Predicting Deep Moonquake Source Regions Using Their Temporal and Spatial Patterns and Machine Learning
In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon...
Saved in:
Published in | Journal of geophysical research. Machine learning and computation Vol. 1; no. 2 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
American Geophysical Union/Wiley
01.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers.
Plain Language Summary
Future space missions will provide us with new in situ ground vibration measurements of the Moon. From the Apollo missions in 1970, we know that the Moon can produce various seismic events. The most numerous ones are deep moonquakes (DMQs), which are events associated with the displacement deep within the lunar interior. These events occur in specific source regions, and their occurrence is related to the monthly motion of the Moon around the Earth. To further study lunar interior and DMQs with future missions, we need to define a way to relate the new data with the existing Apollo data. Due to the single‐station nature of the future deployment, the mapping between these two data sets is challenging with classical techniques. Therefore, in this study, we tackle this issue using machine learning (ML). We propose a model that is able to classify DMQs source regions using only the time of the occurrence of quakes. We show that models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer source regions. This gives us a good preliminary location of the DMQs source regions and an opportunity to detect them with future lunar missions.
Key Points
We study the seismic data acquired during the Apollo missions for the future single‐station deployment on the far side of the Moon
We propose the classification model of deep moonquake source regions using only their occurrence times
The models perform with accuracy greater than 70% when trained to classify combinations of four or fewer source regions |
---|---|
AbstractList | In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers.
Future space missions will provide us with new in situ ground vibration measurements of the Moon. From the Apollo missions in 1970, we know that the Moon can produce various seismic events. The most numerous ones are deep moonquakes (DMQs), which are events associated with the displacement deep within the lunar interior. These events occur in specific source regions, and their occurrence is related to the monthly motion of the Moon around the Earth. To further study lunar interior and DMQs with future missions, we need to define a way to relate the new data with the existing Apollo data. Due to the single‐station nature of the future deployment, the mapping between these two data sets is challenging with classical techniques. Therefore, in this study, we tackle this issue using machine learning (ML). We propose a model that is able to classify DMQs source regions using only the time of the occurrence of quakes. We show that models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer source regions. This gives us a good preliminary location of the DMQs source regions and an opportunity to detect them with future lunar missions.
We study the seismic data acquired during the Apollo missions for the future single‐station deployment on the far side of the Moon
We propose the classification model of deep moonquake source regions using only their occurrence times
The models perform with accuracy greater than 70% when trained to classify combinations of four or fewer source regions Abstract In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers. In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a package of two seismometers recently selected by NASA to fly on a commercial lander. The new data should provide us with new insights into Moon's seismic activity, its interior, and composition. To fully benefit from the new data, we need to take advantage of the data acquired during the Apollo missions. The problem of relating new and old data is complex due to the single‐station nature of the future deployment. In this study, we tackle this issue by developing a machine learning model in the context of the deep moonquake (DMQ) classification problem. The DMQs form the largest group of detected events from Apollo data, and their source regions have been located and are known to exhibit temporal and spatial patterns connected with the monthly lunar tidal periods. Therefore, we propose to utilize a machine learning (ML) algorithm named random forest to identify DMQs source regions without using waveform information and only using the lunar orbital parameters related to DMQs time occurrences. We show that ML models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer different source regions. This approach gives us a good first location approximation of the DMQs source regions and opens up a new approach to their location estimate when captured by the future FSS single‐station seismometers. Plain Language Summary Future space missions will provide us with new in situ ground vibration measurements of the Moon. From the Apollo missions in 1970, we know that the Moon can produce various seismic events. The most numerous ones are deep moonquakes (DMQs), which are events associated with the displacement deep within the lunar interior. These events occur in specific source regions, and their occurrence is related to the monthly motion of the Moon around the Earth. To further study lunar interior and DMQs with future missions, we need to define a way to relate the new data with the existing Apollo data. Due to the single‐station nature of the future deployment, the mapping between these two data sets is challenging with classical techniques. Therefore, in this study, we tackle this issue using machine learning (ML). We propose a model that is able to classify DMQs source regions using only the time of the occurrence of quakes. We show that models perform well (with an accuracy >70%) when they are trained to classify 4 or fewer source regions. This gives us a good preliminary location of the DMQs source regions and an opportunity to detect them with future lunar missions. Key Points We study the seismic data acquired during the Apollo missions for the future single‐station deployment on the far side of the Moon We propose the classification model of deep moonquake source regions using only their occurrence times The models perform with accuracy greater than 70% when trained to classify combinations of four or fewer source regions |
Author | Kawamura, Taichi Panning, Mark P. Majstorović, Josipa Lognonné, Philippe |
Author_xml | – sequence: 1 givenname: Josipa orcidid: 0000-0002-2116-1247 surname: Majstorović fullname: Majstorović, Josipa email: josipa.majstorovic@protonmail.com organization: CNRS – sequence: 2 givenname: Philippe orcidid: 0000-0002-1014-920X surname: Lognonné fullname: Lognonné, Philippe organization: CNRS – sequence: 3 givenname: Taichi orcidid: 0000-0001-5246-5561 surname: Kawamura fullname: Kawamura, Taichi organization: CNRS – sequence: 4 givenname: Mark P. orcidid: 0000-0002-2041-3190 surname: Panning fullname: Panning, Mark P. organization: California Institute of Technology |
BackLink | https://hal.science/hal-05070626$$DView record in HAL |
BookMark | eNp90E1PwkAQBuCNwUREbv6AvZqIzu7SryNBBUmJhI9zs91OYbXs1m3R8O9tgzGcPM3kzTNzeK9Jx1iDhNwyeGDAo0cOXMymAMBYcEG6PIrEwOMMOmf7FelX1XtjhOAQQtAl24XDTKtamy19Qizp3FrzeZAfSFf24BTSJW61NRXdVK1Z71A7usZ9aZ0sqDQZXZWy1s2-kHWNrpFtOJdqpw3SGKUzzeENucxlUWH_d_bI5uV5PZ4O4rfJ63gUDxTzQAyCjPlDEcpApCnzuPK4F0YCIQ2HQS4wzHngc2RDkDnnLJKZSsEXXiplqqKU-aJH7k5_d7JISqf30h0TK3UyHcVJm4EHAfjc_2KNvT9Z5WxVOcz_DhgkbafJeacNhxP_1gUe_7XJbLJkXIgflkZ3tQ |
Cites_doi | 10.1038/s41561‐020‐0544‐y 10.1007/bf00058655 10.1029/2004JE002332 10.1016/j.pss.2010.12.007 10.1038/d41586‐022‐01253‐6 10.1016/j.pepi.2006.05.009 10.1016/s0012‐821x(03)00172‐9 10.1016/j.pepi.2010.07.009 10.1029/jb087is01p0a117 10.1029/1999gl008452 10.1007/s11214‐020‐00709‐3 10.1002/9781118782118.ch1 10.1038/d41586‐022‐01252‐7 10.1002/2015GL065335 10.1007/s11214‐018‐0574‐6 10.1007/978‐94‐010‐3102‐8_7 10.1016/0031‐9201(77)90175‐3 10.1029/JB088iB01p00677 10.1016/j.icarus.2012.06.026 10.1038/s41561‐020‐0536‐y 10.3847/25c2cfeb.674dcfdf 10.1002/2016je005147 10.1109/AERO55745.2023.10115559 10.1126/science.1199375 10.3847/psj/ad47bc 10.1785/gssrl.81.3.530 10.1023/a:1010933404324 10.1007/s10686‐022‐09857‐6 10.1016/j.pepi.2003.07.017 10.1016/j.pepi.2011.06.015 10.1029/2005je002414 10.1029/2022JE007364 10.1016/0031‐9201(88)90056‐8 10.1029/RG012i004p00539 10.5281/zenodo.7787610 10.1126/science.196.4293.979 10.2514/6.2023-1880 10.1109/access.2022.3192514 10.1007/s11434‐008‐0484‐1 10.1109/MCSE.2007.55 10.1016/j.pss.2013.03.009 10.1016/j.pepi.2009.02.004 10.1007/bf00116251 10.1002/widm.1301 10.1007/s11214‐019‐0613‐y 10.1785/gssrl.70.2.154 10.1093/nsr/nwad329 10.1029/rg005i002p00173 10.5281/zenodo.11103122 10.1002/2014JE004661 10.1016/B978-0-444-53802-4.00167-6 10.5281/zenodo.8216315 10.1029/2001je001658 10.1029/2006je002847 10.1029/2008je003286 10.1016/0019‐1035(67)90044‐9 10.1029/JB083iB02p00845 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. Attribution |
Copyright_xml | – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union. – notice: Attribution |
DBID | 24P AAYXX CITATION 1XC VOOES |
DOI | 10.1029/2023JH000117 |
DatabaseName | Wiley Online Library Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2993-5210 |
EndPage | n/a |
ExternalDocumentID | oai_HAL_hal_05070626v1 10_1029_2023JH000117 JGR123 |
Genre | researchArticle |
GrantInformation_xml | – fundername: California Institute of Technology – fundername: LABEX UnivEarthS funderid: ANR‐10‐LABX‐0023 – fundername: IDEX Paris Cité funderid: ANR‐18‐IDEX‐0001 – fundername: NASA Farside Seismic Suite project – fundername: Pole Spatial de l’Université Paris Cité – fundername: National Aeronautics and Space Administration funderid: 80NM0018D0004 – fundername: Jet Propulsion Laboratory |
GroupedDBID | 24P ACCMX ALMA_UNASSIGNED_HOLDINGS 0R~ AAYXX CITATION GROUPED_DOAJ M~E 1XC AAMMB AEFGJ AGXDD AIDQK AIDYY VOOES WIN |
ID | FETCH-LOGICAL-c1503-7d16438a73bb152c525893e0b847f3e8f2762e140af2219adcb0635baabc9b163 |
IEDL.DBID | 24P |
ISSN | 2993-5210 |
IngestDate | Fri Aug 01 06:21:40 EDT 2025 Tue Jul 01 03:43:13 EDT 2025 Wed Jan 22 17:18:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1503-7d16438a73bb152c525893e0b847f3e8f2762e140af2219adcb0635baabc9b163 |
ORCID | 0000-0001-5246-5561 0000-0002-1014-920X 0000-0002-2116-1247 0000-0002-2041-3190 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JH000117 |
PageCount | 22 |
ParticipantIDs | hal_primary_oai_HAL_hal_05070626v1 crossref_primary_10_1029_2023JH000117 wiley_primary_10_1029_2023JH000117_JGR123 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Journal of geophysical research. Machine learning and computation |
PublicationYear | 2024 |
Publisher | American Geophysical Union/Wiley |
Publisher_xml | – name: American Geophysical Union/Wiley |
References | 1974; 12 2020a; 216 2020; 13 2011; 12 2011; 59 2024 2010; 182 2001; 45 2009; 114 1986; 1 2024; 5 2015; 42 2007; 9 2002; 107 2020b 1984 2022; 605 1971; 2 2017; 122 1996; 24 1975; 3 2022; 127 2021; 2021 2015; 2 2014; 119 2019; 9 2012; 220 2020; 22s41 2000; 27 2003; 139 2023; 11 2005; 110 2009; 173 1988; 52 1991 2008; 53 2010; 81 2006; 159 1995; 1 2003; 211 2011; 331 1967; 7 2007; 112 1968; 78 1981; 491 2021; 53 2023 1977; 14 2020 2008; XXXIX 1978; 83 1982; 87 1967; 5 2019; 215 2019 2013; 81 2022; 10 2022; 54 2013 1999; 70 2011; 188 1977; 196 1983; 88 e_1_2_8_28_1 Moore P. (e_1_2_8_44_1) 1968; 78 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 Bills B. G. (e_1_2_8_5_1) 2008 Dainty A. (e_1_2_8_15_1) 1975 e_1_2_8_7_1 e_1_2_8_9_1 Witten D. (e_1_2_8_69_1) 2013 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 Pedregosa F. (e_1_2_8_53_1) 2011; 12 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 Ho T. K. (e_1_2_8_24_1) 1995 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_38_1 e_1_2_8_57_1 Nakamura Y. (e_1_2_8_48_1) 1981; 491 Panning M. (e_1_2_8_52_1) 2021 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 Benna M. (e_1_2_8_3_1) 2020 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_21_1 Langer H. (e_1_2_8_33_1) 2019 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_65_1 Breiman L. (e_1_2_8_8_1) 1984 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 Rhodes B. (e_1_2_8_59_1) 2019 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_54_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 87 start-page: A117 issue: S01 year: 1982 end-page: A123 article-title: Apollo lunar seismic experiment—Final summary publication-title: Journal of Geophysical Research – volume: 81 start-page: 530 issue: 3 year: 2010 end-page: 533 article-title: Obspy: A python toolbox for seismology publication-title: Seismological Research Letters – volume: 78 start-page: 138 year: 1968 end-page: 144 article-title: Transient lunar phenomena: A review, 1967 publication-title: The Journal of the British Astronomical Association – volume: 24 start-page: 123 issue: 2 year: 1996 end-page: 140 article-title: Bagging predictors publication-title: Machine Learning – volume: 159 start-page: 140 issue: 3–4 year: 2006 end-page: 166 article-title: A seismic model of the lunar mantle and constraints on temperature and mineralogy publication-title: Physics of the Earth and Planetary Interiors – volume: 2 start-page: 155 year: 1971 end-page: 172 article-title: Seismology of the Moon and implications on internal structure, origin and evolution publication-title: Highlights of Astronomy – volume: 188 start-page: 96 issue: 1–2 year: 2011 end-page: 113 article-title: Very preliminary reference Moon model publication-title: Physics of the Earth and Planetary Interiors – volume: 52 start-page: 41 issue: 1 year: 1988 end-page: 55 article-title: The influence of tidal stresses on deep moonquake activity publication-title: Physics of the Earth and Planetary Interiors – volume: 81 start-page: 18 year: 2013 end-page: 31 article-title: On the possibility of lunar core phase detection using new seismometers for soft‐landers in future lunar missions publication-title: Planetary and Space Science – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Machine Learning – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – year: 2024 – volume: 13 start-page: 213 issue: 3 year: 2020 end-page: 220 article-title: Constraints on the shallow elastic and anelastic structure of Mars from insight seismic data publication-title: Nature Geoscience – volume: 215 start-page: 1 issue: 8 year: 2019 end-page: 47 article-title: Lunar seismology: An update on interior structure models publication-title: Space Science Reviews – volume: 7 start-page: 29 issue: 1–3 year: 1967 end-page: 41 article-title: Operation Moon blink and report of observations of lunar transient phenomena publication-title: Icarus – volume: 114 issue: E5 year: 2009 article-title: Constraints on deep moonquake focal mechanisms through analyses of tidal stress publication-title: Journal of Geophysical Research – volume: 53 issue: 4 year: 2021 article-title: The scientific rationale for deployment of a long‐lived geophysical network on the Moon publication-title: Bulletin of the AAS – volume: 88 start-page: 677 issue: B1 year: 1983 end-page: 686 article-title: Seismic velocity structure of the lunar mantle publication-title: Journal of Geophysical Research – volume: 12 start-page: 1 issue: 1 year: 1974 end-page: 21 article-title: Lunar seismicity, structure, and tectonics publication-title: Reviews of Geophysics – volume: 182 start-page: 152 issue: 3–4 year: 2010 end-page: 160 article-title: A simple physical model for deep moonquake occurrence times publication-title: Physics of the Earth and Planetary Interiors – volume: 83 start-page: 845 issue: B2 year: 1978 end-page: 853 article-title: Tidal stresses in the Moon publication-title: Journal of Geophysical Research – volume: 491 year: 1981 article-title: Passive seismic experiment long‐period event catalog publication-title: Galveston Geophysics Laboratory Contribution – volume: 5 issue: 6 year: 2024 article-title: Tidal seismicity in the Moon and implications for the rocky interior of Europa publication-title: Planetary and Space Science – volume: 9 issue: 3 year: 2019 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery – volume: 112 issue: E9 year: 2007 article-title: Temporal and spatial properties of some deep moonquake clusters publication-title: Journal of Geophysical Research – volume: 173 start-page: 365 issue: 3 year: 2009 end-page: 374 article-title: The physical mechanisms of deep moonquakes and intermediate‐depth earthquakes: How similar and how different? publication-title: Physics of the Earth and Planetary Interiors – start-page: 1 year: 2023 end-page: 9 – volume: 110 issue: E1 year: 2005 article-title: Farside deep moonquakes and deep interior of the Moon publication-title: Journal of Geophysical Research – volume: 1 start-page: 278 year: 1995 end-page: 282 – volume: 605 start-page: 208 issue: 7909 year: 2022 end-page: 211 article-title: These six countries are about to go to the moon—Here’s why publication-title: Nature – year: 2019 – volume: 2 start-page: 65 year: 2015 end-page: 120 article-title: 10.03—Planetary seismology publication-title: Treatise on Geophysics – volume: 59 start-page: 343 issue: 4 year: 2011 end-page: 354 article-title: Optimisation of seismic network design: Application to a geophysical international lunar network publication-title: Planetary and Space Science – volume: 119 start-page: 2197 issue: 10 year: 2014 end-page: 2221 article-title: Geophysical evidence for melt in the deep lunar interior and implications for lunar evolution publication-title: Journal of Geophysical Research: Planets – volume: 13 start-page: 183 issue: 3 year: 2020 end-page: 189 article-title: Initial results from the insight mission on Mars publication-title: Nature Geoscience – volume: 53 start-page: 3897 issue: 24 year: 2008 end-page: 3907 article-title: Seismic tomography of the Moon publication-title: Chinese Science Bulletin – volume: 70 start-page: 154 issue: 2 year: 1999 end-page: 160 article-title: The taup toolkit: Flexible seismic travel‐time and ray‐path utilities publication-title: Seismological Research Letters – volume: 54 start-page: 617 issue: 2–3 year: 2022 end-page: 640 article-title: An autonomous lunar geophysical experiment package (ALGEP) for future space missions: In response to call for white papers for the voyage 2050 long‐term plan in the esa science program publication-title: Experimental Astronomy – volume: XXXIX year: 2008 article-title: Influence of Earth‐Moon orbit geometry on deep moonquake occurrence times publication-title: Lunar and Planetary Science – volume: 11 issue: 2 year: 2023 article-title: Scientific objectives and payload configuration of the Chang’E‐7 mission publication-title: National Science Review – volume: 127 issue: 12 year: 2022 article-title: Stresses in the lunar interior: Insights from slip directions in the a01 deep moonquake nest publication-title: Journal of Geophysical Research: Planets – volume: 139 start-page: 197 issue: 3 year: 2003 end-page: 205 article-title: New identification of deep moonquakes in the Apollo lunar seismic data publication-title: Physics of the Earth and Planetary Interiors – volume: 605 start-page: 212 issue: 7909 year: 2022 end-page: 216 article-title: The $93‐billion plan to put astronauts back on the Moon publication-title: Nature – volume: 110 issue: E10 year: 2005 article-title: New events discovered in the apollo lunar seismic data publication-title: Journal of Geophysical Research – volume: 220 start-page: 971 issue: 2 year: 2012 end-page: 980 article-title: Uncertainty of Apollo deep moonquake locations and implications for future network designs publication-title: Icarus – year: 1984 – volume: 42 start-page: 7351 issue: 18 year: 2015 end-page: 7358 article-title: Internal structure of the Moon inferred from Apollo seismic data and selenodetic data from GRAIL and LLR publication-title: Geophysical Research Letters – volume: 12 start-page: 539 issue: 4 year: 1974 end-page: 567 article-title: Structure of the Moon publication-title: Reviews of Geophysics – volume: 14 start-page: 224 issue: 3 year: 1977 end-page: 273 article-title: Lunar seismicity and tectonics publication-title: Physics of the Earth and Planetary Interiors – volume: 5 start-page: 173 issue: 2 year: 1967 end-page: 189 article-title: An analysis of lunar events publication-title: Reviews of Geophysics – volume: 122 start-page: 1487 issue: 7 year: 2017 end-page: 1504 article-title: Evaluation of deep moonquake source parameters: Implication for fault characteristics and thermal state publication-title: Journal of Geophysical Research: Planets – volume: 107 start-page: 3‐1 issue: E6 year: 2002 end-page: 3‐23 article-title: An inquiry into the lunar interior: A nonlinear inversion of the Apollo lunar seismic data publication-title: Journal of Geophysical Research – year: 2019 article-title: Skyfield: Generate high precision research‐grade positions for stars, planets, moons, and Earth satellites publication-title: Astrophysics Source Code Library – volume: 216 issue: 5 year: 2020a article-title: Lunar seismology: A data and instrumentation review publication-title: Space Science Reviews – volume: 211 start-page: 27 issue: 1–2 year: 2003 end-page: 44 article-title: A new seismic model of the Moon: Implications for structure, thermal evolution and formation of the Moon publication-title: Earth and Planetary Science Letters – volume: 196 start-page: 979 issue: 4293 year: 1977 end-page: 981 article-title: Moonquakes: Mechanisms and relation to tidal stresses publication-title: Science – volume: 9 start-page: 90 issue: 3 year: 2007 end-page: 95 article-title: Matplotlib: A 2D graphics environment publication-title: Computing in Science & Engineering – year: 2020 – year: 2023 – volume: 27 start-page: 1591 issue: 11 year: 2000 end-page: 1594 article-title: A new seismic velocity model for the Moon from a Monte Carlo inversion of the Apollo lunar seismic data publication-title: Geophysical Research Letters – volume: 331 start-page: 309 issue: 6015 year: 2011 end-page: 312 article-title: Seismic detection of the lunar core publication-title: Science – volume: 215 start-page: 1 year: 2019 end-page: 170 article-title: SEIS: Insight’s seismic experiment for internal structure of Mars publication-title: Space Science Reviews – volume: 2021 start-page: P54C–01 year: 2021 – volume: 3 start-page: 2887 year: 1975 end-page: 2897 – volume: 22s41 start-page: 5022 year: 2020 – year: 1991 – year: 2020b – volume: 1 start-page: 81 year: 1986 end-page: 106 article-title: Induction of decision trees publication-title: Machine Learning – volume: 10 start-page: 80448 year: 2022 end-page: 80462 article-title: Why is multiclass classification hard? publication-title: IEEE Access – year: 2013 – ident: e_1_2_8_2_1 doi: 10.1038/s41561‐020‐0544‐y – ident: e_1_2_8_6_1 doi: 10.1007/bf00058655 – ident: e_1_2_8_47_1 doi: 10.1029/2004JE002332 – ident: e_1_2_8_72_1 doi: 10.1016/j.pss.2010.12.007 – ident: e_1_2_8_70_1 doi: 10.1038/d41586‐022‐01253‐6 – ident: e_1_2_8_20_1 doi: 10.1016/j.pepi.2006.05.009 – ident: e_1_2_8_36_1 doi: 10.1016/s0012‐821x(03)00172‐9 – ident: e_1_2_8_66_1 doi: 10.1016/j.pepi.2010.07.009 – ident: e_1_2_8_49_1 doi: 10.1029/jb087is01p0a117 – ident: e_1_2_8_30_1 doi: 10.1029/1999gl008452 – ident: e_1_2_8_50_1 doi: 10.1007/s11214‐020‐00709‐3 – ident: e_1_2_8_32_1 doi: 10.1002/9781118782118.ch1 – start-page: P54C–01 volume-title: AGU fall meeting abstracts year: 2021 ident: e_1_2_8_52_1 – ident: e_1_2_8_54_1 doi: 10.1038/d41586‐022‐01252‐7 – ident: e_1_2_8_40_1 doi: 10.1002/2015GL065335 – ident: e_1_2_8_34_1 doi: 10.1007/s11214‐018‐0574‐6 – ident: e_1_2_8_18_1 doi: 10.1007/978‐94‐010‐3102‐8_7 – ident: e_1_2_8_31_1 doi: 10.1016/0031‐9201(77)90175‐3 – ident: e_1_2_8_45_1 doi: 10.1029/JB088iB01p00677 – ident: e_1_2_8_23_1 doi: 10.1016/j.icarus.2012.06.026 – ident: e_1_2_8_35_1 doi: 10.1038/s41561‐020‐0536‐y – ident: e_1_2_8_68_1 doi: 10.3847/25c2cfeb.674dcfdf – ident: e_1_2_8_27_1 doi: 10.1002/2016je005147 – ident: e_1_2_8_60_1 doi: 10.1109/AERO55745.2023.10115559 – ident: e_1_2_8_67_1 doi: 10.1126/science.1199375 – ident: e_1_2_8_55_1 doi: 10.3847/psj/ad47bc – ident: e_1_2_8_4_1 doi: 10.1785/gssrl.81.3.530 – ident: e_1_2_8_7_1 doi: 10.1023/a:1010933404324 – ident: e_1_2_8_26_1 doi: 10.1007/s10686‐022‐09857‐6 – volume: 78 start-page: 138 year: 1968 ident: e_1_2_8_44_1 article-title: Transient lunar phenomena: A review, 1967 publication-title: The Journal of the British Astronomical Association – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_8_53_1 article-title: Scikit‐learn: Machine learning in python publication-title: Journal of Machine Learning Research – ident: e_1_2_8_46_1 doi: 10.1016/j.pepi.2003.07.017 – ident: e_1_2_8_21_1 doi: 10.1016/j.pepi.2011.06.015 – ident: e_1_2_8_10_1 doi: 10.1029/2005je002414 – volume-title: Advantages and pitfalls of pattern recognition: Selected cases in geophysics year: 2019 ident: e_1_2_8_33_1 – ident: e_1_2_8_63_1 doi: 10.1029/2022JE007364 – start-page: 5022 volume-title: Lunar surface science workshop year: 2020 ident: e_1_2_8_3_1 – ident: e_1_2_8_43_1 doi: 10.1016/0031‐9201(88)90056‐8 – ident: e_1_2_8_61_1 doi: 10.1029/RG012i004p00539 – year: 2008 ident: e_1_2_8_5_1 article-title: Influence of Earth‐Moon orbit geometry on deep moonquake occurrence times publication-title: Lunar and Planetary Science – ident: e_1_2_8_51_1 doi: 10.5281/zenodo.7787610 – ident: e_1_2_8_62_1 doi: 10.1126/science.196.4293.979 – ident: e_1_2_8_14_1 doi: 10.2514/6.2023-1880 – ident: e_1_2_8_16_1 doi: 10.1109/access.2022.3192514 – ident: e_1_2_8_73_1 doi: 10.1007/s11434‐008‐0484‐1 – ident: e_1_2_8_56_1 – ident: e_1_2_8_25_1 doi: 10.1109/MCSE.2007.55 – ident: e_1_2_8_71_1 doi: 10.1016/j.pss.2013.03.009 – ident: e_1_2_8_19_1 doi: 10.1016/j.pepi.2009.02.004 – start-page: 2887 volume-title: Lunar science conference, 6th year: 1975 ident: e_1_2_8_15_1 – volume-title: An introduction to statistical learning with applications in R year: 2013 ident: e_1_2_8_69_1 – ident: e_1_2_8_58_1 doi: 10.1007/bf00116251 – ident: e_1_2_8_57_1 doi: 10.1002/widm.1301 – ident: e_1_2_8_22_1 doi: 10.1007/s11214‐019‐0613‐y – ident: e_1_2_8_13_1 doi: 10.1785/gssrl.70.2.154 – ident: e_1_2_8_64_1 doi: 10.1093/nsr/nwad329 – ident: e_1_2_8_42_1 doi: 10.1029/rg005i002p00173 – ident: e_1_2_8_39_1 doi: 10.5281/zenodo.11103122 – ident: e_1_2_8_28_1 doi: 10.1002/2014JE004661 – start-page: 278 volume-title: Proceedings of 3rd international conference on document analysis and recognition year: 1995 ident: e_1_2_8_24_1 – ident: e_1_2_8_37_1 doi: 10.1016/B978-0-444-53802-4.00167-6 – ident: e_1_2_8_41_1 – ident: e_1_2_8_17_1 doi: 10.5281/zenodo.8216315 – ident: e_1_2_8_38_1 – year: 2019 ident: e_1_2_8_59_1 article-title: Skyfield: Generate high precision research‐grade positions for stars, planets, moons, and Earth satellites publication-title: Astrophysics Source Code Library – ident: e_1_2_8_29_1 doi: 10.1029/2001je001658 – ident: e_1_2_8_9_1 doi: 10.1029/2006je002847 – ident: e_1_2_8_65_1 doi: 10.1029/2008je003286 – ident: e_1_2_8_11_1 doi: 10.1016/0019‐1035(67)90044‐9 – volume-title: Classification and regression trees year: 1984 ident: e_1_2_8_8_1 – ident: e_1_2_8_12_1 doi: 10.1029/JB083iB02p00845 – volume: 491 year: 1981 ident: e_1_2_8_48_1 article-title: Passive seismic experiment long‐period event catalog publication-title: Galveston Geophysics Laboratory Contribution |
SSID | ssj0003320807 |
Score | 2.2580001 |
Snippet | In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite (FSS), a... Abstract In the near future, lunar exploration should be enhanced by deploying a new seismic station on the farside of the Moon, the Farside Seismic Suite... |
SourceID | hal crossref wiley |
SourceType | Open Access Repository Index Database Publisher |
SubjectTerms | classification deep moonquakes farside seismic suite machine learning Moon Sciences of the Universe |
Title | Predicting Deep Moonquake Source Regions Using Their Temporal and Spatial Patterns and Machine Learning |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2023JH000117 https://hal.science/hal-05070626 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZoWVgQCBDlUVkIBoaIxM6rYwUtUURQVVqpW2QnlyKB0tIHI7-dOydUZUFiyWCdPFxs33fn7z4zdo1BXEtiqolQ-ZaLK9hSGOktx4EQMlVoT1G_c_LsR2M3nniTuuBGvTCVPsSm4EY7w5zXtMGVXtZiA6SRSe9-x5HBNEGD7VJ3LWnnC3ewqbFIKeyqY1oQTQ0jlV1z33GKu-0JfkWlxitxIrexqgk2_QO2X6NE3q1-6yHbgfKITQcLulUhnjJ_AJjzZDYrP9bqDfiLKcHzIRC7eMkND4CP6A6AjyrtqXeuypzTA8S44PjAqGqiJQ0mhk8JvJZanR6zcb83uo-s-p0EK0M4J60gx5xHhiqQWmM4zjzhIQoBW2PkKSSEhcATDzCTUoXAA0rlmUZg4mmldNbRCMhOWLOclXDKOFr74ITgFT64YZ6rIgBH5UFma8ybNLTYzY-f0nklh5Gaa2zRSbf92WJX6MSNCWlYR92nlMZsRKA2plGfTovdGh__OVMaPw4xup79w_ac7eGoWxG6LlhztVjDJUKHlW6b9dE2iTd-k6_eNzJou2A |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVoGWBBIECUTwvBwBCROJ8dK6CE0lRVSaVukZ1cigRKSmn5_dw5oSoLEmt08nCx_d7Zz-8Yu0IQVzYp1UQgPcPBGWxIRHrDsiCAVObKlfTeORp44djpTdxJ3eeU3sJU_hCrAzdaGXq_pgVOB9K12wCZZFLj716oSY3fYJuOJ3xamcIZrg5ZbFuY1ZNpQTo1hCqzFr_jELfrA_yCpcYriSLXyapGm-4u26lpIu9U_3WPbUCxz6bDOV2rkFCZ3wPMeFSWxcdSvgF_0WfwfAQkL_7kWgjAY7oE4HFlPvXOZZFx6kCMM44Pta0mRtLHSAsqgddeq9MDNu4-xHehUTdKMFLkc7bhZ1j02IH0baUQj1NXuEhDwFQIPbkNQS5wywMspWQucIeSWaqQmbhKSpW2FTKyQ9YsygKOGMdoD6wA3NwDJ8gymftgycxPTYWFk4IWu_7JUzKr_DASfY8t2sl6PlvsEpO4CiET67DTT-ibiRTUxDrqy2qxG53jP0dKeo8jhNfjf8ResK0wjvpJ_2nwfMK2McKp1F2nrLmYL-EMecRCneu58g2S87ym |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60gngRRcX6XEQPHoJ5Jz0Wa421LaG20FvYTSYVlLTW1t_vzCaWehG8LsMeZh_zzcy33wJcUxBXDjPV7FD6hks72JAU6Q3LwhBTmStP8nvnXt-PRm5n7I2rghu_hSn1IVYFNz4Z-r7mAz7L8kpsgDUy-d_vTqQxTbAJW7rfx8rObryqsTiObZYvpm2mqVGkMivuO01xtz7Br6i0-cqcyHWsqoNNew92K5QomuWy7sMGFgcwiefcVWGesmghzkRvOi0-lvINxYsuwYsBMrv4U2gegBhyD0AMS-2pdyGLTPAHxLThRKxVNcmSB3uaT4miklqdHMKo_TC8j4zqnwQjJTjnGEFGOY8TysBRisJx6tkeoRA0FXkkdzDMbbrxkDIpmdt0QcksVQRMPCWlShuKANkR1IppgccgyNpHK0Qv99ENs0zmAVoyC1JTUd6ksA43P35KZqUcRqLb2HYjWfdnHa7IiSsT1rCOmt2Ex0xCoCalUV9WHW61j_-cKek8Dii6nvzD9hK241Y76T71n09hhwzcktt1BrXFfInnhCIW6kJvlW-sArvY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Deep+Moonquake+Source+Regions+Using+Their+Temporal+and+Spatial+Patterns+and+Machine+Learning&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Majstorovi%C4%87%2C+Josipa&rft.au=Lognonn%C3%A9%2C+Philippe&rft.au=Kawamura%2C+Taichi&rft.au=Panning%2C+Mark+P.&rft.date=2024-06-01&rft.issn=2993-5210&rft.eissn=2993-5210&rft.volume=1&rft.issue=2&rft_id=info:doi/10.1029%2F2023JH000117&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2023JH000117 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon |