Comparing SVM and Naïve Bayes Classifier for Fake News Detection
Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things, such as war, pandemics, and the stock market. Unfortunately, this issue is not a big deal for some people without conscious consumption of that...
Saved in:
Published in | Engineering, MAthematics and Computer Science (EMACS) Journal Vol. 4; no. 3; pp. 103 - 107 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
30.09.2022
|
Online Access | Get full text |
ISSN | 2686-2573 2686-2573 |
DOI | 10.21512/emacsjournal.v4i3.8670 |
Cover
Abstract | Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things, such as war, pandemics, and the stock market. Unfortunately, this issue is not a big deal for some people without conscious consumption of that news. Hence, being part takes a role in combating the spread of false information using the advancement of technology. This study proposed two methods of machine learning model, Support Vector Machine (SVM) and Naïve Bayes, to classify fake news. Furthermore, to assert the applicability of models by examining news articles dataset which contain two labels, reliable and unreliable news. The higher accuracy is 0.96 using the SVM model |
---|---|
AbstractList | Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things, such as war, pandemics, and the stock market. Unfortunately, this issue is not a big deal for some people without conscious consumption of that news. Hence, being part takes a role in combating the spread of false information using the advancement of technology. This study proposed two methods of machine learning model, Support Vector Machine (SVM) and Naïve Bayes, to classify fake news. Furthermore, to assert the applicability of models by examining news articles dataset which contain two labels, reliable and unreliable news. The higher accuracy is 0.96 using the SVM model |
Author | Nurhasanah, Nurhasanah Pratama, Jason Heng, Ibrahim Tan Kah Irwansyah, Edy Sumarly, Daniel Emerald |
Author_xml | – sequence: 1 givenname: Nurhasanah surname: Nurhasanah fullname: Nurhasanah, Nurhasanah – sequence: 2 givenname: Daniel Emerald surname: Sumarly fullname: Sumarly, Daniel Emerald – sequence: 3 givenname: Jason surname: Pratama fullname: Pratama, Jason – sequence: 4 givenname: Ibrahim Tan Kah surname: Heng fullname: Heng, Ibrahim Tan Kah – sequence: 5 givenname: Edy surname: Irwansyah fullname: Irwansyah, Edy |
BookMark | eNqFkEtOwzAURS1UJErpGvAGUvxp7HjAoAQKSKUM-EyjZ_cZGdKkskNRV8Ui2BgtMEBMGN07OVdX55D0mrZBQo45Gwmec3GCS3DpuX2NDdSj9TjIUaE02yN9oQqViVzL3q9-QIYpBcvGYy1zw0WfTMp2uYIYmid693hDoVnQOXy8r5GewQYTLWvYEj5gpL6NdAovSOf4lug5dui60DZHZN9DnXD4kwPyML24L6-y2e3ldTmZZW57lGUKGefGGuaclUYoZwXz0jKRe6O4RuldsbDKOAnCSlVou0DQBqX1gmuh5YCcfu-62KYU0VcudLB70EUIdcVZ9aWk-q2k2impdkq2vP7Dr2JYQtz8S34CKC9u8w |
CitedBy_id | crossref_primary_10_1038_s41598_024_57740_5 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.21512/emacsjournal.v4i3.8670 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2686-2573 |
EndPage | 107 |
ExternalDocumentID | 10_21512_emacsjournal_v4i3_8670 |
GroupedDBID | AAYXX CITATION M~E |
ID | FETCH-LOGICAL-c1510-6e0119b90ccb3926cb20f3b025f9617e3fc8db69c3a2b3687bdea79e3bf217273 |
ISSN | 2686-2573 |
IngestDate | Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 03:10:31 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | false |
Issue | 3 |
Language | English |
License | https://creativecommons.org/licenses/by-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1510-6e0119b90ccb3926cb20f3b025f9617e3fc8db69c3a2b3687bdea79e3bf217273 |
OpenAccessLink | https://journal.binus.ac.id/index.php/EMACS/article/download/8670/4587 |
PageCount | 5 |
ParticipantIDs | crossref_citationtrail_10_21512_emacsjournal_v4i3_8670 crossref_primary_10_21512_emacsjournal_v4i3_8670 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-30 |
PublicationDateYYYYMMDD | 2022-09-30 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Engineering, MAthematics and Computer Science (EMACS) Journal |
PublicationYear | 2022 |
SSID | ssib044735912 |
Score | 1.8102038 |
Snippet | Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things,... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 103 |
Title | Comparing SVM and Naïve Bayes Classifier for Fake News Detection |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKuHBBoIEYMOTDblVKEqdOcuyqVmWovdCh3SLbcbQKmqGlrbQd-Ep8CCQ-F-_Zzp9Nlca4RIklP9l5Pz0_Pz__HiEnw0AyzSIs7hINvSgvpCeSIvEKiRyU4NHmCuOQ8wWfnUdnF8OLXu9PJ2tpu5EDdbv3Xsn_aBXaQK94S_YRmm2EQgO8g37hCRqG5z_peGyLCCKn9te5OQZYCHPyPd3p_qm40ZUterkq8E4JJhROxTeT01iBodmYLKzyTmy-ZSc0kdJRzelqmZzrEhCNRQD3dDIfjb9gbOGsM2KMLm-vL0UlSmHiNu1Xewq1Rm7l9pp738XHGmMN2BRrl8pbtdkCM20H9wn2-ZerdX8JFuqzk-vCF7DzdbkWtZULecI9sBvWyuk9bc5MRx00so7JDXzWWb1dDd37C4NxbBAja6Eqp8HBLlqxQcJt4ZK7VNz3lsgmcRG2TEZU1hWUoaAMBT0hT8M4NukC85-T2q5FWN45NQfvzcxsqqGR9XH_oDqOUsfjWb4gz50-6cji7iXp6fKQjBrMUcAcBVTQhfj9a6epwRtt8UYBbxTxRhFvtMHbK3I-nSzHM8-V4fAUDM_3uEZeQJn6SknwprmSoV8wCc5ykYL_q1mhklzyVDERSsaTWOZaxKlmsgiNe_yaHJRXpX5DqBKxnyPDYshFpEOdimHA4kIFXLJYsuCI8HrOmXIc9Vgq5Xv2wI8_In7T8YelaXmoy9vHd3lHnrUQfk8ONtdbfQw-6UZ-MAr_Cyq9kUA |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+SVM+and+Na%C3%AFve+Bayes+Classifier+for+Fake+News+Detection&rft.jtitle=Engineering%2C+MAthematics+and+Computer+Science+%28EMACS%29+Journal&rft.au=Nurhasanah%2C+Nurhasanah&rft.au=Sumarly%2C+Daniel+Emerald&rft.au=Pratama%2C+Jason&rft.au=Heng%2C+Ibrahim+Tan+Kah&rft.date=2022-09-30&rft.issn=2686-2573&rft.eissn=2686-2573&rft.volume=4&rft.issue=3&rft.spage=103&rft.epage=107&rft_id=info:doi/10.21512%2Femacsjournal.v4i3.8670&rft.externalDBID=n%2Fa&rft.externalDocID=10_21512_emacsjournal_v4i3_8670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2686-2573&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2686-2573&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2686-2573&client=summon |