Arrhythmogenic late Ca 2+ sparks in failing heart cells and their control by action potential configuration

Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca measurements were combined with action potential vol...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 5; pp. 2687 - 2692
Main Authors Fowler, Ewan D, Wang, Nan, Hezzell, Melanie, Chanoit, Guillaume, Hancox, Jules C, Cannell, Mark B
Format Journal Article
LanguageEnglish
Published United States 04.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca release events ("late" Ca sparks) during phase 2-3 of the action potential. These late Ca sparks prolong the Ca transient that activates contraction and can trigger propagating microscopic Ca ripples, larger macroscopic Ca waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca sparks and their (subsequent) spatiotemporal summation into Ca ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation-contraction coupling, increased Ca transient amplitude, and suppressed late Ca sparks. Therapeutic control of late Ca spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death.
AbstractList Sudden cardiac death in heart failure is a major unsolved clinical problem that is linked to the development of a spontaneous arrhythmia. Early afterdepolarizations (EADs) are an arrhythmogenic mechanism, but the cellular trigger for EADs in heart failure is unclear. We show that the reduction in synchronous Ca 2+ release early in the action potential (AP) of failing cardiac myocytes promotes the appearance of late Ca 2+ sparks which can propagate, forming Ca 2+ ripples and waves. These, in turn, produce an inward sodium–calcium exchange current which opposes AP repolarization. Restoration of AP phase 1 repolarization improved Ca 2+ release synchrony and reduced late Ca 2+ spark rate, suggesting a different approach to reducing the risk of sudden death in heart failure. Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca 2+ measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca 2+ release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca 2+ release events (“late” Ca 2+ sparks) during phase 2–3 of the action potential. These late Ca 2+ sparks prolong the Ca 2+ transient that activates contraction and can trigger propagating microscopic Ca 2+ ripples, larger macroscopic Ca 2+ waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca 2+ sparks and their (subsequent) spatiotemporal summation into Ca 2+ ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca 2+ sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation–contraction coupling, increased Ca 2+ transient amplitude, and suppressed late Ca 2+ sparks. Therapeutic control of late Ca 2+ spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death.
Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca release events ("late" Ca sparks) during phase 2-3 of the action potential. These late Ca sparks prolong the Ca transient that activates contraction and can trigger propagating microscopic Ca ripples, larger macroscopic Ca waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca sparks and their (subsequent) spatiotemporal summation into Ca ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation-contraction coupling, increased Ca transient amplitude, and suppressed late Ca sparks. Therapeutic control of late Ca spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death.
Author Hezzell, Melanie
Fowler, Ewan D
Cannell, Mark B
Wang, Nan
Hancox, Jules C
Chanoit, Guillaume
Author_xml – sequence: 1
  givenname: Ewan D
  orcidid: 0000-0001-5580-2156
  surname: Fowler
  fullname: Fowler, Ewan D
  organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
– sequence: 2
  givenname: Nan
  orcidid: 0000-0001-6206-1392
  surname: Wang
  fullname: Wang, Nan
  organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
– sequence: 3
  givenname: Melanie
  orcidid: 0000-0003-1890-6161
  surname: Hezzell
  fullname: Hezzell, Melanie
  organization: Bristol Veterinary School, University of Bristol, BS40 5DU Bristol, United Kingdom
– sequence: 4
  givenname: Guillaume
  orcidid: 0000-0002-7414-6403
  surname: Chanoit
  fullname: Chanoit, Guillaume
  organization: Bristol Veterinary School, University of Bristol, BS40 5DU Bristol, United Kingdom
– sequence: 5
  givenname: Jules C
  orcidid: 0000-0002-2055-6482
  surname: Hancox
  fullname: Hancox, Jules C
  organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom
– sequence: 6
  givenname: Mark B
  orcidid: 0000-0002-4816-0463
  surname: Cannell
  fullname: Cannell, Mark B
  email: mark.cannell@bristol.ac.uk
  organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom; mark.cannell@bristol.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31969455$$D View this record in MEDLINE/PubMed
BookMark eNpFkDlrwzAUx0VJaY527la0FyfvWZZljyH0gkCXdjayLMVqHNlIypBv35j0mB7_6w2_OZm43mlC7hGWCIKtBifDEkss8qxEFFdkhlBiclYwITOAVCRFlmZTMg_hCwBKXsANmTIs8zLjfEb2a-_bU2wP_U47q2gno6YbSdNHGgbp94FaR420nXU72mrpI1W66wKVrqGx1dZT1bvo-47WJypVtL2jQx-1i1Z2Y2bs7ujl6N-SayO7oO9-7oJ8Pj99bF6T7fvL22a9TRRyEElmFGMgOFMqRc5NVte5AWYEAksFx7Q-O8AQWWq0KQvAWjRCctVAzXOUbEFWl7_K9yF4barB24P0pwqhGrFVI7bqH9t58XBZDMf6oJu__i8n9g19x2uM
CitedBy_id crossref_primary_10_1161_CIRCRESAHA_123_322847
crossref_primary_10_1007_s00395_021_00900_9
crossref_primary_10_2139_ssrn_4068668
crossref_primary_10_1161_CIRCHEARTFAILURE_119_006753
crossref_primary_10_3390_biom12081030
crossref_primary_10_1007_s12551_020_00729_x
crossref_primary_10_1016_j_hrthm_2022_08_022
crossref_primary_10_1016_j_yjmcc_2021_11_004
crossref_primary_10_1038_s44161_023_00393_w
crossref_primary_10_1113_JP285735
crossref_primary_10_1161_CIRCRESAHA_121_318473
crossref_primary_10_1016_j_yjmcc_2023_10_012
crossref_primary_10_1098_rsob_230045
crossref_primary_10_1098_rstb_2022_0170
crossref_primary_10_1007_s12265_023_10357_x
crossref_primary_10_1016_j_yjmcc_2022_07_009
crossref_primary_10_1016_j_bpj_2022_11_008
crossref_primary_10_1063_5_0160677
crossref_primary_10_7554_eLife_77725
crossref_primary_10_1016_j_bpj_2023_09_001
crossref_primary_10_1136_openhrt_2022_002075
Cites_doi 10.1073/pnas.0509324103
10.1007/BF00207509
10.1016/j.physrep.2019.06.001
10.1161/01.RES.65.1.115
10.1002/ehf2.12005
10.1093/cvr/25.10.815
10.1161/CIRCEP.117.005852
10.1152/ajpcell.1996.270.1.C148
10.1016/j.yjmcc.2015.04.022
10.1006/jmcc.2000.1206
10.1161/01.RES.0000062469.83985.9B
10.1016/j.pbiomolbio.2016.05.002
10.1161/01.RES.64.5.977
10.1113/jphysiol.2011.219600
10.1016/j.hrthm.2010.09.017
10.1016/S0006-3495(94)80677-0
10.1016/j.bpj.2010.05.019
10.1161/01.RES.87.11.1040
10.1093/cvr/cvm058
10.1113/jphysiol.2005.086496
10.1080/713609356
10.1126/science.8235594
10.1161/CIRCRESAHA.117.312257
10.1016/j.yjmcc.2011.06.024
10.1113/EP086731
10.1161/01.RES.87.12.1087
10.1016/j.yjmcc.2019.07.012
10.1161/01.RES.0000145047.14691.db
10.1161/hh0202.103315
10.1016/j.bpj.2018.08.004
10.1152/ajpcell.1985.248.3.C189
10.1016/j.hrthm.2011.11.004
10.1007/978-94-010-0658-3
10.1161/CIRCEP.115.002927
10.1152/ajpheart.00742.2011
10.1016/j.yjmcc.2010.04.012
10.1113/jphysiol.2013.252080
10.1126/science.276.5313.800
10.1161/CIR.0000000000000659
10.1016/S0008-6363(99)00035-8
10.1093/cvr/cvt077
10.1093/cvr/cvs155
10.1016/j.hrthm.2011.06.024
10.1016/j.ejphar.2004.07.013
10.1371/journal.pcbi.1005906
ContentType Journal Article
Copyright Copyright © 2020 the Author(s). Published by PNAS.
Copyright_xml – notice: Copyright © 2020 the Author(s). Published by PNAS.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1073/pnas.1918649117
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 2692
ExternalDocumentID 10_1073_pnas_1918649117
31969455
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: British Heart Foundation
  grantid: PG/15/106/31915
– fundername: Medical Research Council
  grantid: MR/N002903/1
– fundername: British Heart Foundation
  grantid: PG/16/55/32277
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADACV
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CGR
CS3
CUY
CVF
D0L
DCCCD
DIK
DOOOF
DU5
E3Z
EBS
ECM
EIF
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
ID FETCH-LOGICAL-c1507-4fc330753cc2155f4bb6f03f710327512b4bb031132fef9801b7d7a5cd0b561a3
ISSN 0027-8424
IngestDate Fri Dec 06 02:30:20 EST 2024
Sat Sep 28 08:25:37 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords cardiac myocytes
Ca2+ sparks
action potential
arrhythmia
heart
Language English
License Copyright © 2020 the Author(s). Published by PNAS.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1507-4fc330753cc2155f4bb6f03f710327512b4bb031132fef9801b7d7a5cd0b561a3
ORCID 0000-0001-5580-2156
0000-0003-1890-6161
0000-0001-6206-1392
0000-0002-7414-6403
0000-0002-2055-6482
0000-0002-4816-0463
OpenAccessLink https://www.pnas.org/content/pnas/117/5/2687.full.pdf
PMID 31969455
PageCount 6
ParticipantIDs crossref_primary_10_1073_pnas_1918649117
pubmed_primary_31969455
PublicationCentury 2000
PublicationDate 2020-02-04
PublicationDateYYYYMMDD 2020-02-04
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-04
  day: 04
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
References 32690673 - Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):18129
e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_40_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
References_xml – ident: e_1_3_3_19_2
  doi: 10.1073/pnas.0509324103
– ident: e_1_3_3_30_2
  doi: 10.1007/BF00207509
– ident: e_1_3_3_39_2
  doi: 10.1016/j.physrep.2019.06.001
– ident: e_1_3_3_6_2
  doi: 10.1161/01.RES.65.1.115
– ident: e_1_3_3_1_2
  doi: 10.1002/ehf2.12005
– ident: e_1_3_3_32_2
  doi: 10.1093/cvr/25.10.815
– ident: e_1_3_3_12_2
  doi: 10.1161/CIRCEP.117.005852
– ident: e_1_3_3_7_2
  doi: 10.1152/ajpcell.1996.270.1.C148
– ident: e_1_3_3_17_2
  doi: 10.1016/j.yjmcc.2015.04.022
– ident: e_1_3_3_8_2
  doi: 10.1006/jmcc.2000.1206
– ident: e_1_3_3_20_2
  doi: 10.1161/01.RES.0000062469.83985.9B
– ident: e_1_3_3_42_2
  doi: 10.1016/j.pbiomolbio.2016.05.002
– ident: e_1_3_3_31_2
  doi: 10.1161/01.RES.64.5.977
– ident: e_1_3_3_33_2
  doi: 10.1113/jphysiol.2011.219600
– ident: e_1_3_3_35_2
  doi: 10.1016/j.hrthm.2010.09.017
– ident: e_1_3_3_45_2
  doi: 10.1016/S0006-3495(94)80677-0
– ident: e_1_3_3_13_2
  doi: 10.1016/j.bpj.2010.05.019
– ident: e_1_3_3_18_2
  doi: 10.1161/01.RES.87.11.1040
– ident: e_1_3_3_36_2
  doi: 10.1093/cvr/cvm058
– ident: e_1_3_3_14_2
  doi: 10.1113/jphysiol.2005.086496
– ident: e_1_3_3_4_2
  doi: 10.1080/713609356
– ident: e_1_3_3_5_2
  doi: 10.1126/science.8235594
– ident: e_1_3_3_15_2
  doi: 10.1161/CIRCRESAHA.117.312257
– ident: e_1_3_3_38_2
  doi: 10.1016/j.yjmcc.2011.06.024
– ident: e_1_3_3_43_2
  doi: 10.1113/EP086731
– ident: e_1_3_3_40_2
  doi: 10.1161/01.RES.87.12.1087
– ident: e_1_3_3_44_2
  doi: 10.1016/j.yjmcc.2019.07.012
– ident: e_1_3_3_3_2
  doi: 10.1161/01.RES.0000145047.14691.db
– ident: e_1_3_3_21_2
  doi: 10.1161/hh0202.103315
– ident: e_1_3_3_29_2
  doi: 10.1016/j.bpj.2018.08.004
– ident: e_1_3_3_25_2
  doi: 10.1152/ajpcell.1985.248.3.C189
– ident: e_1_3_3_28_2
  doi: 10.1016/j.hrthm.2011.11.004
– ident: e_1_3_3_10_2
  doi: 10.1007/978-94-010-0658-3
– ident: e_1_3_3_27_2
  doi: 10.1161/CIRCEP.115.002927
– ident: e_1_3_3_37_2
  doi: 10.1152/ajpheart.00742.2011
– ident: e_1_3_3_22_2
  doi: 10.1016/j.yjmcc.2010.04.012
– ident: e_1_3_3_26_2
  doi: 10.1113/jphysiol.2013.252080
– ident: e_1_3_3_41_2
  doi: 10.1126/science.276.5313.800
– ident: e_1_3_3_2_2
  doi: 10.1161/CIR.0000000000000659
– ident: e_1_3_3_24_2
  doi: 10.1016/S0008-6363(99)00035-8
– ident: e_1_3_3_16_2
  doi: 10.1093/cvr/cvt077
– ident: e_1_3_3_9_2
  doi: 10.1093/cvr/cvs155
– ident: e_1_3_3_11_2
  doi: 10.1016/j.hrthm.2011.06.024
– ident: e_1_3_3_23_2
  doi: 10.1016/j.ejphar.2004.07.013
– ident: e_1_3_3_34_2
  doi: 10.1371/journal.pcbi.1005906
SSID ssj0009580
Score 2.3668382
Snippet Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are...
Sudden cardiac death in heart failure is a major unsolved clinical problem that is linked to the development of a spontaneous arrhythmia. Early...
SourceID crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 2687
SubjectTerms Action Potentials
Animals
Arrhythmias, Cardiac - metabolism
Arrhythmias, Cardiac - physiopathology
Calcium - metabolism
Excitation Contraction Coupling
Heart Failure - metabolism
Heart Failure - physiopathology
Humans
Myocytes, Cardiac - metabolism
Title Arrhythmogenic late Ca 2+ sparks in failing heart cells and their control by action potential configuration
URI https://www.ncbi.nlm.nih.gov/pubmed/31969455
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6Mvo92161r0sEGHcefashw_ZqFdGDT0oWV9C5IstaatExyb0fyO_eAdXXxJu8G2FxNkRwadL-eWc76D0AcxDKgKOcQmkqU-iSj3WZYyP2KxICLOUkl0v_PplE4uyLfL-HIw-NmrWqorfihWv-0r-R-pwhrIVXfJ_oNk201hAT6DfOEKEobrX8l4VJbX99X13RyeyIV3C36jN2Ze-DH84oGmKG9Msatiuek517OrK09n6pdN3WRetrXq4Ia6seGLeaVLiAxxSKHyq7rspOfc2LPW7C2bIoNpk1UcdT0qTnEsPd87m3YTj090Gs-22fwA9dLWHH93uetph9iJXK3cPyOn8la3w_fqEYp5bkzI11qPTqod7YJLYUC8qquebRpBWrULXotPiR0c2upl29TpABj3tSy1RvqR-gd9pWcWF2x5CHHoEHZ0m_TAsLgzaNCqJyWWIvgB43Zz6wl6qukViVH3fSrnYdCQRCXR5wdv20TPmu-vuTprQYtxXs630HMXdeCRhdA2GsjiBdpuxIMPHPn4p5foZh1TWGMKjxkOPWwRhfMCO0RhgyhsEIUBUdggCjtEYX6PLaJwiyi8hqhX6OLk-Hw88d1ADl_ouMEnSkRgE-JICPAUY0U4pyqIVKJZGRNwHTmsgJU4ikIlVQrOD0-yBH71WcDBT2fRa7RRzAv5FmEhMpkJquiRYCRIA86kpqnI0oRJTkOygw6as5stLO_KzNRLJNFMn_isO_Ed9MaebftgI4B3f7yzizY7IL5HG1VZyz3wLiu-b4T9CwtjfRg
link.rule.ids 314,780,784,27924,27925
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arrhythmogenic+late+Ca+2%2B+sparks+in+failing+heart+cells+and+their+control+by+action+potential+configuration&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fowler%2C+Ewan+D&rft.au=Wang%2C+Nan&rft.au=Hezzell%2C+Melanie&rft.au=Chanoit%2C+Guillaume&rft.date=2020-02-04&rft.eissn=1091-6490&rft.volume=117&rft.issue=5&rft.spage=2687&rft_id=info:doi/10.1073%2Fpnas.1918649117&rft_id=info%3Apmid%2F31969455&rft.externalDocID=31969455
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon