Quasinormal modes, thermodynamics and shadow of black holes in Hu–Sawicki $$\varvec{f(R)}$$ gravity theory
We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of f ( R ) gravity. After obtaining the black hole solution, we study the horizon radius of the black hole from the metric and then analyse the dependence of the model parameters on the horizon. We then us...
Saved in:
Published in | The European physical journal. C, Particles and fields Vol. 84; no. 9 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
27.09.2024
|
Online Access | Get full text |
ISSN | 1434-6052 1434-6052 |
DOI | 10.1140/epjc/s10052-024-13359-4 |
Cover
Loading…
Abstract | We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of
f
(
R
) gravity. After obtaining the black hole solution, we study the horizon radius of the black hole from the metric and then analyse the dependence of the model parameters on the horizon. We then use the 6th order WKB method to study the quasinormal modes of oscillations (QNMs) of the black hole perturbed by a scalar field. The dependence of the amplitude and damping part of the QNMs are analysed with respect to variations in model parameters and the error associated with the QNMs are also computed. After that we study some thermodynamic properties associated with the black hole such as its thermodynamic temperature as well as greybody factors. It is found that the black hole has the possibility of showcasing negative temperatures and is thermodynamically unstable for feasible values of model parameters. Then we analyse the geodesics and derive the photon sphere radius as well as the shadow radius of the black hole. The photon radius is independent of the model parameters while shadow radius showed fair amount of dependence on the model parameters. We tried to constrain the parameters with the help of Keck and VLTI observational data and obtained some bounds on
m
and
$$c_{2}$$
c
2
parameters. |
---|---|
AbstractList | We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of
f
(
R
) gravity. After obtaining the black hole solution, we study the horizon radius of the black hole from the metric and then analyse the dependence of the model parameters on the horizon. We then use the 6th order WKB method to study the quasinormal modes of oscillations (QNMs) of the black hole perturbed by a scalar field. The dependence of the amplitude and damping part of the QNMs are analysed with respect to variations in model parameters and the error associated with the QNMs are also computed. After that we study some thermodynamic properties associated with the black hole such as its thermodynamic temperature as well as greybody factors. It is found that the black hole has the possibility of showcasing negative temperatures and is thermodynamically unstable for feasible values of model parameters. Then we analyse the geodesics and derive the photon sphere radius as well as the shadow radius of the black hole. The photon radius is independent of the model parameters while shadow radius showed fair amount of dependence on the model parameters. We tried to constrain the parameters with the help of Keck and VLTI observational data and obtained some bounds on
m
and
$$c_{2}$$
c
2
parameters. |
ArticleNumber | 969 |
Author | Karmakar, Ronit Goswami, Umananda Dev |
Author_xml | – sequence: 1 givenname: Ronit orcidid: 0000-0002-9531-7435 surname: Karmakar fullname: Karmakar, Ronit – sequence: 2 givenname: Umananda Dev orcidid: 0000-0003-0012-7549 surname: Goswami fullname: Goswami, Umananda Dev |
BookMark | eNqFkE9LwzAYxoNMcE4_gzn0oGBd0qRre_AgQ50wEP_dhPA2TVy2rhlJt1FE8Dv4Df0kds6DePH0Prw8v-fw20edylYKoSNKzijlpK8WU9n3lJA4CknEQ8pYnIV8B3UpZzwctP_Or7yH9r2fEtJWSdpF5d0SvKmsm0OJ57ZQ_hTXE-Xa2FQwN9JjqArsJ1DYNbYa5yXIGZ7YUnlsKjxafr5_PMDayJnBQfC8ArdS8lUf35-8BQF-cbAydbOZtK45QLsaSq8Of24PPV1dPg5H4fj2-mZ4MQ4ljSkPM6K41jylqY5Vkg8KFkdRGhU0ymPKEiBpLpUmOkrStJBASJbwDAiPGRtwqTPWQ-fbXems905pIU0NtbFV7cCUghKxUSc26sRWnWh9iG91grd88odfODMH1_xLfgH_lnhU |
CitedBy_id | crossref_primary_10_3390_sym17010042 crossref_primary_10_1016_j_physletb_2025_139390 crossref_primary_10_1016_j_dark_2025_101874 |
Cites_doi | 10.1140/epjc/s10052-020-08684-3 10.1088/1475-7516/2022/09/057 10.1140/epjc/s10052-022-10823-x 10.1103/PhysRevD.105.083002 10.1016/j.physletb.2020.135830 10.1103/PhysRevD.75.083504 10.1016/j.aop.2022.169126 10.1103/PhysRevLett.116.031101 10.1088/0256-307X/14/2/001 10.1016/j.dark.2022.101053 10.1103/RevModPhys.82.451 10.1088/1674-1137/43/10/105101 10.1140/epjc/s10052-011-1752-9 10.1007/BF02345020 10.7208/chicago/9780226870373.001.0001 10.1103/PhysRevD.104.084015 10.1088/0264-9381/32/12/124001 10.1088/1572-9494/ac624c 10.1103/PhysRevLett.119.161101 10.1103/PhysRevD.101.084055 10.1103/PhysRevLett.116.061102 10.3390/sym12101648 10.1140/epjc/s10052-019-7004-0 10.1007/s10509-014-1949-0 10.1088/1475-7516/2022/01/009 10.48550/arXiv.1409.7871 10.1086/300499 10.1016/j.physletb.2017.05.064 10.1016/j.physletb.2019.05.043 10.1016/j.dark.2023.101249 10.1140/epjc/s10052-024-12606-y 10.3847/2041-8213/ab0c96 10.1143/PTP.110.901 10.1142/S0218271814500369 10.1103/PhysRevLett.120.191101 10.1007/s10714-022-02902-x 10.1134/S1063776122070093 10.1103/PhysRevD.6.3357 10.1088/1361-6382/acd97b 10.1088/1361-6382/ab2e25 10.1088/1402-4896/ad350e 10.1134/S0021364007150027 10.1016/j.dark.2021.100900 10.1016/j.physletb.2008.04.009 10.1142/S0217751X22501809 10.3847/2041-8213/ac082e 10.1007/s11433-023-2153-6 10.1103/PhysRevD.102.043015 10.1088/1475-7516/2012/02/030 10.3847/2041-8213/ab0e85 10.1016/j.dark.2023.101209 10.1142/S021988782350007X 10.3847/2041-8213/ab0ec7 10.1140/epjc/s10052-023-11568-x 10.1103/PhysRevD.74.064022 10.1016/j.dark.2019.100375 10.1103/PhysRevLett.116.241103 10.1093/ptep/ptae035 10.1007/JHEP02(2019)127 10.3847/2041-8213/ab0f43 10.1140/epjc/s10052-022-10457-z 10.1103/PhysRevD.84.024020 10.1007/BF01208266 10.1103/PhysRevD.76.064004 10.3390/universe6020023 10.1016/j.physletb.2018.11.020 10.1007/978-94-007-0165-6 10.1007/BF01645742 10.1126/science.284.5419.1481 10.1103/PhysRevD.73.064030 10.3847/2041-8213/ab1141 10.1007/s10714-012-1368-x 10.1140/epjc/s10052-022-10266-4 10.1103/PhysRevD.77.124011 10.1140/epjc/s10052-020-8342-7 10.1103/PhysRevD.77.104028 10.3847/2041-8213/ab0c57 10.12942/lrr-2010-3 10.1103/PhysRevD.79.123516 10.1016/j.physrep.2017.06.001 10.1088/1361-6382/ab7965 10.1086/307221 10.1103/PhysRevD.100.044012 10.1103/PhysRevD.68.024018 10.1140/epjc/s10052-023-11881-5 10.1142/S0217732321502655 10.1007/s10714-019-2611-5 10.1088/1475-7516/2022/06/029 10.1103/PhysRevD.103.104047 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1140/epjc/s10052-024-13359-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1434-6052 |
ExternalDocumentID | 10_1140_epjc_s10052_024_13359_4 |
GroupedDBID | -~X .86 0R~ 199 29G 2JY 30V 4.4 408 409 40D 5GY 5VS 67Z 6NX 78A 8FE 8FG 8TC 8UJ 95. 95~ AAFWJ AAKKN AAYXX ABDBF ABEEZ ABMNI ACACY ACGFS ACNCT ACUHS ACULB ADBBV ADMLS AENEX AFBBN AFGXO AFKRA AFPKN AFWTZ AGWIL AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ASPBG AVWKF AZFZN B0M BA0 BCNDV BENPR BGLVJ BGNMA C24 C6C CCPQU CITATION CS3 CSCUP DL5 DU5 EAD EAP EAS EBS EMK EPL ER. ESX FEDTE GQ8 GROUPED_DOAJ GXS HCIFZ HF~ HG5 HMJXF HVGLF HZ~ I-F I09 IAO IGS IHE ISR IXC IZIGR IZQ I~X KDC KOV LAS M4Y MA- NB0 O9- O93 OK1 P62 P9T PHGZM PHGZT PIMPY QOS R89 R9I RED RID RNS ROL RPX RSV S27 S3B SDH SOJ SPH T13 TN5 TSK TSV TUC TUS U2A VC2 WK8 Z45 ~8M |
ID | FETCH-LOGICAL-c1514-90e4ff4818f5e7b6d352282d12b5137a08bcef0f2788dca009749a0453364cf93 |
ISSN | 1434-6052 |
IngestDate | Thu Apr 24 22:51:55 EDT 2025 Tue Jul 01 01:30:51 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1514-90e4ff4818f5e7b6d352282d12b5137a08bcef0f2788dca009749a0453364cf93 |
ORCID | 0000-0003-0012-7549 0000-0002-9531-7435 |
OpenAccessLink | https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13359-4.pdf |
ParticipantIDs | crossref_citationtrail_10_1140_epjc_s10052_024_13359_4 crossref_primary_10_1140_epjc_s10052_024_13359_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-09-27 |
PublicationDateYYYYMMDD | 2024-09-27 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-27 day: 27 |
PublicationDecade | 2020 |
PublicationTitle | The European physical journal. C, Particles and fields |
PublicationYear | 2024 |
References | BP Abbott (13359_CR5) 2016; 116 SW Hawking (13359_CR80) 1975; 43 R Myrzakulov (13359_CR33) 2011; 71 DJ Gogoi (13359_CR40) 2020; 80 13359_CR74 TP Sotiriou (13359_CR30) 2010; 82 T Harko (13359_CR25) 2011; 84 13359_CR2 K Jusufi (13359_CR71) 2020; 101 D Psaltis (13359_CR95) 2019; 51 13359_CR1 M Martinelli (13359_CR88) 2009; 79 H Su (13359_CR85) 2022; 74 F Atamurotov (13359_CR56) 2021; 104 RA Konoplya (13359_CR76) 2003; 68 J-Y Cen (13359_CR39) 2019; 26 P Bessa (13359_CR41) 2022; 82 S Vagnozzi (13359_CR70) 2023; 40 S Fernando (13359_CR51) 2012; 44 13359_CR83 13359_CR86 T Johannsen (13359_CR94) 2016; 116 M Park (13359_CR92) 2008; 663 N Parbin (13359_CR32) 2023; 83 R Solanki (13359_CR47) 2022; 36 S Capozziello (13359_CR48) 2023; 82 V Faraoni (13359_CR16) 2010; 170 P Sarmah (13359_CR26) 2023; 40 T Katsuragawa (13359_CR46) 2019; 43 13359_CR87 DJ Gogoi (13359_CR53) 2023; 20 P Rastall (13359_CR35) 1972; 6 13359_CR45 RA Konoplya (13359_CR78) 2019; 36 R Roy (13359_CR67) 2022; 105 E Berti (13359_CR72) 2006; 73 R Solanki (13359_CR28) 2022; 36 K Jusufi (13359_CR69) 2019; 100 M Okyay (13359_CR65) 2022; 01 S Vagnozzi (13359_CR68) 2020; 37 DJ Gogoi (13359_CR29) 2023; 83 R Karmakar (13359_CR58) 2023; 41 SW Hawking (13359_CR81) 1983; 87 13359_CR50 JM Bardeen (13359_CR82) 1973; 31 BP Abbott (13359_CR8) 2020; 102 13359_CR90 DJ Gogoi (13359_CR75) 2022; 06 R Karmakar (13359_CR79) 2024; 99 13359_CR15 PV Ky (13359_CR42) 2024; 84 R Karmakar (13359_CR52) 2022; 37 13359_CR14 13359_CR11 W Hu (13359_CR37) 2007; 76 P Kocherlakota (13359_CR96) 2021; 103 13359_CR10 13359_CR13 13359_CR57 13359_CR12 L Amendola (13359_CR44) 2007; 75 AG Riess (13359_CR17) 1998; 116 R Abbott (13359_CR9) 2021; 915 S Haroon (13359_CR64) 2020; 6 JQ Guo (13359_CR89) 2014; 23 BP Abbott (13359_CR6) 2016; 116 T Multamäki (13359_CR59) 2006; 74 N Parbin (13359_CR31) 2021; 36 A Belhaj (13359_CR66) 2021 VF Cardone (13359_CR91) 2012; 2012 S Dey (13359_CR93) 2019; 79 R Saffari (13359_CR38) 2008; 77 Y Heydarzade (13359_CR55) 2017; 771 CM Will (13359_CR4) 2015; 32 DJ Gogoi (13359_CR22) 2020; 80 13359_CR60 K Jafarzade (13359_CR62) 2022; 446 AA Starobinsky (13359_CR36) 2007; 86 NA Bahcall (13359_CR20) 1999; 284 J Bora (13359_CR43) 2022; 09 G Franciolini (13359_CR73) 2019; 02 S Perlmutter (13359_CR18) 1999; 517 A De Felice (13359_CR24) 2010; 13 13359_CR27 13359_CR21 D Zhao (13359_CR49) 2022; 82 13359_CR23 S Chen (13359_CR54) 2008; 77 İ Çimdiker (13359_CR63) 2021; 34 MA Anacleto (13359_CR84) 2019; 788 13359_CR19 V Prokopov (13359_CR61) 2022; 135 CM Will (13359_CR3) 2018; 120 BP Abbott (13359_CR7) 2017; 119 X Zhang (13359_CR77) 2023; 66 A Mukherjee (13359_CR34) 2014; 352 |
References_xml | – ident: 13359_CR27 – volume: 80 start-page: 1101 year: 2020 ident: 13359_CR22 publication-title: EPJC doi: 10.1140/epjc/s10052-020-08684-3 – volume: 09 start-page: 057 year: 2022 ident: 13359_CR43 publication-title: JCAP doi: 10.1088/1475-7516/2022/09/057 – volume: 82 start-page: 856 year: 2023 ident: 13359_CR48 publication-title: EPJC doi: 10.1140/epjc/s10052-022-10823-x – volume: 105 start-page: 083002 year: 2022 ident: 13359_CR67 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.083002 – ident: 13359_CR83 doi: 10.1016/j.physletb.2020.135830 – volume: 75 start-page: 083504 year: 2007 ident: 13359_CR44 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.75.083504 – volume: 446 start-page: 169126 year: 2022 ident: 13359_CR62 publication-title: Ann. Phys. doi: 10.1016/j.aop.2022.169126 – volume: 116 start-page: 031101 year: 2016 ident: 13359_CR94 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.031101 – ident: 13359_CR86 doi: 10.1088/0256-307X/14/2/001 – volume: 36 year: 2022 ident: 13359_CR47 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2022.101053 – volume: 82 start-page: 451 year: 2010 ident: 13359_CR30 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.451 – volume: 43 start-page: 105101 year: 2019 ident: 13359_CR46 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/43/10/105101 – volume: 71 start-page: 1752 year: 2011 ident: 13359_CR33 publication-title: EPJC doi: 10.1140/epjc/s10052-011-1752-9 – volume: 43 start-page: 199 year: 1975 ident: 13359_CR80 publication-title: Commun. Math. doi: 10.1007/BF02345020 – ident: 13359_CR1 doi: 10.7208/chicago/9780226870373.001.0001 – volume: 104 year: 2021 ident: 13359_CR56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.084015 – volume: 32 start-page: 124001 year: 2015 ident: 13359_CR4 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/12/124001 – volume: 74 start-page: 055401 year: 2022 ident: 13359_CR85 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ac624c – volume: 119 start-page: 161101 year: 2017 ident: 13359_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.161101 – volume: 101 start-page: 084055 year: 2020 ident: 13359_CR71 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.084055 – volume: 116 start-page: 061102 year: 2016 ident: 13359_CR5 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.061102 – ident: 13359_CR19 doi: 10.3390/sym12101648 – volume: 79 start-page: 504 year: 2019 ident: 13359_CR93 publication-title: EPJC doi: 10.1140/epjc/s10052-019-7004-0 – volume: 352 start-page: 839 year: 2014 ident: 13359_CR34 publication-title: Astrophys. Space Sci. doi: 10.1007/s10509-014-1949-0 – volume: 01 start-page: 009 year: 2022 ident: 13359_CR65 publication-title: JCAP doi: 10.1088/1475-7516/2022/01/009 – ident: 13359_CR2 doi: 10.48550/arXiv.1409.7871 – volume: 116 start-page: 1009 year: 1998 ident: 13359_CR17 publication-title: Astron. J. doi: 10.1086/300499 – volume: 771 start-page: 365 year: 2017 ident: 13359_CR55 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2017.05.064 – ident: 13359_CR57 doi: 10.1016/j.physletb.2019.05.043 – volume: 41 year: 2023 ident: 13359_CR58 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2023.101249 – volume: 84 start-page: 298 year: 2024 ident: 13359_CR42 publication-title: EPJC doi: 10.1140/epjc/s10052-024-12606-y – ident: 13359_CR11 doi: 10.3847/2041-8213/ab0c96 – ident: 13359_CR74 doi: 10.1143/PTP.110.901 – volume: 23 start-page: 1450036 year: 2014 ident: 13359_CR89 publication-title: IJMPD doi: 10.1142/S0218271814500369 – volume: 120 start-page: 191101 year: 2018 ident: 13359_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.191101 – year: 2021 ident: 13359_CR66 publication-title: Gen. Relativ Gravit. doi: 10.1007/s10714-022-02902-x – ident: 13359_CR23 doi: 10.1103/RevModPhys.82.451 – volume: 135 start-page: 91 year: 2022 ident: 13359_CR61 publication-title: J. Exp. Theor. Phys. doi: 10.1134/S1063776122070093 – volume: 6 start-page: 3357 year: 1972 ident: 13359_CR35 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.6.3357 – volume: 40 start-page: 165007 year: 2023 ident: 13359_CR70 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/acd97b – volume: 36 start-page: 155002 year: 2019 ident: 13359_CR78 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab2e25 – volume: 99 start-page: 055003 year: 2024 ident: 13359_CR79 publication-title: Phys. Scr. doi: 10.1088/1402-4896/ad350e – volume: 86 start-page: 157 year: 2007 ident: 13359_CR36 publication-title: JETP doi: 10.1134/S0021364007150027 – volume: 34 year: 2021 ident: 13359_CR63 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2021.100900 – volume: 663 start-page: 259 year: 2008 ident: 13359_CR92 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2008.04.009 – volume: 37 start-page: 2250180 year: 2022 ident: 13359_CR52 publication-title: IJMPA doi: 10.1142/S0217751X22501809 – volume: 915 start-page: L5 year: 2021 ident: 13359_CR9 publication-title: ApJL doi: 10.3847/2041-8213/ac082e – volume: 66 start-page: 100411 year: 2023 ident: 13359_CR77 publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-023-2153-6 – volume: 102 start-page: 043015 year: 2020 ident: 13359_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.102.043015 – ident: 13359_CR45 – volume: 2012 start-page: 030 year: 2012 ident: 13359_CR91 publication-title: JCAP doi: 10.1088/1475-7516/2012/02/030 – ident: 13359_CR13 doi: 10.3847/2041-8213/ab0e85 – volume: 40 start-page: 101209 year: 2023 ident: 13359_CR26 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2023.101209 – volume: 20 start-page: 2350007 year: 2023 ident: 13359_CR53 publication-title: IJGMMP doi: 10.1142/S021988782350007X – ident: 13359_CR10 doi: 10.3847/2041-8213/ab0ec7 – volume: 83 start-page: 411 year: 2023 ident: 13359_CR32 publication-title: EPJC doi: 10.1140/epjc/s10052-023-11568-x – volume: 74 year: 2006 ident: 13359_CR59 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.74.064022 – volume: 26 year: 2019 ident: 13359_CR39 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2019.100375 – volume: 116 start-page: 241103 year: 2016 ident: 13359_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.241103 – ident: 13359_CR60 doi: 10.1093/ptep/ptae035 – volume: 02 start-page: 127 year: 2019 ident: 13359_CR73 publication-title: JHEP doi: 10.1007/JHEP02(2019)127 – ident: 13359_CR14 doi: 10.3847/2041-8213/ab0f43 – volume: 82 start-page: 506 year: 2022 ident: 13359_CR41 publication-title: EPJC doi: 10.1140/epjc/s10052-022-10457-z – volume: 84 start-page: 024020 year: 2011 ident: 13359_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.84.024020 – volume: 36 start-page: 101053 year: 2022 ident: 13359_CR28 publication-title: Phys. Dark Univ. doi: 10.1016/j.dark.2022.101053 – volume: 87 start-page: 577 year: 1983 ident: 13359_CR81 publication-title: Commun. Math. doi: 10.1007/BF01208266 – volume: 76 start-page: 064004 year: 2007 ident: 13359_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.76.064004 – volume: 6 start-page: 23 issue: 2 year: 2020 ident: 13359_CR64 publication-title: Universe doi: 10.3390/universe6020023 – volume: 788 start-page: 231 year: 2019 ident: 13359_CR84 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.11.020 – volume: 170 start-page: 1 year: 2010 ident: 13359_CR16 publication-title: Fundam. Theor. Phys. doi: 10.1007/978-94-007-0165-6 – ident: 13359_CR50 – volume: 31 start-page: 161 year: 1973 ident: 13359_CR82 publication-title: Commun. Math. doi: 10.1007/BF01645742 – volume: 284 start-page: 1481 year: 1999 ident: 13359_CR20 publication-title: Science doi: 10.1126/science.284.5419.1481 – volume: 73 start-page: 064030 year: 2006 ident: 13359_CR72 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.73.064030 – ident: 13359_CR15 doi: 10.3847/2041-8213/ab1141 – volume: 44 start-page: 1857 year: 2012 ident: 13359_CR51 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-012-1368-x – ident: 13359_CR21 – volume: 82 start-page: 303 year: 2022 ident: 13359_CR49 publication-title: EPJC doi: 10.1140/epjc/s10052-022-10266-4 – volume: 77 year: 2008 ident: 13359_CR54 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.124011 – ident: 13359_CR87 doi: 10.1140/epjc/s10052-020-8342-7 – volume: 77 start-page: 104028 year: 2008 ident: 13359_CR38 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.77.104028 – volume: 80 start-page: 1011 year: 2020 ident: 13359_CR40 publication-title: EPJC doi: 10.1140/epjc/s10052-020-08684-3 – ident: 13359_CR12 doi: 10.3847/2041-8213/ab0c57 – volume: 13 start-page: 3 year: 2010 ident: 13359_CR24 publication-title: Living Rev. Relativ. doi: 10.12942/lrr-2010-3 – volume: 79 start-page: 123516 year: 2009 ident: 13359_CR88 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.79.123516 – ident: 13359_CR90 doi: 10.1016/j.physrep.2017.06.001 – volume: 37 start-page: 087001 year: 2020 ident: 13359_CR68 publication-title: Class. Quantum Gravity doi: 10.1088/1361-6382/ab7965 – volume: 517 start-page: 565 year: 1999 ident: 13359_CR18 publication-title: ApJ doi: 10.1086/307221 – volume: 100 start-page: 044012 year: 2019 ident: 13359_CR69 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.100.044012 – volume: 68 start-page: 024018 year: 2003 ident: 13359_CR76 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.68.024018 – volume: 83 start-page: 700 year: 2023 ident: 13359_CR29 publication-title: EPJC doi: 10.1140/epjc/s10052-023-11881-5 – volume: 36 start-page: 37 year: 2021 ident: 13359_CR31 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732321502655 – volume: 51 start-page: 137 year: 2019 ident: 13359_CR95 publication-title: Gen. Relativ. Gravit. doi: 10.1007/s10714-019-2611-5 – volume: 06 start-page: 029 year: 2022 ident: 13359_CR75 publication-title: JCAP doi: 10.1088/1475-7516/2022/06/029 – volume: 103 start-page: 104047 year: 2021 ident: 13359_CR96 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.104047 |
SSID | ssj0002408 |
Score | 2.4428892 |
Snippet | We derive novel black hole solutions in a modified gravity theory, namely the Hu–Sawicki model of
f
(
R
) gravity. After obtaining the black hole solution, we... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
Title | Quasinormal modes, thermodynamics and shadow of black holes in Hu–Sawicki $$\varvec{f(R)}$$ gravity theory |
Volume | 84 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ditNAFB7qiuCN-IvrzzIXKSg1u8lkmmQutSpFUFC3sBdCmGRm2NWSlm2zgiL4Dj6Cb-aTeM7MJJvVwrpCCe2UnE5yPibfOf3OHEIClholkzIG5hbpkDOmQpEIE3JlZG5yqWObh3z9Jp3O-KuD8cFg8LOnWmrW5W71ZWNdyf94FcbAr1glewHPdkZhAN6Df-EIHobjP_n4bSMh1EfWObctbaxPkNHBB9dp3u3AvDqUamHrU0rM142wJ67VwU6bVuyQvJfYVP0IoMDxNZ6cyOMTXQ2zZwazDEMmhtlz9-UIexYhe1-3hf0dv0XUdQn-ZYsBfzG7o4kjrV6MZ-dmJXSn_yhhhv1TK_qG5abTBy1Wn-GCcHyGittaSRQ89ZMWjKPCwu0B4NdZnvAQIim3EOsNY35xdv3jPAjF5jWfo0hSLz9WrhQaLIT4kxB9j4UvITqzz_Yfz79OlehqtKMCTRXOUAGGCmuo4JfIZQaxCLbJmGBJjX_c4x5xtoTNz96LCMHQHhra-3tGPQrU4zL718k1H4TQp84PN8hA1zfJFSsGrla3yLyHK2px9YSeRRWF-08dqujCUIsqalFFj2o6bX59_-HxRIPgg0PSV_Po3eNvQUA9eqhDz20ye_lifzINfVeOsAJ2yEMRaW4MB6JnxjorU4UUPmcqZuU4TjIZ5WWlTWRYlueqklgoxIWEyCFJUl4ZkdwhW_Wi1ncJzXRe5ixWaQksUxshmYqEgQA9EXkqNd8maXujispvWY-dU-bFOa7aJlF34tLt2nLeKfcufsp9cvUU2w_I1vq40Q-Boq7LHQuRHZvg-Q33NosC |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasinormal+modes%2C+thermodynamics+and+shadow+of+black+holes+in+Hu%E2%80%93Sawicki+%24%24%5Cvarvec%7Bf%28R%29%7D%24%24+gravity+theory&rft.jtitle=The+European+physical+journal.+C%2C+Particles+and+fields&rft.au=Karmakar%2C+Ronit&rft.au=Goswami%2C+Umananda+Dev&rft.date=2024-09-27&rft.issn=1434-6052&rft.eissn=1434-6052&rft.volume=84&rft.issue=9&rft_id=info:doi/10.1140%2Fepjc%2Fs10052-024-13359-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1140_epjc_s10052_024_13359_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1434-6052&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1434-6052&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1434-6052&client=summon |