Predicting Deep Moonquake Source Regions Using Their Temporal and Spatial Patterns and Machine Learning

In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon&#...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 2
Main Authors Majstorović, Josipa, Lognonné, Philippe, Kawamura, Taichi, Panning, Mark P.
Format Journal Article
LanguageEnglish
Published American Geophysical Union/Wiley 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers. Plain Language Summary Future space missions will provide us with new in situ ground vibration measurements of the Moon. From the Apollo missions in 1970, we know that the Moon can produce various seismic events. The most numerous ones are deep moonquakes (DMQs), which are events associated with the displacement deep within the lunar interior. These events occur in specific source regions, and their occurrence is related to the monthly motion of the Moon around the Earth. To further study lunar interior and DMQs with future missions, we need to define a way to relate the new data with the existing Apollo data. Due to the single‐station nature of the future deployment, the mapping between these two data sets is challenging with classical techniques. Therefore, in this study, we tackle this issue using machine learning (ML). We propose a model that is able to classify DMQs source regions using only the time of the occurrence of quakes. We show that models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer source regions. This gives us a good preliminary location of the DMQs source regions and an opportunity to detect them with future lunar missions. Key Points We study the seismic data acquired during the Apollo missions for the future single‐station deployment on the far side of the Moon We propose the classification model of deep moonquake source regions using only their occurrence times The models perform with accuracy greater than 70% when trained to classify combinations of four or fewer source regions
AbstractList In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers. Future space missions will provide us with new in situ ground vibration measurements of the Moon. From the Apollo missions in 1970, we know that the Moon can produce various seismic events. The most numerous ones are deep moonquakes (DMQs), which are events associated with the displacement deep within the lunar interior. These events occur in specific source regions, and their occurrence is related to the monthly motion of the Moon around the Earth. To further study lunar interior and DMQs with future missions, we need to define a way to relate the new data with the existing Apollo data. Due to the single‐station nature of the future deployment, the mapping between these two data sets is challenging with classical techniques. Therefore, in this study, we tackle this issue using machine learning (ML). We propose a model that is able to classify DMQs source regions using only the time of the occurrence of quakes. We show that models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer source regions. This gives us a good preliminary location of the DMQs source regions and an opportunity to detect them with future lunar missions. We study the seismic data acquired during the Apollo missions for the future single‐station deployment on the far side of the Moon We propose the classification model of deep moonquake source regions using only their occurrence times The models perform with accuracy greater than 70% when trained to classify combinations of four or fewer source regions
Abstract In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers.
In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers. Plain Language Summary Future space missions will provide us with new in situ ground vibration measurements of the Moon. From the Apollo missions in 1970, we know that the Moon can produce various seismic events. The most numerous ones are deep moonquakes (DMQs), which are events associated with the displacement deep within the lunar interior. These events occur in specific source regions, and their occurrence is related to the monthly motion of the Moon around the Earth. To further study lunar interior and DMQs with future missions, we need to define a way to relate the new data with the existing Apollo data. Due to the single‐station nature of the future deployment, the mapping between these two data sets is challenging with classical techniques. Therefore, in this study, we tackle this issue using machine learning (ML). We propose a model that is able to classify DMQs source regions using only the time of the occurrence of quakes. We show that models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer source regions. This gives us a good preliminary location of the DMQs source regions and an opportunity to detect them with future lunar missions. Key Points We study the seismic data acquired during the Apollo missions for the future single‐station deployment on the far side of the Moon We propose the classification model of deep moonquake source regions using only their occurrence times The models perform with accuracy greater than 70% when trained to classify combinations of four or fewer source regions
Author Kawamura, Taichi
Panning, Mark P.
Majstorović, Josipa
Lognonné, Philippe
Author_xml – sequence: 1
  givenname: Josipa
  orcidid: 0000-0002-2116-1247
  surname: Majstorović
  fullname: Majstorović, Josipa
  email: josipa.majstorovic@protonmail.com
  organization: CNRS
– sequence: 2
  givenname: Philippe
  orcidid: 0000-0002-1014-920X
  surname: Lognonné
  fullname: Lognonné, Philippe
  organization: CNRS
– sequence: 3
  givenname: Taichi
  orcidid: 0000-0001-5246-5561
  surname: Kawamura
  fullname: Kawamura, Taichi
  organization: CNRS
– sequence: 4
  givenname: Mark P.
  orcidid: 0000-0002-2041-3190
  surname: Panning
  fullname: Panning, Mark P.
  organization: California Institute of Technology
BackLink https://hal.science/hal-05070626$$DView record in HAL
BookMark eNp90E1PwkAQBuCNwUREbv6AvZqIzu7SryNBBUmJhI9zs91OYbXs1m3R8O9tgzGcPM3kzTNzeK9Jx1iDhNwyeGDAo0cOXMymAMBYcEG6PIrEwOMMOmf7FelX1XtjhOAQQtAl24XDTKtamy19Qizp3FrzeZAfSFf24BTSJW61NRXdVK1Z71A7usZ9aZ0sqDQZXZWy1s2-kHWNrpFtOJdqpw3SGKUzzeENucxlUWH_d_bI5uV5PZ4O4rfJ63gUDxTzQAyCjPlDEcpApCnzuPK4F0YCIQ2HQS4wzHngc2RDkDnnLJKZSsEXXiplqqKU-aJH7k5_d7JISqf30h0TK3UyHcVJm4EHAfjc_2KNvT9Z5WxVOcz_DhgkbafJeacNhxP_1gUe_7XJbLJkXIgflkZ3tQ
Cites_doi 10.1038/s41561‐020‐0544‐y
10.1007/bf00058655
10.1029/2004JE002332
10.1016/j.pss.2010.12.007
10.1038/d41586‐022‐01253‐6
10.1016/j.pepi.2006.05.009
10.1016/s0012‐821x(03)00172‐9
10.1016/j.pepi.2010.07.009
10.1029/jb087is01p0a117
10.1029/1999gl008452
10.1007/s11214‐020‐00709‐3
10.1002/9781118782118.ch1
10.1038/d41586‐022‐01252‐7
10.1002/2015GL065335
10.1007/s11214‐018‐0574‐6
10.1007/978‐94‐010‐3102‐8_7
10.1016/0031‐9201(77)90175‐3
10.1029/JB088iB01p00677
10.1016/j.icarus.2012.06.026
10.1038/s41561‐020‐0536‐y
10.3847/25c2cfeb.674dcfdf
10.1002/2016je005147
10.1109/AERO55745.2023.10115559
10.1126/science.1199375
10.3847/psj/ad47bc
10.1785/gssrl.81.3.530
10.1023/a:1010933404324
10.1007/s10686‐022‐09857‐6
10.1016/j.pepi.2003.07.017
10.1016/j.pepi.2011.06.015
10.1029/2005je002414
10.1029/2022JE007364
10.1016/0031‐9201(88)90056‐8
10.1029/RG012i004p00539
10.5281/zenodo.7787610
10.1126/science.196.4293.979
10.2514/6.2023-1880
10.1109/access.2022.3192514
10.1007/s11434‐008‐0484‐1
10.1109/MCSE.2007.55
10.1016/j.pss.2013.03.009
10.1016/j.pepi.2009.02.004
10.1007/bf00116251
10.1002/widm.1301
10.1007/s11214‐019‐0613‐y
10.1785/gssrl.70.2.154
10.1093/nsr/nwad329
10.1029/rg005i002p00173
10.5281/zenodo.11103122
10.1002/2014JE004661
10.1016/B978-0-444-53802-4.00167-6
10.5281/zenodo.8216315
10.1029/2001je001658
10.1029/2006je002847
10.1029/2008je003286
10.1016/0019‐1035(67)90044‐9
10.1029/JB083iB02p00845
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Attribution
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: Attribution
DBID 24P
AAYXX
CITATION
1XC
VOOES
DOI 10.1029/2023JH000117
DatabaseName Wiley Online Library Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_HAL_hal_05070626v1
10_1029_2023JH000117
JGR123
Genre researchArticle
GrantInformation_xml – fundername: California Institute of Technology
– fundername: LABEX UnivEarthS
  funderid: ANR‐10‐LABX‐0023
– fundername: IDEX Paris Cité
  funderid: ANR‐18‐IDEX‐0001
– fundername: NASA Farside Seismic Suite project
– fundername: Pole Spatial de l’Université Paris Cité
– fundername: National Aeronautics and Space Administration
  funderid: 80NM0018D0004
– fundername: Jet Propulsion Laboratory
GroupedDBID 24P
ACCMX
ALMA_UNASSIGNED_HOLDINGS
0R~
AAYXX
CITATION
GROUPED_DOAJ
M~E
1XC
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
VOOES
WIN
ID FETCH-LOGICAL-c1503-7d16438a73bb152c525893e0b847f3e8f2762e140af2219adcb0635baabc9b163
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Fri Aug 01 06:21:40 EDT 2025
Tue Jul 01 03:43:13 EDT 2025
Wed Jan 22 17:18:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Attribution
http://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1503-7d16438a73bb152c525893e0b847f3e8f2762e140af2219adcb0635baabc9b163
ORCID 0000-0001-5246-5561
0000-0002-1014-920X
0000-0002-2116-1247
0000-0002-2041-3190
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JH000117
PageCount 22
ParticipantIDs hal_primary_oai_HAL_hal_05070626v1
crossref_primary_10_1029_2023JH000117
wiley_primary_10_1029_2023JH000117_JGR123
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher American Geophysical Union/Wiley
Publisher_xml – name: American Geophysical Union/Wiley
References 1974; 12
2020a; 216
2020; 13
2011; 12
2011; 59
2024
2010; 182
2001; 45
2009; 114
1986; 1
2024; 5
2015; 42
2007; 9
2002; 107
2020b
1984
2022; 605
1971; 2
2017; 122
1996; 24
1975; 3
2022; 127
2021; 2021
2015; 2
2014; 119
2019; 9
2012; 220
2020; 22s41
2000; 27
2003; 139
2023; 11
2005; 110
2009; 173
1988; 52
1991
2008; 53
2010; 81
2006; 159
1995; 1
2003; 211
2011; 331
1967; 7
2007; 112
1968; 78
1981; 491
2021; 53
2023
1977; 14
2020
2008; XXXIX
1978; 83
1982; 87
1967; 5
2019; 215
2019
2013; 81
2022; 10
2022; 54
2013
1999; 70
2011; 188
1977; 196
1983; 88
e_1_2_8_28_1
Moore P. (e_1_2_8_44_1) 1968; 78
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_68_1
Bills B. G. (e_1_2_8_5_1) 2008
Dainty A. (e_1_2_8_15_1) 1975
e_1_2_8_7_1
e_1_2_8_9_1
Witten D. (e_1_2_8_69_1) 2013
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_66_1
Pedregosa F. (e_1_2_8_53_1) 2011; 12
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_64_1
e_1_2_8_62_1
Ho T. K. (e_1_2_8_24_1) 1995
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_38_1
e_1_2_8_57_1
Nakamura Y. (e_1_2_8_48_1) 1981; 491
Panning M. (e_1_2_8_52_1) 2021
e_1_2_8_70_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_72_1
e_1_2_8_29_1
Benna M. (e_1_2_8_3_1) 2020
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_21_1
Langer H. (e_1_2_8_33_1) 2019
e_1_2_8_42_1
e_1_2_8_67_1
e_1_2_8_23_1
e_1_2_8_65_1
Breiman L. (e_1_2_8_8_1) 1984
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_35_1
Rhodes B. (e_1_2_8_59_1) 2019
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_73_1
e_1_2_8_50_1
e_1_2_8_71_1
References_xml – volume: 87
  start-page: A117
  issue: S01
  year: 1982
  end-page: A123
  article-title: Apollo lunar seismic experiment—Final summary
  publication-title: Journal of Geophysical Research
– volume: 81
  start-page: 530
  issue: 3
  year: 2010
  end-page: 533
  article-title: Obspy: A python toolbox for seismology
  publication-title: Seismological Research Letters
– volume: 78
  start-page: 138
  year: 1968
  end-page: 144
  article-title: Transient lunar phenomena: A review, 1967
  publication-title: The Journal of the British Astronomical Association
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  end-page: 140
  article-title: Bagging predictors
  publication-title: Machine Learning
– volume: 159
  start-page: 140
  issue: 3–4
  year: 2006
  end-page: 166
  article-title: A seismic model of the lunar mantle and constraints on temperature and mineralogy
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 2
  start-page: 155
  year: 1971
  end-page: 172
  article-title: Seismology of the Moon and implications on internal structure, origin and evolution
  publication-title: Highlights of Astronomy
– volume: 188
  start-page: 96
  issue: 1–2
  year: 2011
  end-page: 113
  article-title: Very preliminary reference Moon model
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 52
  start-page: 41
  issue: 1
  year: 1988
  end-page: 55
  article-title: The influence of tidal stresses on deep moonquake activity
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 81
  start-page: 18
  year: 2013
  end-page: 31
  article-title: On the possibility of lunar core phase detection using new seismometers for soft‐landers in future lunar missions
  publication-title: Planetary and Space Science
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Machine Learning
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– year: 2024
– volume: 13
  start-page: 213
  issue: 3
  year: 2020
  end-page: 220
  article-title: Constraints on the shallow elastic and anelastic structure of Mars from insight seismic data
  publication-title: Nature Geoscience
– volume: 215
  start-page: 1
  issue: 8
  year: 2019
  end-page: 47
  article-title: Lunar seismology: An update on interior structure models
  publication-title: Space Science Reviews
– volume: 7
  start-page: 29
  issue: 1–3
  year: 1967
  end-page: 41
  article-title: Operation Moon blink and report of observations of lunar transient phenomena
  publication-title: Icarus
– volume: 114
  issue: E5
  year: 2009
  article-title: Constraints on deep moonquake focal mechanisms through analyses of tidal stress
  publication-title: Journal of Geophysical Research
– volume: 53
  issue: 4
  year: 2021
  article-title: The scientific rationale for deployment of a long‐lived geophysical network on the Moon
  publication-title: Bulletin of the AAS
– volume: 88
  start-page: 677
  issue: B1
  year: 1983
  end-page: 686
  article-title: Seismic velocity structure of the lunar mantle
  publication-title: Journal of Geophysical Research
– volume: 12
  start-page: 1
  issue: 1
  year: 1974
  end-page: 21
  article-title: Lunar seismicity, structure, and tectonics
  publication-title: Reviews of Geophysics
– volume: 182
  start-page: 152
  issue: 3–4
  year: 2010
  end-page: 160
  article-title: A simple physical model for deep moonquake occurrence times
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 83
  start-page: 845
  issue: B2
  year: 1978
  end-page: 853
  article-title: Tidal stresses in the Moon
  publication-title: Journal of Geophysical Research
– volume: 491
  year: 1981
  article-title: Passive seismic experiment long‐period event catalog
  publication-title: Galveston Geophysics Laboratory Contribution
– volume: 5
  issue: 6
  year: 2024
  article-title: Tidal seismicity in the Moon and implications for the rocky interior of Europa
  publication-title: Planetary and Space Science
– volume: 9
  issue: 3
  year: 2019
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
– volume: 112
  issue: E9
  year: 2007
  article-title: Temporal and spatial properties of some deep moonquake clusters
  publication-title: Journal of Geophysical Research
– volume: 173
  start-page: 365
  issue: 3
  year: 2009
  end-page: 374
  article-title: The physical mechanisms of deep moonquakes and intermediate‐depth earthquakes: How similar and how different?
  publication-title: Physics of the Earth and Planetary Interiors
– start-page: 1
  year: 2023
  end-page: 9
– volume: 110
  issue: E1
  year: 2005
  article-title: Farside deep moonquakes and deep interior of the Moon
  publication-title: Journal of Geophysical Research
– volume: 1
  start-page: 278
  year: 1995
  end-page: 282
– volume: 605
  start-page: 208
  issue: 7909
  year: 2022
  end-page: 211
  article-title: These six countries are about to go to the moon—Here’s why
  publication-title: Nature
– year: 2019
– volume: 2
  start-page: 65
  year: 2015
  end-page: 120
  article-title: 10.03—Planetary seismology
  publication-title: Treatise on Geophysics
– volume: 59
  start-page: 343
  issue: 4
  year: 2011
  end-page: 354
  article-title: Optimisation of seismic network design: Application to a geophysical international lunar network
  publication-title: Planetary and Space Science
– volume: 119
  start-page: 2197
  issue: 10
  year: 2014
  end-page: 2221
  article-title: Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution
  publication-title: Journal of Geophysical Research: Planets
– volume: 13
  start-page: 183
  issue: 3
  year: 2020
  end-page: 189
  article-title: Initial results from the insight mission on Mars
  publication-title: Nature Geoscience
– volume: 53
  start-page: 3897
  issue: 24
  year: 2008
  end-page: 3907
  article-title: Seismic tomography of the Moon
  publication-title: Chinese Science Bulletin
– volume: 70
  start-page: 154
  issue: 2
  year: 1999
  end-page: 160
  article-title: The taup toolkit: Flexible seismic travel‐time and ray‐path utilities
  publication-title: Seismological Research Letters
– volume: 54
  start-page: 617
  issue: 2–3
  year: 2022
  end-page: 640
  article-title: An autonomous lunar geophysical experiment package (ALGEP) for future space missions: In response to call for white papers for the voyage 2050 long‐term plan in the esa science program
  publication-title: Experimental Astronomy
– volume: XXXIX
  year: 2008
  article-title: Influence of Earth‐Moon orbit geometry on deep moonquake occurrence times
  publication-title: Lunar and Planetary Science
– volume: 11
  issue: 2
  year: 2023
  article-title: Scientific objectives and payload configuration of the Chang’E‐7 mission
  publication-title: National Science Review
– volume: 127
  issue: 12
  year: 2022
  article-title: Stresses in the lunar interior: Insights from slip directions in the a01 deep moonquake nest
  publication-title: Journal of Geophysical Research: Planets
– volume: 139
  start-page: 197
  issue: 3
  year: 2003
  end-page: 205
  article-title: New identification of deep moonquakes in the Apollo lunar seismic data
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 605
  start-page: 212
  issue: 7909
  year: 2022
  end-page: 216
  article-title: The $93‐billion plan to put astronauts back on the Moon
  publication-title: Nature
– volume: 110
  issue: E10
  year: 2005
  article-title: New events discovered in the apollo lunar seismic data
  publication-title: Journal of Geophysical Research
– volume: 220
  start-page: 971
  issue: 2
  year: 2012
  end-page: 980
  article-title: Uncertainty of Apollo deep moonquake locations and implications for future network designs
  publication-title: Icarus
– year: 1984
– volume: 42
  start-page: 7351
  issue: 18
  year: 2015
  end-page: 7358
  article-title: Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR
  publication-title: Geophysical Research Letters
– volume: 12
  start-page: 539
  issue: 4
  year: 1974
  end-page: 567
  article-title: Structure of the Moon
  publication-title: Reviews of Geophysics
– volume: 14
  start-page: 224
  issue: 3
  year: 1977
  end-page: 273
  article-title: Lunar seismicity and tectonics
  publication-title: Physics of the Earth and Planetary Interiors
– volume: 5
  start-page: 173
  issue: 2
  year: 1967
  end-page: 189
  article-title: An analysis of lunar events
  publication-title: Reviews of Geophysics
– volume: 122
  start-page: 1487
  issue: 7
  year: 2017
  end-page: 1504
  article-title: Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state
  publication-title: Journal of Geophysical Research: Planets
– volume: 107
  start-page: 3‐1
  issue: E6
  year: 2002
  end-page: 3‐23
  article-title: An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data
  publication-title: Journal of Geophysical Research
– year: 2019
  article-title: Skyfield: Generate high precision research‐grade positions for stars, planets, moons, and Earth satellites
  publication-title: Astrophysics Source Code Library
– volume: 216
  issue: 5
  year: 2020a
  article-title: Lunar seismology: A data and instrumentation review
  publication-title: Space Science Reviews
– volume: 211
  start-page: 27
  issue: 1–2
  year: 2003
  end-page: 44
  article-title: A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon
  publication-title: Earth and Planetary Science Letters
– volume: 196
  start-page: 979
  issue: 4293
  year: 1977
  end-page: 981
  article-title: Moonquakes: Mechanisms and relation to tidal stresses
  publication-title: Science
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  end-page: 95
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Computing in Science & Engineering
– year: 2020
– year: 2023
– volume: 27
  start-page: 1591
  issue: 11
  year: 2000
  end-page: 1594
  article-title: A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data
  publication-title: Geophysical Research Letters
– volume: 331
  start-page: 309
  issue: 6015
  year: 2011
  end-page: 312
  article-title: Seismic detection of the lunar core
  publication-title: Science
– volume: 215
  start-page: 1
  year: 2019
  end-page: 170
  article-title: SEIS: Insight’s seismic experiment for internal structure of Mars
  publication-title: Space Science Reviews
– volume: 2021
  start-page: P54C–01
  year: 2021
– volume: 3
  start-page: 2887
  year: 1975
  end-page: 2897
– volume: 22s41
  start-page: 5022
  year: 2020
– year: 1991
– year: 2020b
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 10
  start-page: 80448
  year: 2022
  end-page: 80462
  article-title: Why is multiclass classification hard?
  publication-title: IEEE Access
– year: 2013
– ident: e_1_2_8_2_1
  doi: 10.1038/s41561‐020‐0544‐y
– ident: e_1_2_8_6_1
  doi: 10.1007/bf00058655
– ident: e_1_2_8_47_1
  doi: 10.1029/2004JE002332
– ident: e_1_2_8_72_1
  doi: 10.1016/j.pss.2010.12.007
– ident: e_1_2_8_70_1
  doi: 10.1038/d41586‐022‐01253‐6
– ident: e_1_2_8_20_1
  doi: 10.1016/j.pepi.2006.05.009
– ident: e_1_2_8_36_1
  doi: 10.1016/s0012‐821x(03)00172‐9
– ident: e_1_2_8_66_1
  doi: 10.1016/j.pepi.2010.07.009
– ident: e_1_2_8_49_1
  doi: 10.1029/jb087is01p0a117
– ident: e_1_2_8_30_1
  doi: 10.1029/1999gl008452
– ident: e_1_2_8_50_1
  doi: 10.1007/s11214‐020‐00709‐3
– ident: e_1_2_8_32_1
  doi: 10.1002/9781118782118.ch1
– start-page: P54C–01
  volume-title: AGU fall meeting abstracts
  year: 2021
  ident: e_1_2_8_52_1
– ident: e_1_2_8_54_1
  doi: 10.1038/d41586‐022‐01252‐7
– ident: e_1_2_8_40_1
  doi: 10.1002/2015GL065335
– ident: e_1_2_8_34_1
  doi: 10.1007/s11214‐018‐0574‐6
– ident: e_1_2_8_18_1
  doi: 10.1007/978‐94‐010‐3102‐8_7
– ident: e_1_2_8_31_1
  doi: 10.1016/0031‐9201(77)90175‐3
– ident: e_1_2_8_45_1
  doi: 10.1029/JB088iB01p00677
– ident: e_1_2_8_23_1
  doi: 10.1016/j.icarus.2012.06.026
– ident: e_1_2_8_35_1
  doi: 10.1038/s41561‐020‐0536‐y
– ident: e_1_2_8_68_1
  doi: 10.3847/25c2cfeb.674dcfdf
– ident: e_1_2_8_27_1
  doi: 10.1002/2016je005147
– ident: e_1_2_8_60_1
  doi: 10.1109/AERO55745.2023.10115559
– ident: e_1_2_8_67_1
  doi: 10.1126/science.1199375
– ident: e_1_2_8_55_1
  doi: 10.3847/psj/ad47bc
– ident: e_1_2_8_4_1
  doi: 10.1785/gssrl.81.3.530
– ident: e_1_2_8_7_1
  doi: 10.1023/a:1010933404324
– ident: e_1_2_8_26_1
  doi: 10.1007/s10686‐022‐09857‐6
– volume: 78
  start-page: 138
  year: 1968
  ident: e_1_2_8_44_1
  article-title: Transient lunar phenomena: A review, 1967
  publication-title: The Journal of the British Astronomical Association
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_8_53_1
  article-title: Scikit‐learn: Machine learning in python
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_8_46_1
  doi: 10.1016/j.pepi.2003.07.017
– ident: e_1_2_8_21_1
  doi: 10.1016/j.pepi.2011.06.015
– ident: e_1_2_8_10_1
  doi: 10.1029/2005je002414
– volume-title: Advantages and pitfalls of pattern recognition: Selected cases in geophysics
  year: 2019
  ident: e_1_2_8_33_1
– ident: e_1_2_8_63_1
  doi: 10.1029/2022JE007364
– start-page: 5022
  volume-title: Lunar surface science workshop
  year: 2020
  ident: e_1_2_8_3_1
– ident: e_1_2_8_43_1
  doi: 10.1016/0031‐9201(88)90056‐8
– ident: e_1_2_8_61_1
  doi: 10.1029/RG012i004p00539
– year: 2008
  ident: e_1_2_8_5_1
  article-title: Influence of Earth‐Moon orbit geometry on deep moonquake occurrence times
  publication-title: Lunar and Planetary Science
– ident: e_1_2_8_51_1
  doi: 10.5281/zenodo.7787610
– ident: e_1_2_8_62_1
  doi: 10.1126/science.196.4293.979
– ident: e_1_2_8_14_1
  doi: 10.2514/6.2023-1880
– ident: e_1_2_8_16_1
  doi: 10.1109/access.2022.3192514
– ident: e_1_2_8_73_1
  doi: 10.1007/s11434‐008‐0484‐1
– ident: e_1_2_8_56_1
– ident: e_1_2_8_25_1
  doi: 10.1109/MCSE.2007.55
– ident: e_1_2_8_71_1
  doi: 10.1016/j.pss.2013.03.009
– ident: e_1_2_8_19_1
  doi: 10.1016/j.pepi.2009.02.004
– start-page: 2887
  volume-title: Lunar science conference, 6th
  year: 1975
  ident: e_1_2_8_15_1
– volume-title: An introduction to statistical learning with applications in R
  year: 2013
  ident: e_1_2_8_69_1
– ident: e_1_2_8_58_1
  doi: 10.1007/bf00116251
– ident: e_1_2_8_57_1
  doi: 10.1002/widm.1301
– ident: e_1_2_8_22_1
  doi: 10.1007/s11214‐019‐0613‐y
– ident: e_1_2_8_13_1
  doi: 10.1785/gssrl.70.2.154
– ident: e_1_2_8_64_1
  doi: 10.1093/nsr/nwad329
– ident: e_1_2_8_42_1
  doi: 10.1029/rg005i002p00173
– ident: e_1_2_8_39_1
  doi: 10.5281/zenodo.11103122
– ident: e_1_2_8_28_1
  doi: 10.1002/2014JE004661
– start-page: 278
  volume-title: Proceedings of 3rd international conference on document analysis and recognition
  year: 1995
  ident: e_1_2_8_24_1
– ident: e_1_2_8_37_1
  doi: 10.1016/B978-0-444-53802-4.00167-6
– ident: e_1_2_8_41_1
– ident: e_1_2_8_17_1
  doi: 10.5281/zenodo.8216315
– ident: e_1_2_8_38_1
– year: 2019
  ident: e_1_2_8_59_1
  article-title: Skyfield: Generate high precision research‐grade positions for stars, planets, moons, and Earth satellites
  publication-title: Astrophysics Source Code Library
– ident: e_1_2_8_29_1
  doi: 10.1029/2001je001658
– ident: e_1_2_8_9_1
  doi: 10.1029/2006je002847
– ident: e_1_2_8_65_1
  doi: 10.1029/2008je003286
– ident: e_1_2_8_11_1
  doi: 10.1016/0019‐1035(67)90044‐9
– volume-title: Classification and regression trees
  year: 1984
  ident: e_1_2_8_8_1
– ident: e_1_2_8_12_1
  doi: 10.1029/JB083iB02p00845
– volume: 491
  year: 1981
  ident: e_1_2_8_48_1
  article-title: Passive seismic experiment long‐period event catalog
  publication-title: Galveston Geophysics Laboratory Contribution
SSID ssj0003320807
Score 2.2580001
Snippet In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a...
Abstract In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite...
SourceID hal
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms classification
deep moonquakes
farside seismic suite
machine learning
Moon
Sciences of the Universe
Title Predicting Deep Moonquake Source Regions Using Their Temporal and Spatial Patterns and Machine Learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JH000117
https://hal.science/hal-05070626
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoWVgQCBDlUVkIBoaIxM6rYwUtUURQVVqpW2QnlyKB0tIHI7-dOydUZUFiyWCdPFxs33fn7z4zdo1BXEtiqolQ-ZaLK9hSGOktx4EQMlVoT1G_c_LsR2M3nniTuuBGvTCVPsSm4EY7w5zXtMGVXtZiA6SRSe9-x5HBNEGD7VJ3LWnnC3ewqbFIKeyqY1oQTQ0jlV1z33GKu-0JfkWlxitxIrexqgk2_QO2X6NE3q1-6yHbgfKITQcLulUhnjJ_AJjzZDYrP9bqDfiLKcHzIRC7eMkND4CP6A6AjyrtqXeuypzTA8S44PjAqGqiJQ0mhk8JvJZanR6zcb83uo-s-p0EK0M4J60gx5xHhiqQWmM4zjzhIQoBW2PkKSSEhcATDzCTUoXAA0rlmUZg4mmldNbRCMhOWLOclXDKOFr74ITgFT64YZ6rIgBH5UFma8ybNLTYzY-f0nklh5Gaa2zRSbf92WJX6MSNCWlYR92nlMZsRKA2plGfTovdGh__OVMaPw4xup79w_ac7eGoWxG6LlhztVjDJUKHlW6b9dE2iTd-k6_eNzJou2A
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoGWBBIECUTwvBwBCROJ8dK6CE0lRVSaVukZ1cigRKSmn5_dw5oSoLEmt08nCx_d7Zz-8Yu0IQVzYp1UQgPcPBGWxIRHrDsiCAVObKlfTeORp44djpTdxJ3eeU3sJU_hCrAzdaGXq_pgVOB9K12wCZZFLj716oSY3fYJuOJ3xamcIZrg5ZbFuY1ZNpQTo1hCqzFr_jELfrA_yCpcYriSLXyapGm-4u26lpIu9U_3WPbUCxz6bDOV2rkFCZ3wPMeFSWxcdSvgF_0WfwfAQkL_7kWgjAY7oE4HFlPvXOZZFx6kCMM44Pta0mRtLHSAsqgddeq9MDNu4-xHehUTdKMFLkc7bhZ1j02IH0baUQj1NXuEhDwFQIPbkNQS5wywMspWQucIeSWaqQmbhKSpW2FTKyQ9YsygKOGMdoD6wA3NwDJ8gymftgycxPTYWFk4IWu_7JUzKr_DASfY8t2sl6PlvsEpO4CiET67DTT-ibiRTUxDrqy2qxG53jP0dKeo8jhNfjf8ResK0wjvpJ_2nwfMK2McKp1F2nrLmYL-EMecRCneu58g2S87ym
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gngRRcX6XEQPHoJ5Jz0Wa421LaG20FvYTSYVlLTW1t_vzCaWehG8LsMeZh_zzcy33wJcUxBXDjPV7FD6hks72JAU6Q3LwhBTmStP8nvnXt-PRm5n7I2rghu_hSn1IVYFNz4Z-r7mAz7L8kpsgDUy-d_vTqQxTbAJW7rfx8rObryqsTiObZYvpm2mqVGkMivuO01xtz7Br6i0-cqcyHWsqoNNew92K5QomuWy7sMGFgcwiefcVWGesmghzkRvOi0-lvINxYsuwYsBMrv4U2gegBhyD0AMS-2pdyGLTPAHxLThRKxVNcmSB3uaT4miklqdHMKo_TC8j4zqnwQjJTjnGEFGOY8TysBRisJx6tkeoRA0FXkkdzDMbbrxkDIpmdt0QcksVQRMPCWlShuKANkR1IppgccgyNpHK0Qv99ENs0zmAVoyC1JTUd6ksA43P35KZqUcRqLb2HYjWfdnHa7IiSsT1rCOmt2Ex0xCoCalUV9WHW61j_-cKek8Dii6nvzD9hK241Y76T71n09hhwzcktt1BrXFfInnhCIW6kJvlW-sArvY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Deep+Moonquake+Source+Regions+Using+Their+Temporal+and+Spatial+Patterns+and+Machine+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Majstorovi%C4%87%2C+Josipa&rft.au=Lognonn%C3%A9%2C+Philippe&rft.au=Kawamura%2C+Taichi&rft.au=Panning%2C+Mark+P.&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1029%2F2023JH000117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023JH000117
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon