Arrhythmogenic late Ca 2+ sparks in failing heart cells and their control by action potential configuration
Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca measurements were combined with action potential vol...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 5; pp. 2687 - 2692 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
04.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca
measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca
release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca
release events ("late" Ca
sparks) during phase 2-3 of the action potential. These late Ca
sparks prolong the Ca
transient that activates contraction and can trigger propagating microscopic Ca
ripples, larger macroscopic Ca
waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca
sparks and their (subsequent) spatiotemporal summation into Ca
ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca
sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation-contraction coupling, increased Ca
transient amplitude, and suppressed late Ca
sparks. Therapeutic control of late Ca
spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death. |
---|---|
AbstractList | Sudden cardiac death in heart failure is a major unsolved clinical problem that is linked to the development of a spontaneous arrhythmia. Early afterdepolarizations (EADs) are an arrhythmogenic mechanism, but the cellular trigger for EADs in heart failure is unclear. We show that the reduction in synchronous Ca
2+
release early in the action potential (AP) of failing cardiac myocytes promotes the appearance of late Ca
2+
sparks which can propagate, forming Ca
2+
ripples and waves. These, in turn, produce an inward sodium–calcium exchange current which opposes AP repolarization. Restoration of AP phase 1 repolarization improved Ca
2+
release synchrony and reduced late Ca
2+
spark rate, suggesting a different approach to reducing the risk of sudden death in heart failure.
Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca
2+
measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca
2+
release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca
2+
release events (“late” Ca
2+
sparks) during phase 2–3 of the action potential. These late Ca
2+
sparks prolong the Ca
2+
transient that activates contraction and can trigger propagating microscopic Ca
2+
ripples, larger macroscopic Ca
2+
waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca
2+
sparks and their (subsequent) spatiotemporal summation into Ca
2+
ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca
2+
sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation–contraction coupling, increased Ca
2+
transient amplitude, and suppressed late Ca
2+
sparks. Therapeutic control of late Ca
2+
spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death. Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are triggered in failing heart cells. To examine EAD initiation, high-sensitivity intracellular Ca measurements were combined with action potential voltage clamp techniques in a physiologically relevant heart failure model. In failing cells, the loss of Ca release synchrony at the start of the action potential leads to an increase in number of microscopic intracellular Ca release events ("late" Ca sparks) during phase 2-3 of the action potential. These late Ca sparks prolong the Ca transient that activates contraction and can trigger propagating microscopic Ca ripples, larger macroscopic Ca waves, and EADs. Modification of the action potential to include steps to different potentials revealed the amount of current generated by these late Ca sparks and their (subsequent) spatiotemporal summation into Ca ripples/waves. Comparison of this current to the net current that causes action potential repolarization shows that late Ca sparks provide a mechanism for EAD initiation. Computer simulations confirmed that this forms the basis of a strong oscillatory positive feedback system that can act in parallel with other purely voltage-dependent ionic mechanisms for EAD initiation. In failing heart cells, restoration of the action potential to a nonfailing phase 1 configuration improved the synchrony of excitation-contraction coupling, increased Ca transient amplitude, and suppressed late Ca sparks. Therapeutic control of late Ca spark activity may provide an additional approach for treating heart failure and reduce the risk for sudden cardiac death. |
Author | Hezzell, Melanie Fowler, Ewan D Cannell, Mark B Wang, Nan Hancox, Jules C Chanoit, Guillaume |
Author_xml | – sequence: 1 givenname: Ewan D orcidid: 0000-0001-5580-2156 surname: Fowler fullname: Fowler, Ewan D organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom – sequence: 2 givenname: Nan orcidid: 0000-0001-6206-1392 surname: Wang fullname: Wang, Nan organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom – sequence: 3 givenname: Melanie orcidid: 0000-0003-1890-6161 surname: Hezzell fullname: Hezzell, Melanie organization: Bristol Veterinary School, University of Bristol, BS40 5DU Bristol, United Kingdom – sequence: 4 givenname: Guillaume orcidid: 0000-0002-7414-6403 surname: Chanoit fullname: Chanoit, Guillaume organization: Bristol Veterinary School, University of Bristol, BS40 5DU Bristol, United Kingdom – sequence: 5 givenname: Jules C orcidid: 0000-0002-2055-6482 surname: Hancox fullname: Hancox, Jules C organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom – sequence: 6 givenname: Mark B orcidid: 0000-0002-4816-0463 surname: Cannell fullname: Cannell, Mark B email: mark.cannell@bristol.ac.uk organization: School of Physiology, Pharmacology and Neuroscience, Faculty of Biomedical Sciences, University of Bristol, University Walk, BS8 1TD Bristol, United Kingdom; mark.cannell@bristol.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31969455$$D View this record in MEDLINE/PubMed |
BookMark | eNpFkDlrwzAUx0VJaY527la0FyfvWZZljyH0gkCXdjayLMVqHNlIypBv35j0mB7_6w2_OZm43mlC7hGWCIKtBifDEkss8qxEFFdkhlBiclYwITOAVCRFlmZTMg_hCwBKXsANmTIs8zLjfEb2a-_bU2wP_U47q2gno6YbSdNHGgbp94FaR420nXU72mrpI1W66wKVrqGx1dZT1bvo-47WJypVtL2jQx-1i1Z2Y2bs7ujl6N-SayO7oO9-7oJ8Pj99bF6T7fvL22a9TRRyEElmFGMgOFMqRc5NVte5AWYEAksFx7Q-O8AQWWq0KQvAWjRCctVAzXOUbEFWl7_K9yF4barB24P0pwqhGrFVI7bqH9t58XBZDMf6oJu__i8n9g19x2uM |
CitedBy_id | crossref_primary_10_1161_CIRCRESAHA_123_322847 crossref_primary_10_1007_s00395_021_00900_9 crossref_primary_10_2139_ssrn_4068668 crossref_primary_10_1161_CIRCHEARTFAILURE_119_006753 crossref_primary_10_3390_biom12081030 crossref_primary_10_1007_s12551_020_00729_x crossref_primary_10_1016_j_hrthm_2022_08_022 crossref_primary_10_1016_j_yjmcc_2021_11_004 crossref_primary_10_1038_s44161_023_00393_w crossref_primary_10_1113_JP285735 crossref_primary_10_1161_CIRCRESAHA_121_318473 crossref_primary_10_1016_j_yjmcc_2023_10_012 crossref_primary_10_1098_rsob_230045 crossref_primary_10_1098_rstb_2022_0170 crossref_primary_10_1007_s12265_023_10357_x crossref_primary_10_1016_j_yjmcc_2022_07_009 crossref_primary_10_1016_j_bpj_2022_11_008 crossref_primary_10_1063_5_0160677 crossref_primary_10_7554_eLife_77725 crossref_primary_10_1016_j_bpj_2023_09_001 crossref_primary_10_1136_openhrt_2022_002075 |
Cites_doi | 10.1073/pnas.0509324103 10.1007/BF00207509 10.1016/j.physrep.2019.06.001 10.1161/01.RES.65.1.115 10.1002/ehf2.12005 10.1093/cvr/25.10.815 10.1161/CIRCEP.117.005852 10.1152/ajpcell.1996.270.1.C148 10.1016/j.yjmcc.2015.04.022 10.1006/jmcc.2000.1206 10.1161/01.RES.0000062469.83985.9B 10.1016/j.pbiomolbio.2016.05.002 10.1161/01.RES.64.5.977 10.1113/jphysiol.2011.219600 10.1016/j.hrthm.2010.09.017 10.1016/S0006-3495(94)80677-0 10.1016/j.bpj.2010.05.019 10.1161/01.RES.87.11.1040 10.1093/cvr/cvm058 10.1113/jphysiol.2005.086496 10.1080/713609356 10.1126/science.8235594 10.1161/CIRCRESAHA.117.312257 10.1016/j.yjmcc.2011.06.024 10.1113/EP086731 10.1161/01.RES.87.12.1087 10.1016/j.yjmcc.2019.07.012 10.1161/01.RES.0000145047.14691.db 10.1161/hh0202.103315 10.1016/j.bpj.2018.08.004 10.1152/ajpcell.1985.248.3.C189 10.1016/j.hrthm.2011.11.004 10.1007/978-94-010-0658-3 10.1161/CIRCEP.115.002927 10.1152/ajpheart.00742.2011 10.1016/j.yjmcc.2010.04.012 10.1113/jphysiol.2013.252080 10.1126/science.276.5313.800 10.1161/CIR.0000000000000659 10.1016/S0008-6363(99)00035-8 10.1093/cvr/cvt077 10.1093/cvr/cvs155 10.1016/j.hrthm.2011.06.024 10.1016/j.ejphar.2004.07.013 10.1371/journal.pcbi.1005906 |
ContentType | Journal Article |
Copyright | Copyright © 2020 the Author(s). Published by PNAS. |
Copyright_xml | – notice: Copyright © 2020 the Author(s). Published by PNAS. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION |
DOI | 10.1073/pnas.1918649117 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef |
DatabaseTitleList | CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 2692 |
ExternalDocumentID | 10_1073_pnas_1918649117 31969455 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: British Heart Foundation grantid: PG/15/106/31915 – fundername: Medical Research Council grantid: MR/N002903/1 – fundername: British Heart Foundation grantid: PG/16/55/32277 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADACV AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CGR CS3 CUY CVF D0L DCCCD DIK DOOOF DU5 E3Z EBS ECM EIF F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A NPM N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION |
ID | FETCH-LOGICAL-c1507-4fc330753cc2155f4bb6f03f710327512b4bb031132fef9801b7d7a5cd0b561a3 |
ISSN | 0027-8424 |
IngestDate | Fri Dec 06 02:30:20 EST 2024 Sat Sep 28 08:25:37 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cardiac myocytes Ca2+ sparks action potential arrhythmia heart |
Language | English |
License | Copyright © 2020 the Author(s). Published by PNAS. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1507-4fc330753cc2155f4bb6f03f710327512b4bb031132fef9801b7d7a5cd0b561a3 |
ORCID | 0000-0001-5580-2156 0000-0003-1890-6161 0000-0001-6206-1392 0000-0002-7414-6403 0000-0002-2055-6482 0000-0002-4816-0463 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/5/2687.full.pdf |
PMID | 31969455 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1073_pnas_1918649117 pubmed_primary_31969455 |
PublicationCentury | 2000 |
PublicationDate | 2020-02-04 |
PublicationDateYYYYMMDD | 2020-02-04 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
References | 32690673 - Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):18129 e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_32_2 e_1_3_3_33_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_40_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_24_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 |
References_xml | – ident: e_1_3_3_19_2 doi: 10.1073/pnas.0509324103 – ident: e_1_3_3_30_2 doi: 10.1007/BF00207509 – ident: e_1_3_3_39_2 doi: 10.1016/j.physrep.2019.06.001 – ident: e_1_3_3_6_2 doi: 10.1161/01.RES.65.1.115 – ident: e_1_3_3_1_2 doi: 10.1002/ehf2.12005 – ident: e_1_3_3_32_2 doi: 10.1093/cvr/25.10.815 – ident: e_1_3_3_12_2 doi: 10.1161/CIRCEP.117.005852 – ident: e_1_3_3_7_2 doi: 10.1152/ajpcell.1996.270.1.C148 – ident: e_1_3_3_17_2 doi: 10.1016/j.yjmcc.2015.04.022 – ident: e_1_3_3_8_2 doi: 10.1006/jmcc.2000.1206 – ident: e_1_3_3_20_2 doi: 10.1161/01.RES.0000062469.83985.9B – ident: e_1_3_3_42_2 doi: 10.1016/j.pbiomolbio.2016.05.002 – ident: e_1_3_3_31_2 doi: 10.1161/01.RES.64.5.977 – ident: e_1_3_3_33_2 doi: 10.1113/jphysiol.2011.219600 – ident: e_1_3_3_35_2 doi: 10.1016/j.hrthm.2010.09.017 – ident: e_1_3_3_45_2 doi: 10.1016/S0006-3495(94)80677-0 – ident: e_1_3_3_13_2 doi: 10.1016/j.bpj.2010.05.019 – ident: e_1_3_3_18_2 doi: 10.1161/01.RES.87.11.1040 – ident: e_1_3_3_36_2 doi: 10.1093/cvr/cvm058 – ident: e_1_3_3_14_2 doi: 10.1113/jphysiol.2005.086496 – ident: e_1_3_3_4_2 doi: 10.1080/713609356 – ident: e_1_3_3_5_2 doi: 10.1126/science.8235594 – ident: e_1_3_3_15_2 doi: 10.1161/CIRCRESAHA.117.312257 – ident: e_1_3_3_38_2 doi: 10.1016/j.yjmcc.2011.06.024 – ident: e_1_3_3_43_2 doi: 10.1113/EP086731 – ident: e_1_3_3_40_2 doi: 10.1161/01.RES.87.12.1087 – ident: e_1_3_3_44_2 doi: 10.1016/j.yjmcc.2019.07.012 – ident: e_1_3_3_3_2 doi: 10.1161/01.RES.0000145047.14691.db – ident: e_1_3_3_21_2 doi: 10.1161/hh0202.103315 – ident: e_1_3_3_29_2 doi: 10.1016/j.bpj.2018.08.004 – ident: e_1_3_3_25_2 doi: 10.1152/ajpcell.1985.248.3.C189 – ident: e_1_3_3_28_2 doi: 10.1016/j.hrthm.2011.11.004 – ident: e_1_3_3_10_2 doi: 10.1007/978-94-010-0658-3 – ident: e_1_3_3_27_2 doi: 10.1161/CIRCEP.115.002927 – ident: e_1_3_3_37_2 doi: 10.1152/ajpheart.00742.2011 – ident: e_1_3_3_22_2 doi: 10.1016/j.yjmcc.2010.04.012 – ident: e_1_3_3_26_2 doi: 10.1113/jphysiol.2013.252080 – ident: e_1_3_3_41_2 doi: 10.1126/science.276.5313.800 – ident: e_1_3_3_2_2 doi: 10.1161/CIR.0000000000000659 – ident: e_1_3_3_24_2 doi: 10.1016/S0008-6363(99)00035-8 – ident: e_1_3_3_16_2 doi: 10.1093/cvr/cvt077 – ident: e_1_3_3_9_2 doi: 10.1093/cvr/cvs155 – ident: e_1_3_3_11_2 doi: 10.1016/j.hrthm.2011.06.024 – ident: e_1_3_3_23_2 doi: 10.1016/j.ejphar.2004.07.013 – ident: e_1_3_3_34_2 doi: 10.1371/journal.pcbi.1005906 |
SSID | ssj0009580 |
Score | 2.3668382 |
Snippet | Sudden death in heart failure patients is a major clinical problem worldwide, but it is unclear how arrhythmogenic early afterdepolarizations (EADs) are... Sudden cardiac death in heart failure is a major unsolved clinical problem that is linked to the development of a spontaneous arrhythmia. Early... |
SourceID | crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 2687 |
SubjectTerms | Action Potentials Animals Arrhythmias, Cardiac - metabolism Arrhythmias, Cardiac - physiopathology Calcium - metabolism Excitation Contraction Coupling Heart Failure - metabolism Heart Failure - physiopathology Humans Myocytes, Cardiac - metabolism |
Title | Arrhythmogenic late Ca 2+ sparks in failing heart cells and their control by action potential configuration |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31969455 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZB6Mvo92161r0sEGHcefashw_ZqFdGDT0oWV9C5IstaatExyb0fyO_eAdXXxJu8G2FxNkRwadL-eWc76D0AcxDKgKOcQmkqU-iSj3WZYyP2KxICLOUkl0v_PplE4uyLfL-HIw-NmrWqorfihWv-0r-R-pwhrIVXfJ_oNk201hAT6DfOEKEobrX8l4VJbX99X13RyeyIV3C36jN2Ze-DH84oGmKG9Msatiuek517OrK09n6pdN3WRetrXq4Ia6seGLeaVLiAxxSKHyq7rspOfc2LPW7C2bIoNpk1UcdT0qTnEsPd87m3YTj090Gs-22fwA9dLWHH93uetph9iJXK3cPyOn8la3w_fqEYp5bkzI11qPTqod7YJLYUC8qquebRpBWrULXotPiR0c2upl29TpABj3tSy1RvqR-gd9pWcWF2x5CHHoEHZ0m_TAsLgzaNCqJyWWIvgB43Zz6wl6qukViVH3fSrnYdCQRCXR5wdv20TPmu-vuTprQYtxXs630HMXdeCRhdA2GsjiBdpuxIMPHPn4p5foZh1TWGMKjxkOPWwRhfMCO0RhgyhsEIUBUdggCjtEYX6PLaJwiyi8hqhX6OLk-Hw88d1ADl_ouMEnSkRgE-JICPAUY0U4pyqIVKJZGRNwHTmsgJU4ikIlVQrOD0-yBH71WcDBT2fRa7RRzAv5FmEhMpkJquiRYCRIA86kpqnI0oRJTkOygw6as5stLO_KzNRLJNFMn_isO_Ed9MaebftgI4B3f7yzizY7IL5HG1VZyz3wLiu-b4T9CwtjfRg |
link.rule.ids | 314,780,784,27924,27925 |
linkProvider | ABC ChemistRy |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Arrhythmogenic+late+Ca+2%2B+sparks+in+failing+heart+cells+and+their+control+by+action+potential+configuration&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Fowler%2C+Ewan+D&rft.au=Wang%2C+Nan&rft.au=Hezzell%2C+Melanie&rft.au=Chanoit%2C+Guillaume&rft.date=2020-02-04&rft.eissn=1091-6490&rft.volume=117&rft.issue=5&rft.spage=2687&rft_id=info:doi/10.1073%2Fpnas.1918649117&rft_id=info%3Apmid%2F31969455&rft.externalDocID=31969455 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |