Multi-party verifiable arbitrated quantum signature scheme with information hiding function
With the progress of science and technology, more and more researchers have begun to pay attention to quantum digital signature schemes. Arbitrated quantum signatures have attracted much attention due to their many advantages. This paper presents a multi-verifiable arbitrated quantum signature schem...
Saved in:
Published in | Laser physics letters Vol. 22; no. 8; pp. 85202 - 85216 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IOP Publishing
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With the progress of science and technology, more and more researchers have begun to pay attention to quantum digital signature schemes. Arbitrated quantum signatures have attracted much attention due to their many advantages. This paper presents a multi-verifiable arbitrated quantum signature scheme with information hiding function. In this scheme, the original information and the shared key are hidden in the Bell state, so that any attacker cannot obtain the original information through quantum measurement. In this scheme, multi-verifiers connect end to end to form a ring, and the feasibility of the scheme can be verified if and only if all verifiers participate. Ring verifiers select one of them as the representative. The representative uses the one-way hash function for authentication and indicates the identity to the arbitrator. Therefore the arbitrator does not need to verify the identities of all the verifiers and improves the authentication efficiency. The security analysis shows that the scheme is undeniability, unforgeability and can resistant to intercept-resend attacks, combined attacks and cheating attacks. |
---|---|
AbstractList | With the progress of science and technology, more and more researchers have begun to pay attention to quantum digital signature schemes. Arbitrated quantum signatures have attracted much attention due to their many advantages. This paper presents a multi-verifiable arbitrated quantum signature scheme with information hiding function. In this scheme, the original information and the shared key are hidden in the Bell state, so that any attacker cannot obtain the original information through quantum measurement. In this scheme, multi-verifiers connect end to end to form a ring, and the feasibility of the scheme can be verified if and only if all verifiers participate. Ring verifiers select one of them as the representative. The representative uses the one-way hash function for authentication and indicates the identity to the arbitrator. Therefore the arbitrator does not need to verify the identities of all the verifiers and improves the authentication efficiency. The security analysis shows that the scheme is undeniability, unforgeability and can resistant to intercept-resend attacks, combined attacks and cheating attacks. |
Author | Gao, Qin Renqian, Suonan Wei, Xingjia Lu, Dianjun Wen, Dongqin |
Author_xml | – sequence: 1 givenname: Qin surname: Gao fullname: Gao, Qin organization: Qinghai Normal University School of Mathematics and Statistics, Xining 810008, Qinghai, People’s Republic of China – sequence: 2 givenname: Dianjun surname: Lu fullname: Lu, Dianjun organization: Academy of Plateau Science and Sustainability , Xining 810016, Qinghai, People’s Republic of China – sequence: 3 givenname: Dongqin surname: Wen fullname: Wen, Dongqin organization: Qinghai Normal University School of Mathematics and Statistics, Xining 810008, Qinghai, People’s Republic of China – sequence: 4 givenname: Suonan surname: Renqian fullname: Renqian, Suonan organization: Qinghai Normal University School of Mathematics and Statistics, Xining 810008, Qinghai, People’s Republic of China – sequence: 5 givenname: Xingjia surname: Wei fullname: Wei, Xingjia organization: Qinghai Normal University School of Mathematics and Statistics, Xining 810008, Qinghai, People’s Republic of China |
BookMark | eNp1kE1LAzEQhoNUsK3ePeYHuHay222yRyl-QcWLguAhzOajTelma5JV-u_tstKbl_li3mHeZ0JGvvWGkGsGtwyEmLEFy7Mc8o8ZaltU5RkZn0ajU83YBZnEuAUooOTVmHy-dLvksj2GdKDfJjjrsN4ZiqF2KWAymn516FPX0OjWHlMXDI1qYxpDf1zaUOdtGxpMrvV047Tza2o7r_r-kpxb3EVz9Zen5P3h_m35lK1eH5-Xd6tMsRJSZjDPK8OhVLqsKq4049ZqIwQUBVeC4xAELgTWXAObQ16Lo8d5DdaoqpgSGO6q0MYYjJX74BoMB8lA9nBk7172JOQA5yi5GSSu3ctt2wV_fPD_9V-Gmmpz |
CODEN | LPLABC |
Cites_doi | 10.1126/science.283.5410.2050 10.1007/s11128-020-02962-5 10.1088/1612-202X/acee62 10.1007/s11128-019-2510-4 10.1007/s11128-015-1021-1 10.1016/j.optcom.2008.10.025 10.1007/s10773-023-05449-y 10.1103/PhysRevLett.85.441 10.1007/s11433-011-4457-z 10.1016/j.ins.2011.11.018 10.1142/S0219749924500114 10.1088/1555-6611/ad3434 10.1002/qute.202400110 10.1049/el:19940317 10.3390/app112311416 10.1364/JOSAB.36.001335 10.1016/bs.adcom.2020.08.004 10.1137/S0097539795293172 10.1007/s11128-023-04183-y 10.1007/s10773-020-04605-y 10.1007/s11128-022-03730-3 10.1007/s10773-022-05142-6 10.6138/JIT.2017.18.5.20160602 10.1137/0217017 10.1016/j.physa.2023.128453 10.1007/s10773-022-05259-8 10.1016/j.optcom.2011.03.083 10.1109/TIT.1976.1055638 10.1360/SSPMA-2024-0513 10.1063/5.0201618 10.1007/s10773-023-05534-2 10.1109/TWC.2011.042211.101913 10.1007/s11433-008-0062-1 10.1088/1612-202X/ad1f50 |
ContentType | Journal Article |
Copyright | 2025 Astro Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
Copyright_xml | – notice: 2025 Astro Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
DBID | AAYXX CITATION |
DOI | 10.1088/1612-202X/adf395 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1612-202X |
ExternalDocumentID | 10_1088_1612_202X_adf395 lpladf395 |
GroupedDBID | .3N 1OC 4.4 5GY 702 8-0 8-3 AAGCD AAJIO AATNI ABCQN ABEML ABHWH ABIJN ABJNI ABVAM ACGFS ACHIP ACSCC ADEQX ADWVK AEINN AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS IIPPG IJHAN IOP IZVLO KOT LAW N5L N9A OIG P2P PJBAE QRW RIN ROL RPA SY9 W8V XG1 XV2 AAYXX CITATION |
ID | FETCH-LOGICAL-c150t-ea229e705cd5997cd17ffde880337c87a7c87a78a68ab7d01402b8f394b0fec93 |
IEDL.DBID | IOP |
ISSN | 1612-2011 |
IngestDate | Thu Aug 07 06:38:09 EDT 2025 Wed Aug 06 19:26:41 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c150t-ea229e705cd5997cd17ffde880337c87a7c87a78a68ab7d01402b8f394b0fec93 |
Notes | 2025LPL0229 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1088_1612_202X_adf395 iop_journals_10_1088_1612_202X_adf395 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Laser physics letters |
PublicationTitleAbbrev | LPL |
PublicationTitleAlternate | Laser Phys. Lett |
PublicationYear | 2025 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Wen (lpladf395bib15) 2009; 282 Xu (lpladf395bib10) 2015; 14 Lo (lpladf395bib36) 1999; 283 Yang (lpladf395bib39) 2008; 51 Harn (lpladf395bib4) 2011; 10 Harn (lpladf395bib8) 1994; 20 Aggarwal (lpladf395bib6) 2021; 121 Wang (lpladf395bib27) 2024; 135 Deng (lpladf395bib12) 2023; 62 Zhang (lpladf395bib28) 2024; 63 Han (lpladf395bib33) 2023; 611 Diffie (lpladf395bib5) 1976; 22 Wu (lpladf395bib1) 2017; 18 Zhou (lpladf395bib20) 2011; 54 Liu (lpladf395bib13) 2022; 11 Fan (lpladf395bib17) 2022; 61 Goldwasser (lpladf395bib7) 1988; 17 Zhang (lpladf395bib29) 2025; 15053 Chen (lpladf395bib16) 2023; 20 Luo (lpladf395bib2) 2011; 8 He (lpladf395bib38) 2021; 20 You (lpladf395bib18) 2022; 61 Xiong (lpladf395bib34) 2024; 7 Bicakci (lpladf395bib3) 2012; 188 Wei (lpladf395bib24) 2024; 22 Hong (lpladf395bib26) 2020; 19 Shor (lpladf395bib37) 2000; 85 Xu (lpladf395bib19) 2011; 284 Chen (lpladf395bib31) 2020; 59 Deng (lpladf395bib23) 2024; 34 Qu (lpladf395bib25) 2019; 36 Gottesman (lpladf395bib14) 2001 Shi (lpladf395bib30) 2020; 42 Zhang (lpladf395bib35) 2024; 22 Tian (lpladf395bib22) 2024; 21 Xin (lpladf395bib32) 2022; 21 Chaum (lpladf395bib21) 1991; 547 Shor (lpladf395bib9) 1997; 26 Chang (lpladf395bib11) 2025; 55 |
References_xml | – volume: 283 start-page: 2050 year: 1999 ident: lpladf395bib36 publication-title: Science doi: 10.1126/science.283.5410.2050 – volume: 20 start-page: 26 year: 2021 ident: lpladf395bib38 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-020-02962-5 – volume: 20 year: 2023 ident: lpladf395bib16 publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/acee62 – volume: 19 start-page: 18 year: 2020 ident: lpladf395bib26 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-019-2510-4 – volume: 14 start-page: 2959 year: 2015 ident: lpladf395bib10 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-015-1021-1 – volume: 282 start-page: 666 year: 2009 ident: lpladf395bib15 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2008.10.025 – volume: 62 start-page: 201 year: 2023 ident: lpladf395bib12 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-023-05449-y – volume: 547 start-page: 257 year: 1991 ident: lpladf395bib21 publication-title: LNCS – volume: 85 start-page: 441 year: 2000 ident: lpladf395bib37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.85.441 – volume: 54 start-page: 1828 year: 2011 ident: lpladf395bib20 publication-title: Sci. China- Phys. Mech. Astron. doi: 10.1007/s11433-011-4457-z – volume: 188 start-page: 44 year: 2012 ident: lpladf395bib3 publication-title: Inf. Sci. doi: 10.1016/j.ins.2011.11.018 – volume: 8 start-page: 1 year: 2011 ident: lpladf395bib2 article-title: Concurrent signcryption using bilinear pairings for e-commerce publication-title: China Commun. – volume: 22 year: 2024 ident: lpladf395bib24 publication-title: Int. J. Quantum Inf. doi: 10.1142/S0219749924500114 – volume: 34 year: 2024 ident: lpladf395bib23 publication-title: Laser Phys. doi: 10.1088/1555-6611/ad3434 – volume: 7 year: 2024 ident: lpladf395bib34 publication-title: Adv. Quantum Technol. doi: 10.1002/qute.202400110 – volume: 20 start-page: 396 year: 1994 ident: lpladf395bib8 publication-title: Electron. Lett. doi: 10.1049/el:19940317 – volume: 11 year: 2022 ident: lpladf395bib13 publication-title: Appl. Sci. doi: 10.3390/app112311416 – volume: 36 start-page: 1335 year: 2019 ident: lpladf395bib25 publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.36.001335 – volume: 121 start-page: 95 year: 2021 ident: lpladf395bib6 publication-title: Adv. Comput. doi: 10.1016/bs.adcom.2020.08.004 – volume: 26 start-page: 1484 year: 1997 ident: lpladf395bib9 publication-title: SIAM J. Comput. doi: 10.1137/S0097539795293172 – volume: 22 start-page: 452 year: 2024 ident: lpladf395bib35 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-023-04183-y – volume: 59 start-page: 3685 year: 2020 ident: lpladf395bib31 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-020-04605-y – volume: 21 start-page: 390 year: 2022 ident: lpladf395bib32 publication-title: Quantum Inf. Process. doi: 10.1007/s11128-022-03730-3 – volume: 61 start-page: 155 year: 2022 ident: lpladf395bib18 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-022-05142-6 – volume: 18 start-page: 1159 year: 2017 ident: lpladf395bib1 publication-title: J. Internet Technol. doi: 10.6138/JIT.2017.18.5.20160602 – volume: 17 start-page: 281 year: 1988 ident: lpladf395bib7 publication-title: SIAM J. Comput. doi: 10.1137/0217017 – volume: 611 year: 2023 ident: lpladf395bib33 publication-title: Physica A doi: 10.1016/j.physa.2023.128453 – volume: 61 start-page: 273 year: 2022 ident: lpladf395bib17 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-022-05259-8 – volume: 284 start-page: 3654 year: 2011 ident: lpladf395bib19 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2011.03.083 – volume: 15053 start-page: 33 year: 2025 ident: lpladf395bib29 publication-title: LNAI – year: 2001 ident: lpladf395bib14 – volume: 22 start-page: 644 year: 1976 ident: lpladf395bib5 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1976.1055638 – volume: 55 year: 2025 ident: lpladf395bib11 publication-title: Sci. Sin. Phys. Mech. Astron. doi: 10.1360/SSPMA-2024-0513 – volume: 135 year: 2024 ident: lpladf395bib27 publication-title: J. Appl. Phys. doi: 10.1063/5.0201618 – volume: 63 start-page: 11 year: 2024 ident: lpladf395bib28 publication-title: Int. J. Theory Phys. doi: 10.1007/s10773-023-05534-2 – volume: 10 start-page: 2372 year: 2011 ident: lpladf395bib4 publication-title: IEEE Trans. Wireless Commun. doi: 10.1109/TWC.2011.042211.101913 – volume: 42 start-page: 89 year: 2020 ident: lpladf395bib30 publication-title: J. Electron Inf. Technol. – volume: 51 start-page: 1079 year: 2008 ident: lpladf395bib39 publication-title: Sci. China G doi: 10.1007/s11433-008-0062-1 – volume: 21 year: 2024 ident: lpladf395bib22 publication-title: Laser Phys. Lett. doi: 10.1088/1612-202X/ad1f50 |
SSID | ssj0030579 |
Score | 2.4117253 |
Snippet | With the progress of science and technology, more and more researchers have begun to pay attention to quantum digital signature schemes. Arbitrated quantum... |
SourceID | crossref iop |
SourceType | Index Database Publisher |
StartPage | 85202 |
SubjectTerms | arbitration quantum signature information hiding multi-party verifiable |
Title | Multi-party verifiable arbitrated quantum signature scheme with information hiding function |
URI | https://iopscience.iop.org/article/10.1088/1612-202X/adf395 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB52VwQvvsX1RQ568NDdvtImeBJxWQQfBxcWFEqbJlhkH-62B_31zrRdUVEQL6GlQ5rOZDIzzcwXgGPb8_GB41qBxsY3pFJGOlZMW07KDYOYU3Hy9U3QH_hXQz5swNlHLcxkWi_9HbysgIIrFtYJcaKLPoqLwnWH3Tg1nuRNWPIEGk6q3ru9WyzDHlVZUrRVUTtOvUf5Uw9fbFIT3_vJxPTW4HExuCqz5LlT5ElHvX3Dbfzn6NdhtXY92XlFugENPd6E5TIFVM234KGsxbWm2NUrwwmemYzKqlg8S7ISwjZlLwXKoRgxSvooAUEZxsZ6pBn9zWU1BitJmj1lZBMZWU2634ZB7_L-om_VRy9YCj3E3NKx60od2lylXMpQpU5oTKpR2T0vVCKMq0bEgYiTMKUwzU0Efo-f2EYr6e1AazwZ611gSmgbvT6Bmh74RnJy06RJE5SP4jxI23C6YH40rRA2onJnXIiImBURs6KKWW04Qb5GtZrNf6Xb-yPdPqy4dJ5vmdB3AK18VuhDdDLy5KicTO-o_Msc |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED7xEIiFN-KNBxgY0jZOnDgDA6JUvGEAqRJDSPwQFWoptBUqf4q_wk_iLkkRIJBYGFiiRLGUs-989zm--wywWfF8fOFyJzB48S1NKRu5TkJbToqHQSKoOPn0LDi48o_qoj4EL--1MPftwvWX8DYnCs6HsEiIk2XEKByVy-vlRFsvEuW2tkVW5bHpP-GarbNzWEUFb3Fe27_cO3CKYwUchein65iE88iEFaG0iKJQaTe0Vhs0ZM8LlQyT_CKTQCZpqGkJwlOJX_LTijWK2JfQ548KD2M1VQyeXwxcv0eVnbTCyyV03WJf9DupP8XBYezrh7BWm4LXwYDk2Sx3pV43LannL1yR_2jEpmGygNhsNxdvBoZMaxbGslRX1ZmD66zm2Gmj-H2GE7lhG1Q-xpLHtJFR9Wr20EN76zUZJbdkxKesg7bdNIz-WrOCa5Ysmt02KPYzQgf0PA9Xf9KzBRhp3bfMIjAlTQXRrUSPFvg2EgRHI6tTtAklRKCXYHug8LidM4nEWQaAlDEpKCYFxbmClmALdRkX7qTzY7vlX7bbgPGLai0-OTw7XoEJTkcYZzmMqzDSfeyZNcRV3XQ9s2UGN39tCm8K0StI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-party+verifiable+arbitrated+quantum+signature+scheme+with+information+hiding+function&rft.jtitle=Laser+physics+letters&rft.au=Gao%2C+Qin&rft.au=Lu%2C+Dianjun&rft.au=Wen%2C+Dongqin&rft.au=Renqian%2C+Suonan&rft.date=2025-08-01&rft.issn=1612-2011&rft.eissn=1612-202X&rft.volume=22&rft.issue=8&rft.spage=85202&rft_id=info:doi/10.1088%2F1612-202X%2Fadf395&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1612_202X_adf395 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1612-2011&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1612-2011&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1612-2011&client=summon |