Comparing SVM and Naïve Bayes Classifier for Fake News Detection

Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things, such as war, pandemics, and the stock market. Unfortunately, this issue is not a big deal for some people without conscious consumption of that...

Full description

Saved in:
Bibliographic Details
Published inEngineering, MAthematics and Computer Science (EMACS) Journal Vol. 4; no. 3; pp. 103 - 107
Main Authors Nurhasanah, Nurhasanah, Sumarly, Daniel Emerald, Pratama, Jason, Heng, Ibrahim Tan Kah, Irwansyah, Edy
Format Journal Article
LanguageEnglish
Published 30.09.2022
Online AccessGet full text
ISSN2686-2573
2686-2573
DOI10.21512/emacsjournal.v4i3.8670

Cover

Abstract Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things, such as war, pandemics, and the stock market. Unfortunately, this issue is not a big deal for some people without conscious consumption of that news. Hence, being part takes a role in combating the spread of false information using the advancement of technology. This study proposed two methods of machine learning model, Support Vector Machine (SVM) and Naïve Bayes, to classify fake news. Furthermore, to assert the applicability of models by examining news articles dataset which contain two labels, reliable and unreliable news. The higher accuracy is 0.96 using the SVM model
AbstractList Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things, such as war, pandemics, and the stock market. Unfortunately, this issue is not a big deal for some people without conscious consumption of that news. Hence, being part takes a role in combating the spread of false information using the advancement of technology. This study proposed two methods of machine learning model, Support Vector Machine (SVM) and Naïve Bayes, to classify fake news. Furthermore, to assert the applicability of models by examining news articles dataset which contain two labels, reliable and unreliable news. The higher accuracy is 0.96 using the SVM model
Author Nurhasanah, Nurhasanah
Pratama, Jason
Heng, Ibrahim Tan Kah
Irwansyah, Edy
Sumarly, Daniel Emerald
Author_xml – sequence: 1
  givenname: Nurhasanah
  surname: Nurhasanah
  fullname: Nurhasanah, Nurhasanah
– sequence: 2
  givenname: Daniel Emerald
  surname: Sumarly
  fullname: Sumarly, Daniel Emerald
– sequence: 3
  givenname: Jason
  surname: Pratama
  fullname: Pratama, Jason
– sequence: 4
  givenname: Ibrahim Tan Kah
  surname: Heng
  fullname: Heng, Ibrahim Tan Kah
– sequence: 5
  givenname: Edy
  surname: Irwansyah
  fullname: Irwansyah, Edy
BookMark eNqFkEtOwzAURS1UJErpGvAGUvxp7HjAoAQKSKUM-EyjZ_cZGdKkskNRV8Ui2BgtMEBMGN07OVdX55D0mrZBQo45Gwmec3GCS3DpuX2NDdSj9TjIUaE02yN9oQqViVzL3q9-QIYpBcvGYy1zw0WfTMp2uYIYmid693hDoVnQOXy8r5GewQYTLWvYEj5gpL6NdAovSOf4lug5dui60DZHZN9DnXD4kwPyML24L6-y2e3ldTmZZW57lGUKGefGGuaclUYoZwXz0jKRe6O4RuldsbDKOAnCSlVou0DQBqX1gmuh5YCcfu-62KYU0VcudLB70EUIdcVZ9aWk-q2k2impdkq2vP7Dr2JYQtz8S34CKC9u8w
CitedBy_id crossref_primary_10_1038_s41598_024_57740_5
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.21512/emacsjournal.v4i3.8670
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2686-2573
EndPage 107
ExternalDocumentID 10_21512_emacsjournal_v4i3_8670
GroupedDBID AAYXX
CITATION
M~E
ID FETCH-LOGICAL-c1510-6e0119b90ccb3926cb20f3b025f9617e3fc8db69c3a2b3687bdea79e3bf217273
ISSN 2686-2573
IngestDate Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 03:10:31 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language English
License https://creativecommons.org/licenses/by-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1510-6e0119b90ccb3926cb20f3b025f9617e3fc8db69c3a2b3687bdea79e3bf217273
OpenAccessLink https://journal.binus.ac.id/index.php/EMACS/article/download/8670/4587
PageCount 5
ParticipantIDs crossref_citationtrail_10_21512_emacsjournal_v4i3_8670
crossref_primary_10_21512_emacsjournal_v4i3_8670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-30
PublicationDateYYYYMMDD 2022-09-30
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Engineering, MAthematics and Computer Science (EMACS) Journal
PublicationYear 2022
SSID ssib044735912
Score 1.8102038
Snippet Fake news has been evolving into a problem that is getting even more challenging. Technology has been misused to spread false information about many things,...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 103
Title Comparing SVM and Naïve Bayes Classifier for Fake News Detection
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLfKuHBBoIEYMOTDblVKEqdOcuyqVmWovdCh3SLbcbQKmqGlrbQd-Ep8CCQ-F-_Zzp9Nlca4RIklP9l5Pz0_Pz__HiEnw0AyzSIs7hINvSgvpCeSIvEKiRyU4NHmCuOQ8wWfnUdnF8OLXu9PJ2tpu5EDdbv3Xsn_aBXaQK94S_YRmm2EQgO8g37hCRqG5z_peGyLCCKn9te5OQZYCHPyPd3p_qm40ZUterkq8E4JJhROxTeT01iBodmYLKzyTmy-ZSc0kdJRzelqmZzrEhCNRQD3dDIfjb9gbOGsM2KMLm-vL0UlSmHiNu1Xewq1Rm7l9pp738XHGmMN2BRrl8pbtdkCM20H9wn2-ZerdX8JFuqzk-vCF7DzdbkWtZULecI9sBvWyuk9bc5MRx00so7JDXzWWb1dDd37C4NxbBAja6Eqp8HBLlqxQcJt4ZK7VNz3lsgmcRG2TEZU1hWUoaAMBT0hT8M4NukC85-T2q5FWN45NQfvzcxsqqGR9XH_oDqOUsfjWb4gz50-6cji7iXp6fKQjBrMUcAcBVTQhfj9a6epwRtt8UYBbxTxRhFvtMHbK3I-nSzHM8-V4fAUDM_3uEZeQJn6SknwprmSoV8wCc5ykYL_q1mhklzyVDERSsaTWOZaxKlmsgiNe_yaHJRXpX5DqBKxnyPDYshFpEOdimHA4kIFXLJYsuCI8HrOmXIc9Vgq5Xv2wI8_In7T8YelaXmoy9vHd3lHnrUQfk8ONtdbfQw-6UZ-MAr_Cyq9kUA
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+SVM+and+Na%C3%AFve+Bayes+Classifier+for+Fake+News+Detection&rft.jtitle=Engineering%2C+MAthematics+and+Computer+Science+%28EMACS%29+Journal&rft.au=Nurhasanah%2C+Nurhasanah&rft.au=Sumarly%2C+Daniel+Emerald&rft.au=Pratama%2C+Jason&rft.au=Heng%2C+Ibrahim+Tan+Kah&rft.date=2022-09-30&rft.issn=2686-2573&rft.eissn=2686-2573&rft.volume=4&rft.issue=3&rft.spage=103&rft.epage=107&rft_id=info:doi/10.21512%2Femacsjournal.v4i3.8670&rft.externalDBID=n%2Fa&rft.externalDocID=10_21512_emacsjournal_v4i3_8670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2686-2573&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2686-2573&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2686-2573&client=summon