On the Domination Polynomial of Some Graph Operations
Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0nd(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of D(G,λ) is called the domination root of G. In this paper, we study the domination polynomial of some graph operation...
Saved in:
Published in | ISRN Combinatorics Vol. 2013; pp. 1 - 3 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hindawi Publishing Corporation
27.08.2013
|
Online Access | Get full text |
Cover
Loading…
Abstract | Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0nd(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of D(G,λ) is called the domination root of G. In this paper, we study the domination polynomial of some graph operations. |
---|---|
AbstractList | Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0nd(G,i)λi, where d(G,i) is the number of dominating sets of G of size i. Every root of D(G,λ) is called the domination root of G. In this paper, we study the domination polynomial of some graph operations. Let G be a simple graph of order n . The domination polynomial of G is the polynomial D ( G , λ ) = ∑ i = 0 n d ( G , i ) λ i , where d ( G , i ) is the number of dominating sets of G of size i . Every root of D ( G , λ ) is called the domination root of G . In this paper, we study the domination polynomial of some graph operations. |
Author | Alikhani, Saeid |
Author_xml | – sequence: 1 givenname: Saeid surname: Alikhani fullname: Alikhani, Saeid organization: Department of Mathematics, Yazd University Yazd 89195-741 Iran yazduni.ac.ir |
BookMark | eNp9j8FKxDAQhoOs4LruyRfIWak7SZM0Ocqqq7BQQT2XtElopU1KsiD79natB0_O5Z8ZPn74LtHCB28RuiZwRwjnGwok3xAmuOJnaElBQSYVIYs_-wVap_QJ0yglcwFLxEuPD63FD2HovD50wePX0B_9dOoeB4ffwmDxLuqxxeVo4w-SrtC5032y699coY-nx_ftc7Yvdy_b-33WEA48I7UC4aRkTomaGwZAmZCycLS2tKFGNgUlrDG5Y7WY3gC2rp3RhcyNBMHzFbqde5sYUorWVWPsBh2PFYHqJF2dpKtZeqJvZrrtvNFf3b_wN0ZtVio |
CitedBy_id | crossref_primary_10_17656_jzs_10594 crossref_primary_10_1155_2014_390170 |
Cites_doi | 10.1016/j.ejc.2010.03.007 10.1007/BF01844162 10.1007/s00373-012-1211-x 10.7494/OpMath.2010.30.1.37 10.1007/s00373-013-1306-z |
ContentType | Journal Article |
Copyright | Copyright © 2013 Saeid Alikhani. |
Copyright_xml | – notice: Copyright © 2013 Saeid Alikhani. |
DBID | RHU RHW RHX AAYXX CITATION |
DOI | 10.1155/2013/146595 |
DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Open Access Journals (Hindawi Publishing) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: RHX name: Open Access Journals (Hindawi Publishing) url: http://www.hindawi.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2090-8911 |
Editor | Siemons, J. Feng, L. |
Editor_xml | – sequence: 1 givenname: L. surname: Feng fullname: Feng, L. – sequence: 2 givenname: J. surname: Siemons fullname: Siemons, J. |
EndPage | 3 |
ExternalDocumentID | 10_1155_2013_146595 |
GroupedDBID | 4.4 5VS AAJEY ACIPV ALMA_UNASSIGNED_HOLDINGS EBS EJD GROUPED_DOAJ KQ8 M~E OK1 RHU RHW RHX AAYXX CITATION |
ID | FETCH-LOGICAL-c1505-1b906f884f96b5d400246887f2be2c2d8c7214cd3f4b687f00ebbfda783d80653 |
IEDL.DBID | RHX |
ISSN | 2090-8911 |
IngestDate | Fri Aug 23 00:18:33 EDT 2024 Sun Jun 02 18:47:03 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1505-1b906f884f96b5d400246887f2be2c2d8c7214cd3f4b687f00ebbfda783d80653 |
OpenAccessLink | https://dx.doi.org/10.1155/2013/146595 |
PageCount | 3 |
ParticipantIDs | crossref_primary_10_1155_2013_146595 hindawi_primary_10_1155_2013_146595 |
PublicationCentury | 2000 |
PublicationDate | 20130827 2013-08-27 |
PublicationDateYYYYMMDD | 2013-08-27 |
PublicationDate_xml | – month: 8 year: 2013 text: 20130827 day: 27 |
PublicationDecade | 2010 |
PublicationTitle | ISRN Combinatorics |
PublicationYear | 2013 |
Publisher | Hindawi Publishing Corporation |
Publisher_xml | – name: Hindawi Publishing Corporation |
References | http://mathworld.wolfram.com/DutchWindmillGraph.html (6) 2013 8 (5) 2012 (1) 2010; 31 (7) 2010; 30 Alikhani S. Dominating sets and domination polynomials of graphs [Ph.D. thesis] 2009 Universiti Putra Malaysia (4) 1970; 4 (3) 2012; 19 1 3 4 5 (7) 2012; 19 6 |
References_xml | – volume: 19 issue: 1, paper 15 year: 2012 ident: 3 article-title: Domination reliability publication-title: – volume: 4 start-page: 322 year: 1970 end-page: 325 ident: 4 article-title: On the corona of two graphs publication-title: – ident: 8 article-title: Graphs with domination roots in the right half-plane – volume: 31 start-page: 1714 issue: 7 year: 2010 end-page: 1724 ident: 1 article-title: Characterization of graphs using domination polynomials publication-title: – year: 2012 ident: 5 article-title: The domination polynomial of a graph at -1 publication-title: – year: 2013 ident: 6 article-title: On the roots of domination polynomials publication-title: – volume: 30 start-page: 37 issue: 1 year: 2010 end-page: 51 ident: 7 article-title: Dominating sets and domination polynomials of certain graphs. II publication-title: – ident: 1 doi: 10.1016/j.ejc.2010.03.007 – ident: 8 doi: 10.1007/BF01844162 – ident: 4 – ident: 3 doi: 10.1007/s00373-012-1211-x – ident: 5 doi: 10.7494/OpMath.2010.30.1.37 – ident: 6 doi: 10.1007/s00373-013-1306-z – volume: 19 issue: 1, paper 15 year: 2012 ident: 7 publication-title: Electronic Journal of Combinatorics |
SSID | ssj0000998360 |
Score | 1.8939552 |
Snippet | Let G be a simple graph of order n. The domination polynomial of G is the polynomial D(G,λ)=∑i=0nd(G,i)λi, where d(G,i) is the number of dominating sets of G... Let G be a simple graph of order n . The domination polynomial of G is the polynomial D ( G , λ ) = ∑ i = 0 n d ( G , i ) λ i , where d ( G , i ) is the... |
SourceID | crossref hindawi |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
Title | On the Domination Polynomial of Some Graph Operations |
URI | https://dx.doi.org/10.1155/2013/146595 |
Volume | 2013 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZSwMxEB5sQdAH8cR6lIB9XdzdHJt9FK-i1HoV-rZsLhR0t9iK-O-d7K7FA8THhOQhM3zzzSSZGYBejjYvDnUYRLkQAVNJinaQh4FOrJDaCG6rLgqDK9EfsYsxHzcfZKe_n_CR7TA8j-ghApqnvAUtKT38bvvj-U0K-jg-E6FJvvux4xvdLD74OPft8QuDnK3CSuP6kaNaV2uwYIt1WB7M66ZON4APC4JDclL6HypeZuS6fHr3qcO4s3Tkrny25NwXmSbDia21N92E0dnp_XE_aBobBBr9Lx5EKg2Fk5K5VChumCdKgWh3sbKxjo3UGJcxbahjSuB0GFqlnMkTSY1_CKVb0C7Kwm4DiZ3KNcZ4PkOUOc0QoIpGkUqcodQw2oHe5_mzSV2_Iqv8fs4zL6asFlMHDhrZ_LVq51-rdmEprnpGIASTPWjPXl7tPjL3THWhdXkju5X6PgCaKZDz |
link.rule.ids | 315,783,787,866,881,27936,27937 |
linkProvider | Hindawi Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Domination+Polynomial+of+Some+Graph+Operations&rft.jtitle=ISRN+Combinatorics&rft.au=Alikhani%2C+Saeid&rft.date=2013-08-27&rft.pub=Hindawi+Publishing+Corporation&rft.eissn=2090-8911&rft.volume=2013&rft_id=info:doi/10.1155%2F2013%2F146595&rft.externalDocID=10_1155_2013_146595 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2090-8911&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2090-8911&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2090-8911&client=summon |