On the Domination Polynomial of Some Graph Operations

Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0n‍d(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of D(G,λ) is called the domination root of G. In this paper, we study the domination polynomial of some graph operation...

Full description

Saved in:
Bibliographic Details
Published inISRN Combinatorics Vol. 2013; pp. 1 - 3
Main Author Alikhani, Saeid
Format Journal Article
LanguageEnglish
Published Hindawi Publishing Corporation 27.08.2013
Online AccessGet full text

Cover

Loading…
Abstract Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0n‍d(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of D(G,λ) is called the domination root of G. In this paper, we study the domination polynomial of some graph operations.
AbstractList Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0n‍d(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of D(G,λ) is called the domination root of G. In this paper, we study the domination polynomial of some graph operations.
Let G be a simple graph of order n . The domination polynomial of G is the polynomial D ( G , λ ) = ∑ i = 0 n ‍ d ( G , i ) λ i , where d ( G , i ) is the number of dominating sets of G of size i . Every root of D ( G , λ ) is called the domination root of G . In this paper, we study the domination polynomial of some graph operations.
Author Alikhani, Saeid
Author_xml – sequence: 1
  givenname: Saeid
  surname: Alikhani
  fullname: Alikhani, Saeid
  organization: Department of Mathematics, Yazd University Yazd 89195-741 Iran yazduni.ac.ir
BookMark eNp9j8FKxDAQhoOs4LruyRfIWak7SZM0Ocqqq7BQQT2XtElopU1KsiD79natB0_O5Z8ZPn74LtHCB28RuiZwRwjnGwok3xAmuOJnaElBQSYVIYs_-wVap_QJ0yglcwFLxEuPD63FD2HovD50wePX0B_9dOoeB4ffwmDxLuqxxeVo4w-SrtC5032y699coY-nx_ftc7Yvdy_b-33WEA48I7UC4aRkTomaGwZAmZCycLS2tKFGNgUlrDG5Y7WY3gC2rp3RhcyNBMHzFbqde5sYUorWVWPsBh2PFYHqJF2dpKtZeqJvZrrtvNFf3b_wN0ZtVio
CitedBy_id crossref_primary_10_17656_jzs_10594
crossref_primary_10_1155_2014_390170
Cites_doi 10.1016/j.ejc.2010.03.007
10.1007/BF01844162
10.1007/s00373-012-1211-x
10.7494/OpMath.2010.30.1.37
10.1007/s00373-013-1306-z
ContentType Journal Article
Copyright Copyright © 2013 Saeid Alikhani.
Copyright_xml – notice: Copyright © 2013 Saeid Alikhani.
DBID RHU
RHW
RHX
AAYXX
CITATION
DOI 10.1155/2013/146595
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Open Access Journals (Hindawi Publishing)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: RHX
  name: Open Access Journals (Hindawi Publishing)
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2090-8911
Editor Siemons, J.
Feng, L.
Editor_xml – sequence: 1
  givenname: L.
  surname: Feng
  fullname: Feng, L.
– sequence: 2
  givenname: J.
  surname: Siemons
  fullname: Siemons, J.
EndPage 3
ExternalDocumentID 10_1155_2013_146595
GroupedDBID 4.4
5VS
AAJEY
ACIPV
ALMA_UNASSIGNED_HOLDINGS
EBS
EJD
GROUPED_DOAJ
KQ8
M~E
OK1
RHU
RHW
RHX
AAYXX
CITATION
ID FETCH-LOGICAL-c1505-1b906f884f96b5d400246887f2be2c2d8c7214cd3f4b687f00ebbfda783d80653
IEDL.DBID RHX
ISSN 2090-8911
IngestDate Fri Aug 23 00:18:33 EDT 2024
Sun Jun 02 18:47:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1505-1b906f884f96b5d400246887f2be2c2d8c7214cd3f4b687f00ebbfda783d80653
OpenAccessLink https://dx.doi.org/10.1155/2013/146595
PageCount 3
ParticipantIDs crossref_primary_10_1155_2013_146595
hindawi_primary_10_1155_2013_146595
PublicationCentury 2000
PublicationDate 20130827
2013-08-27
PublicationDateYYYYMMDD 2013-08-27
PublicationDate_xml – month: 8
  year: 2013
  text: 20130827
  day: 27
PublicationDecade 2010
PublicationTitle ISRN Combinatorics
PublicationYear 2013
Publisher Hindawi Publishing Corporation
Publisher_xml – name: Hindawi Publishing Corporation
References http://mathworld.wolfram.com/DutchWindmillGraph.html
(6) 2013
8
(5) 2012
(1) 2010; 31
(7) 2010; 30
Alikhani S. Dominating sets and domination polynomials of graphs [Ph.D. thesis] 2009 Universiti Putra Malaysia
(4) 1970; 4
(3) 2012; 19
1
3
4
5
(7) 2012; 19
6
References_xml – volume: 19
  issue: 1, paper 15
  year: 2012
  ident: 3
  article-title: Domination reliability
  publication-title:
– volume: 4
  start-page: 322
  year: 1970
  end-page: 325
  ident: 4
  article-title: On the corona of two graphs
  publication-title:
– ident: 8
  article-title: Graphs with domination roots in the right half-plane
– volume: 31
  start-page: 1714
  issue: 7
  year: 2010
  end-page: 1724
  ident: 1
  article-title: Characterization of graphs using domination polynomials
  publication-title:
– year: 2012
  ident: 5
  article-title: The domination polynomial of a graph at -1
  publication-title:
– year: 2013
  ident: 6
  article-title: On the roots of domination polynomials
  publication-title:
– volume: 30
  start-page: 37
  issue: 1
  year: 2010
  end-page: 51
  ident: 7
  article-title: Dominating sets and domination polynomials of certain graphs. II
  publication-title:
– ident: 1
  doi: 10.1016/j.ejc.2010.03.007
– ident: 8
  doi: 10.1007/BF01844162
– ident: 4
– ident: 3
  doi: 10.1007/s00373-012-1211-x
– ident: 5
  doi: 10.7494/OpMath.2010.30.1.37
– ident: 6
  doi: 10.1007/s00373-013-1306-z
– volume: 19
  issue: 1, paper 15
  year: 2012
  ident: 7
  publication-title: Electronic Journal of Combinatorics
SSID ssj0000998360
Score 1.8939552
Snippet Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0n‍d(G,i)λi, where d(G,i) is the number of dominating sets of G...
Let G be a simple graph of order n . The domination polynomial of G is the polynomial D ( G , λ ) = ∑ i = 0 n ‍ d ( G , i ) λ i , where d ( G , i ) is the...
SourceID crossref
hindawi
SourceType Aggregation Database
Publisher
StartPage 1
Title On the Domination Polynomial of Some Graph Operations
URI https://dx.doi.org/10.1155/2013/146595
Volume 2013
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB5sQdAH8cR6lIB9XdzdHJt9FK-i1HoV-rZsLhR0t9iK-O-d7K7FA8THhOQhM3zzzSSZGYBejjYvDnUYRLkQAVNJinaQh4FOrJDaCG6rLgqDK9EfsYsxHzcfZKe_n_CR7TA8j-ghApqnvAUtKT38bvvj-U0K-jg-E6FJvvux4xvdLD74OPft8QuDnK3CSuP6kaNaV2uwYIt1WB7M66ZON4APC4JDclL6HypeZuS6fHr3qcO4s3Tkrny25NwXmSbDia21N92E0dnp_XE_aBobBBr9Lx5EKg2Fk5K5VChumCdKgWh3sbKxjo3UGJcxbahjSuB0GFqlnMkTSY1_CKVb0C7Kwm4DiZ3KNcZ4PkOUOc0QoIpGkUqcodQw2oHe5_mzSV2_Iqv8fs4zL6asFlMHDhrZ_LVq51-rdmEprnpGIASTPWjPXl7tPjL3THWhdXkju5X6PgCaKZDz
link.rule.ids 315,783,787,866,881,27936,27937
linkProvider Hindawi Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Domination+Polynomial+of+Some+Graph+Operations&rft.jtitle=ISRN+Combinatorics&rft.au=Alikhani%2C+Saeid&rft.date=2013-08-27&rft.pub=Hindawi+Publishing+Corporation&rft.eissn=2090-8911&rft.volume=2013&rft_id=info:doi/10.1155%2F2013%2F146595&rft.externalDocID=10_1155_2013_146595
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-8911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-8911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-8911&client=summon