2016; 116
T Multamäki (13359_CR59) 2006; 74
N Parbin (13359_CR31) 2021; 36
A Belhaj (13359_CR66) 2021
VF Cardone (13359_CR91) 2012; 2012
S Dey (13359_CR93) 2019; 79
R Saffari (13359_CR38) 2008; 77
Y Heydarzade (13359_CR55) 2017; 771
CM Will (13359_CR4) 2015; 32
DJ Gogoi (13359_CR22) 2020; 80
13359_CR60
K Jafarzade (13359_CR62) 2022; 446
AA Starobinsky (13359_CR36) 2007; 86
NA Bahcall (13359_CR20) 1999; 284
J Bora (13359_CR43) 2022; 09
G Franciolini (13359_CR73) 2019; 02
S Perlmutter (13359_CR18) 1999; 517
A De Felice (13359_CR24) 2010; 13
13359_CR27
13359_CR21
D Zhao (13359_CR49) 2022; 82
13359_CR23
S Chen (13359_CR54) 2008; 77
İ Çimdiker (13359_CR63) 2021; 34
MA Anacleto (13359_CR84) 2019; 788
13359_CR19
V Prokopov (13359_CR61) 2022; 135
CM Will (13359_CR3) 2018; 120
BP Abbott (13359_CR7) 2017; 119
X Zhang (13359_CR77) 2023; 66
A Mukherjee (13359_CR34) 2014; 352
References_xml – ident: 13359_CR27
– volume: 80
  start-page: 1101
  year: 2020
  ident: 13359_CR22
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-08684-3
– volume: 09
  start-page: 057
  year: 2022
  ident: 13359_CR43
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/09/057
– volume: 82
  start-page: 856
  year: 2023
  ident: 13359_CR48
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-022-10823-x
– volume: 105
  start-page: 083002
  year: 2022
  ident: 13359_CR67
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.083002
– ident: 13359_CR83
  doi: 10.1016/j.physletb.2020.135830
– volume: 75
  start-page: 083504
  year: 2007
  ident: 13359_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.75.083504
– volume: 446
  start-page: 169126
  year: 2022
  ident: 13359_CR62
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2022.169126
– volume: 116
  start-page: 031101
  year: 2016
  ident: 13359_CR94
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.031101
– ident: 13359_CR86
  doi: 10.1088/0256-307X/14/2/001
– volume: 36
  year: 2022
  ident: 13359_CR47
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2022.101053
– volume: 82
  start-page: 451
  year: 2010
  ident: 13359_CR30
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.451
– volume: 43
  start-page: 105101
  year: 2019
  ident: 13359_CR46
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/43/10/105101
– volume: 71
  start-page: 1752
  year: 2011
  ident: 13359_CR33
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-011-1752-9
– volume: 43
  start-page: 199
  year: 1975
  ident: 13359_CR80
  publication-title: Commun. Math.
  doi: 10.1007/BF02345020
– ident: 13359_CR1
  doi: 10.7208/chicago/9780226870373.001.0001
– volume: 104
  year: 2021
  ident: 13359_CR56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.084015
– volume: 32
  start-page: 124001
  year: 2015
  ident: 13359_CR4
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/12/124001
– volume: 74
  start-page: 055401
  year: 2022
  ident: 13359_CR85
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ac624c
– volume: 119
  start-page: 161101
  year: 2017
  ident: 13359_CR7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.161101
– volume: 101
  start-page: 084055
  year: 2020
  ident: 13359_CR71
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.084055
– volume: 116
  start-page: 061102
  year: 2016
  ident: 13359_CR5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.061102
– ident: 13359_CR19
  doi: 10.3390/sym12101648
– volume: 79
  start-page: 504
  year: 2019
  ident: 13359_CR93
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-019-7004-0
– volume: 352
  start-page: 839
  year: 2014
  ident: 13359_CR34
  publication-title: Astrophys. Space Sci.
  doi: 10.1007/s10509-014-1949-0
– volume: 01
  start-page: 009
  year: 2022
  ident: 13359_CR65
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/01/009
– ident: 13359_CR2
  doi: 10.48550/arXiv.1409.7871
– volume: 116
  start-page: 1009
  year: 1998
  ident: 13359_CR17
  publication-title: Astron. J.
  doi: 10.1086/300499
– volume: 771
  start-page: 365
  year: 2017
  ident: 13359_CR55
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2017.05.064
– ident: 13359_CR57
  doi: 10.1016/j.physletb.2019.05.043
– volume: 41
  year: 2023
  ident: 13359_CR58
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2023.101249
– volume: 84
  start-page: 298
  year: 2024
  ident: 13359_CR42
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-024-12606-y
– ident: 13359_CR11
  doi: 10.3847/2041-8213/ab0c96
– ident: 13359_CR74
  doi: 10.1143/PTP.110.901
– volume: 23
  start-page: 1450036
  year: 2014
  ident: 13359_CR89
  publication-title: IJMPD
  doi: 10.1142/S0218271814500369
– volume: 120
  start-page: 191101
  year: 2018
  ident: 13359_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.191101
– year: 2021
  ident: 13359_CR66
  publication-title: Gen. Relativ Gravit.
  doi: 10.1007/s10714-022-02902-x
– ident: 13359_CR23
  doi: 10.1103/RevModPhys.82.451
– volume: 135
  start-page: 91
  year: 2022
  ident: 13359_CR61
  publication-title: J. Exp. Theor. Phys.
  doi: 10.1134/S1063776122070093
– volume: 6
  start-page: 3357
  year: 1972
  ident: 13359_CR35
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.6.3357
– volume: 40
  start-page: 165007
  year: 2023
  ident: 13359_CR70
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/acd97b
– volume: 36
  start-page: 155002
  year: 2019
  ident: 13359_CR78
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ab2e25
– volume: 99
  start-page: 055003
  year: 2024
  ident: 13359_CR79
  publication-title: Phys. Scr.
  doi: 10.1088/1402-4896/ad350e
– volume: 86
  start-page: 157
  year: 2007
  ident: 13359_CR36
  publication-title: JETP
  doi: 10.1134/S0021364007150027
– volume: 34
  year: 2021
  ident: 13359_CR63
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2021.100900
– volume: 663
  start-page: 259
  year: 2008
  ident: 13359_CR92
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2008.04.009
– volume: 37
  start-page: 2250180
  year: 2022
  ident: 13359_CR52
  publication-title: IJMPA
  doi: 10.1142/S0217751X22501809
– volume: 915
  start-page: L5
  year: 2021
  ident: 13359_CR9
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac082e
– volume: 66
  start-page: 100411
  year: 2023
  ident: 13359_CR77
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-023-2153-6
– volume: 102
  start-page: 043015
  year: 2020
  ident: 13359_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.043015
– ident: 13359_CR45
– volume: 2012
  start-page: 030
  year: 2012
  ident: 13359_CR91
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/02/030
– ident: 13359_CR13
  doi: 10.3847/2041-8213/ab0e85
– volume: 40
  start-page: 101209
  year: 2023
  ident: 13359_CR26
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2023.101209
– volume: 20
  start-page: 2350007
  year: 2023
  ident: 13359_CR53
  publication-title: IJGMMP
  doi: 10.1142/S021988782350007X
– ident: 13359_CR10
  doi: 10.3847/2041-8213/ab0ec7
– volume: 83
  start-page: 411
  year: 2023
  ident: 13359_CR32
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-023-11568-x
– volume: 74
  year: 2006
  ident: 13359_CR59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.74.064022
– volume: 26
  year: 2019
  ident: 13359_CR39
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2019.100375
– volume: 116
  start-page: 241103
  year: 2016
  ident: 13359_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.241103
– ident: 13359_CR60
  doi: 10.1093/ptep/ptae035
– volume: 02
  start-page: 127
  year: 2019
  ident: 13359_CR73
  publication-title: JHEP
  doi: 10.1007/JHEP02(2019)127
– ident: 13359_CR14
  doi: 10.3847/2041-8213/ab0f43
– volume: 82
  start-page: 506
  year: 2022
  ident: 13359_CR41
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-022-10457-z
– volume: 84
  start-page: 024020
  year: 2011
  ident: 13359_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.024020
– volume: 36
  start-page: 101053
  year: 2022
  ident: 13359_CR28
  publication-title: Phys. Dark Univ.
  doi: 10.1016/j.dark.2022.101053
– volume: 87
  start-page: 577
  year: 1983
  ident: 13359_CR81
  publication-title: Commun. Math.
  doi: 10.1007/BF01208266
– volume: 76
  start-page: 064004
  year: 2007
  ident: 13359_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.76.064004
– volume: 6
  start-page: 23
  issue: 2
  year: 2020
  ident: 13359_CR64
  publication-title: Universe
  doi: 10.3390/universe6020023
– volume: 788
  start-page: 231
  year: 2019
  ident: 13359_CR84
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.11.020
– volume: 170
  start-page: 1
  year: 2010
  ident: 13359_CR16
  publication-title: Fundam. Theor. Phys.
  doi: 10.1007/978-94-007-0165-6
– ident: 13359_CR50
– volume: 31
  start-page: 161
  year: 1973
  ident: 13359_CR82
  publication-title: Commun. Math.
  doi: 10.1007/BF01645742
– volume: 284
  start-page: 1481
  year: 1999
  ident: 13359_CR20
  publication-title: Science
  doi: 10.1126/science.284.5419.1481
– volume: 73
  start-page: 064030
  year: 2006
  ident: 13359_CR72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.73.064030
– ident: 13359_CR15
  doi: 10.3847/2041-8213/ab1141
– volume: 44
  start-page: 1857
  year: 2012
  ident: 13359_CR51
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-012-1368-x
– ident: 13359_CR21
– volume: 82
  start-page: 303
  year: 2022
  ident: 13359_CR49
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-022-10266-4
– volume: 77
  year: 2008
  ident: 13359_CR54
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.124011
– ident: 13359_CR87
  doi: 10.1140/epjc/s10052-020-8342-7
– volume: 77
  start-page: 104028
  year: 2008
  ident: 13359_CR38
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.104028
– volume: 80
  start-page: 1011
  year: 2020
  ident: 13359_CR40
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-020-08684-3
– ident: 13359_CR12
  doi: 10.3847/2041-8213/ab0c57
– volume: 13
  start-page: 3
  year: 2010
  ident: 13359_CR24
  publication-title: Living Rev. Relativ.
  doi: 10.12942/lrr-2010-3
– volume: 79
  start-page: 123516
  year: 2009
  ident: 13359_CR88
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.79.123516
– ident: 13359_CR90
  doi: 10.1016/j.physrep.2017.06.001
– volume: 37
  start-page: 087001
  year: 2020
  ident: 13359_CR68
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ab7965
– volume: 517
  start-page: 565
  year: 1999
  ident: 13359_CR18
  publication-title: ApJ
  doi: 10.1086/307221
– volume: 100
  start-page: 044012
  year: 2019
  ident: 13359_CR69
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.044012
– volume: 68
  start-page: 024018
  year: 2003
  ident: 13359_CR76
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.68.024018
– volume: 83
  start-page: 700
  year: 2023
  ident: 13359_CR29
  publication-title: EPJC
  doi: 10.1140/epjc/s10052-023-11881-5
– volume: 36
  start-page: 37
  year: 2021
  ident: 13359_CR31
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732321502655
– volume: 51
  start-page: 137
  year: 2019
  ident: 13359_CR95
  publication-title: Gen. Relativ. Gravit.
  doi: 10.1007/s10714-019-2611-5
– volume: 06
  start-page: 029
  year: 2022
  ident: 13359_CR75
  publication-title: JCAP
  doi: 10.1088/1475-7516/2022/06/029
– volume: 103
  start-page: 104047
  year: 2021
  ident: 13359_CR96
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.104047
SSID ssj0002408
Score 2.4428892
Snippet We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of f ( R ) gravity. After obtaining the black hole solution, we...
SourceID crossref
SourceType Enrichment Source
Index Database
Title Quasinormal modes, thermodynamics and shadow of black holes in Hu–Sawicki $$\varvec{f(R)}$$ gravity theory
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ditNAFB7qiuCN-IvrzzIXKSg1u8lkmmQutSpFUFC3sBdCmGRm2NWSlm2zgiL4Dj6Cb-aTeM7MJJvVwrpCCe2UnE5yPibfOf3OHEIClholkzIG5hbpkDOmQpEIE3JlZG5yqWObh3z9Jp3O-KuD8cFg8LOnWmrW5W71ZWNdyf94FcbAr1glewHPdkZhAN6Df-EIHobjP_n4bSMh1EfWObctbaxPkNHBB9dp3u3AvDqUamHrU0rM142wJ67VwU6bVuyQvJfYVP0IoMDxNZ6cyOMTXQ2zZwazDEMmhtlz9-UIexYhe1-3hf0dv0XUdQn-ZYsBfzG7o4kjrV6MZ-dmJXSn_yhhhv1TK_qG5abTBy1Wn-GCcHyGittaSRQ89ZMWjKPCwu0B4NdZnvAQIim3EOsNY35xdv3jPAjF5jWfo0hSLz9WrhQaLIT4kxB9j4UvITqzz_Yfz79OlehqtKMCTRXOUAGGCmuo4JfIZQaxCLbJmGBJjX_c4x5xtoTNz96LCMHQHhra-3tGPQrU4zL718k1H4TQp84PN8hA1zfJFSsGrla3yLyHK2px9YSeRRWF-08dqujCUIsqalFFj2o6bX59_-HxRIPgg0PSV_Po3eNvQUA9eqhDz20ye_lifzINfVeOsAJ2yEMRaW4MB6JnxjorU4UUPmcqZuU4TjIZ5WWlTWRYlueqklgoxIWEyCFJUl4ZkdwhW_Wi1ncJzXRe5ixWaQksUxshmYqEgQA9EXkqNd8maXujispvWY-dU-bFOa7aJlF34tLt2nLeKfcufsp9cvUU2w_I1vq40Q-Boq7LHQuRHZvg-Q33NosC
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasinormal+modes%2C+thermodynamics+and+shadow+of+black+holes+in+Hu%E2%80%93Sawicki+%24%24%5Cvarvec%7Bf%28R%29%7D%24%24+gravity+theory&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Karmakar%2C+Ronit&rft.au=Goswami%2C+Umananda+Dev&rft.date=2024-09-27&rft.issn=1434-6052&rft.eissn=1434-6052&rft.volume=84&rft.issue=9&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-024-13359-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjc_s10052_024_13359_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon