Augmented Four‐Dimensional Mesosphere and Lower Thermosphere Wind Field Reconstruction via the Physics‐Informed Machine Learning Approach HYPER

The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the interplay of gravity waves and turbulent motions. A thorough comprehension of this atmospheric region requires substantial observational infr...

Full description

Saved in:
Bibliographic Details
Published inJournal of geophysical research. Machine learning and computation Vol. 1; no. 3
Main Authors Urco, Juan M., Feraco, Fabio, Chau, Jorge L., Marino, Raffaele
Format Journal Article
LanguageEnglish
Published American Geophysical Union/Wiley 01.09.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the interplay of gravity waves and turbulent motions. A thorough comprehension of this atmospheric region requires substantial observational infrastructure, needed to resolve and disentangle its complex dynamics. State‐of‐the‐art observational methods struggle to accurately capture mesoscale dynamics due to the inherent difficulty to perform observations at MLT altitudes. A majority of the observational methods rely on assumptions such as homogeneity, smoothness of the prognostic fields, or zero vertical wind velocities, which may not hold in the upper atmosphere at the mesoscales. In this study, we introduce a novel machine learning‐based approach HYPER (HYdrodynamic Point‐wise Environment Reconstructor), designed to characterize MLT dynamics. HYPER utilizes a physics‐informed neural network to project sparse Doppler meteor detections into four‐dimensional time‐series arrays containing the Cartesian components of the velocity field. This method combines meteor radar observations with the physics prescribed by the Navier‐Stokes equations. The validation of HYPER was conducted through a series of benchmarks on numerical data and the application of our algorithm on actual meteor radar observations, all of which yielded realistic approximations of the reconstructed physical fields. This innovative approach represents a significant step toward an accurate characterization of the MLT dynamics, overcoming the limitations of existing methods, and providing valuable insights into the behavior of this poorly accessible region of the atmosphere. Plain Language Summary Multistatic meteor radars (MMR) have emerged as groundbreaking instruments poised to revolutionize the spatial and temporal coverage and resolution of observations in the mesosphere and lower thermosphere (MLT). In this pioneering study, we present a novel method named HYPER (HYdrodynamic Point‐wise Environment Reconstructor), which leverages sparsely sampled MMR Doppler projections to characterize the wind dynamics within the MLT. This cutting‐edge method synergizes meteor radar observations with the physics prescribed by the Navier‐Stokes equations, which govern the turbulent fluid dynamics in the MLT. To find approximate solutions to these complex equations within the observational domain, we employ a deep learning framework that aligns the neural network output with the equations of motion, ensuring the cumulative solution is tuned to the observational data. To validate our approach, we implemented virtual radar systems on the outputs of a general circulation model (GCM) and a high‐resolution direct numerical simulation (DNS) of atmospheric flow, both serving as ground‐truth 4D wind fields. Our compelling results reveal that the proposed method not only succeeds in retrieving realistic horizontal wind fields but also provides remarkably accurate estimates of vertical winds, even amidst the challenges posed by noisy Doppler observations. Key Points A method integrating physics‐informed neural networks with multistatic meteor radar detections, dubbed HYPER, to estimate 4D wind fields HYPER reproduces large‐scale and inertial range dynamics as observed in turbulent atmospheric simulations and global circulation models HYPER‐derived 4D mesoscale and mean vertical winds are physically realistic, with mesoscale vertical winds varying few m/s
AbstractList Abstract The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the interplay of gravity waves and turbulent motions. A thorough comprehension of this atmospheric region requires substantial observational infrastructure, needed to resolve and disentangle its complex dynamics. State‐of‐the‐art observational methods struggle to accurately capture mesoscale dynamics due to the inherent difficulty to perform observations at MLT altitudes. A majority of the observational methods rely on assumptions such as homogeneity, smoothness of the prognostic fields, or zero vertical wind velocities, which may not hold in the upper atmosphere at the mesoscales. In this study, we introduce a novel machine learning‐based approach HYPER (HYdrodynamic Point‐wise Environment Reconstructor), designed to characterize MLT dynamics. HYPER utilizes a physics‐informed neural network to project sparse Doppler meteor detections into four‐dimensional time‐series arrays containing the Cartesian components of the velocity field. This method combines meteor radar observations with the physics prescribed by the Navier‐Stokes equations. The validation of HYPER was conducted through a series of benchmarks on numerical data and the application of our algorithm on actual meteor radar observations, all of which yielded realistic approximations of the reconstructed physical fields. This innovative approach represents a significant step toward an accurate characterization of the MLT dynamics, overcoming the limitations of existing methods, and providing valuable insights into the behavior of this poorly accessible region of the atmosphere.
The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the interplay of gravity waves and turbulent motions. A thorough comprehension of this atmospheric region requires substantial observational infrastructure, needed to resolve and disentangle its complex dynamics. State‐of‐the‐art observational methods struggle to accurately capture mesoscale dynamics due to the inherent difficulty to perform observations at MLT altitudes. A majority of the observational methods rely on assumptions such as homogeneity, smoothness of the prognostic fields, or zero vertical wind velocities, which may not hold in the upper atmosphere at the mesoscales. In this study, we introduce a novel machine learning‐based approach HYPER (HYdrodynamic Point‐wise Environment Reconstructor), designed to characterize MLT dynamics. HYPER utilizes a physics‐informed neural network to project sparse Doppler meteor detections into four‐dimensional time‐series arrays containing the Cartesian components of the velocity field. This method combines meteor radar observations with the physics prescribed by the Navier‐Stokes equations. The validation of HYPER was conducted through a series of benchmarks on numerical data and the application of our algorithm on actual meteor radar observations, all of which yielded realistic approximations of the reconstructed physical fields. This innovative approach represents a significant step toward an accurate characterization of the MLT dynamics, overcoming the limitations of existing methods, and providing valuable insights into the behavior of this poorly accessible region of the atmosphere. Multistatic meteor radars (MMR) have emerged as groundbreaking instruments poised to revolutionize the spatial and temporal coverage and resolution of observations in the mesosphere and lower thermosphere (MLT). In this pioneering study, we present a novel method named HYPER (HYdrodynamic Point‐wise Environment Reconstructor), which leverages sparsely sampled MMR Doppler projections to characterize the wind dynamics within the MLT. This cutting‐edge method synergizes meteor radar observations with the physics prescribed by the Navier‐Stokes equations, which govern the turbulent fluid dynamics in the MLT. To find approximate solutions to these complex equations within the observational domain, we employ a deep learning framework that aligns the neural network output with the equations of motion, ensuring the cumulative solution is tuned to the observational data. To validate our approach, we implemented virtual radar systems on the outputs of a general circulation model (GCM) and a high‐resolution direct numerical simulation (DNS) of atmospheric flow, both serving as ground‐truth 4D wind fields. Our compelling results reveal that the proposed method not only succeeds in retrieving realistic horizontal wind fields but also provides remarkably accurate estimates of vertical winds, even amidst the challenges posed by noisy Doppler observations. A method integrating physics‐informed neural networks with multistatic meteor radar detections, dubbed HYPER, to estimate 4D wind fields HYPER reproduces large‐scale and inertial range dynamics as observed in turbulent atmospheric simulations and global circulation models HYPER‐derived 4D mesoscale and mean vertical winds are physically realistic, with mesoscale vertical winds varying few m/s
The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the interplay of gravity waves and turbulent motions. A thorough comprehension of this atmospheric region requires substantial observational infrastructure, needed to resolve and disentangle its complex dynamics. State‐of‐the‐art observational methods struggle to accurately capture mesoscale dynamics due to the inherent difficulty to perform observations at MLT altitudes. A majority of the observational methods rely on assumptions such as homogeneity, smoothness of the prognostic fields, or zero vertical wind velocities, which may not hold in the upper atmosphere at the mesoscales. In this study, we introduce a novel machine learning‐based approach HYPER (HYdrodynamic Point‐wise Environment Reconstructor), designed to characterize MLT dynamics. HYPER utilizes a physics‐informed neural network to project sparse Doppler meteor detections into four‐dimensional time‐series arrays containing the Cartesian components of the velocity field. This method combines meteor radar observations with the physics prescribed by the Navier‐Stokes equations. The validation of HYPER was conducted through a series of benchmarks on numerical data and the application of our algorithm on actual meteor radar observations, all of which yielded realistic approximations of the reconstructed physical fields. This innovative approach represents a significant step toward an accurate characterization of the MLT dynamics, overcoming the limitations of existing methods, and providing valuable insights into the behavior of this poorly accessible region of the atmosphere. Plain Language Summary Multistatic meteor radars (MMR) have emerged as groundbreaking instruments poised to revolutionize the spatial and temporal coverage and resolution of observations in the mesosphere and lower thermosphere (MLT). In this pioneering study, we present a novel method named HYPER (HYdrodynamic Point‐wise Environment Reconstructor), which leverages sparsely sampled MMR Doppler projections to characterize the wind dynamics within the MLT. This cutting‐edge method synergizes meteor radar observations with the physics prescribed by the Navier‐Stokes equations, which govern the turbulent fluid dynamics in the MLT. To find approximate solutions to these complex equations within the observational domain, we employ a deep learning framework that aligns the neural network output with the equations of motion, ensuring the cumulative solution is tuned to the observational data. To validate our approach, we implemented virtual radar systems on the outputs of a general circulation model (GCM) and a high‐resolution direct numerical simulation (DNS) of atmospheric flow, both serving as ground‐truth 4D wind fields. Our compelling results reveal that the proposed method not only succeeds in retrieving realistic horizontal wind fields but also provides remarkably accurate estimates of vertical winds, even amidst the challenges posed by noisy Doppler observations. Key Points A method integrating physics‐informed neural networks with multistatic meteor radar detections, dubbed HYPER, to estimate 4D wind fields HYPER reproduces large‐scale and inertial range dynamics as observed in turbulent atmospheric simulations and global circulation models HYPER‐derived 4D mesoscale and mean vertical winds are physically realistic, with mesoscale vertical winds varying few m/s
Author Urco, Juan M.
Chau, Jorge L.
Marino, Raffaele
Feraco, Fabio
Author_xml – sequence: 1
  givenname: Juan M.
  orcidid: 0000-0002-8894-3294
  surname: Urco
  fullname: Urco, Juan M.
  email: urco@iap-kborn.de
  organization: Leibniz‐Institute of Atmospheric Physics at the University of Rostock
– sequence: 2
  givenname: Fabio
  surname: Feraco
  fullname: Feraco, Fabio
  organization: Université Claude Bernard Lyon 1
– sequence: 3
  givenname: Jorge L.
  orcidid: 0000-0002-2364-8892
  surname: Chau
  fullname: Chau, Jorge L.
  organization: Leibniz‐Institute of Atmospheric Physics at the University of Rostock
– sequence: 4
  givenname: Raffaele
  orcidid: 0000-0002-6433-7767
  surname: Marino
  fullname: Marino, Raffaele
  organization: Université Claude Bernard Lyon 1
BackLink https://hal.science/hal-04799996$$DView record in HAL
BookMark eNp9kM1KAzEQgIMo-NebD5CrYDU_2033WNRay4pSKuJpmWZnu5FtUpK20puPIPiGPokpVfHkXGbm45sZmEOya51FQk44O-dMZBeCiWQ4YIzxVOyQA5Flst0RnO3-qfdJK4SX6EgpWJepA_LRW05naBdY0r5b-s-39ysT-2CchYbeYXBhXqNHCrakuXtFT8exn_3gJxN532BT0hFqZ8PCL_UiTtOVAbqokT7U62B0iJtvbeX8LF66A10bizRH8NbYKe3N595FSAfPD9ejY7JXQROw9Z2PyGP_enw5aOf3N7eXvbyteYfxdjeTkAHiJNWQKCmzVCVllZUQCddQ6Ql0UlAqga6CtDtRWgvNFUs1lx0BWh6R0-3eGppi7s0M_LpwYIpBLy82jCUqi5GueHTPtq72LgSP1e8AZ8Xm_8Xf_0edbfVX0-D6X7cY3ox4wuUXvK6Lpg
Cites_doi 10.1007/BF02551274/METRICS
10.1016/J.CMA.2019.112789
10.1006/jcph.1999.6387
10.1016/J.JCP.2021.110600
10.22000/1933
10.1016/J.JCP.2022.111868
10.1029/2021JD036039
10.1016/S1364‐6826(00)00138‐3
10.1029/2023GL103682
10.1103/PhysRevLett.114.114504
10.1016/j.cma.2021.113938
10.1098/rspa.2020.0334
10.3390/BDCC6040140/S1
10.5194/amt‐9‐829‐2016
10.1002/2016RS006225
10.1109/TAI.2022.3192362
10.1103/PhysRevE.90.023018
10.1029/2003RS003014
10.1016/j.jcp.2021.110668
10.1016/J.CMA.2022.115671
10.5194/gmd‐16‐4233‐2023
10.5194/amt‐12‐2113‐2019
10.3390/ATMOS11020178
10.1029/JD094ID12P14605
10.1209/0295‐5075/112/49001
10.1016/J.CMA.2019.112623
10.5194/amt‐11‐4891‐2018
10.1016/0021‐9991(90)90007‐N
10.1038/s42256‐021‐00302‐5
10.5194/AMT‐15‐5769‐2022
10.1103/PhysRevFluids.7.033801
10.1007/s00348‐023‐03629‐4
10.48550/arXiv.1207.0580
10.1016/j.jcp.2019.07.048
10.1186/S40623‐022‐01620‐7/METRICS
10.1029/2023GL103809
10.1126/science.aaw4741
10.1029/2020EA001356
10.1007/s10915‐022‐01939‐z
10.5194/AMT‐2021‐40
10.1017/JFM.2021.135
10.1016/j.jcp.2020.109913
10.1109/TGRS.2017.2788425
10.1109/TGRS.2019.2931375
10.1029/2020EA001293
10.1016/0893‐6080(89)90020‐8
10.1029/96RS03467
10.5194/GMD‐12‐3541‐2019
10.3390/en16052343
10.1002/2015JA021025
10.5281/zenodo.12671264
10.1016/j.apenergy.2021.116641
10.1016/j.jcp.2020.109951
10.1209/0295‐5075/102/44006
10.1175/JAS‐D‐23‐0030.1
10.1126/science.adg8269
10.1016/J.PARCO.2011.05.004
10.1002/2014RS005591
10.1016/J.JCP.2022.111080
10.1029/2019EA000570
10.5281/zenodo.7779648
10.1137/20M1318043
ContentType Journal Article
Copyright 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
Attribution - NonCommercial - NoDerivatives
Copyright_xml – notice: 2024 The Author(s). Journal of Geophysical Research: Machine Learning and Computation published by Wiley Periodicals LLC on behalf of American Geophysical Union.
– notice: Attribution - NonCommercial - NoDerivatives
DBID 24P
AAYXX
CITATION
1XC
VOOES
DOI 10.1029/2024JH000162
DatabaseName Wiley Online Library Open Access
CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2993-5210
EndPage n/a
ExternalDocumentID oai_HAL_hal_04799996v1
10_1029_2024JH000162
JGR141
Genre researchArticle
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  funderid: ANR‐20‐CE30‐0011; AAPG‐2020
GroupedDBID 0R~
24P
AAMMB
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
WIN
AAYXX
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c1501-893a9aeeb6ca47339674df9daeb61cafcba56a774a87a68b7cc2c1706c1352ac3
IEDL.DBID 24P
ISSN 2993-5210
IngestDate Fri May 09 12:28:37 EDT 2025
Tue Jul 01 03:43:13 EDT 2025
Wed Aug 20 07:26:06 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution-NonCommercial-NoDerivs
http://creativecommons.org/licenses/by-nc-nd/4.0
Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1501-893a9aeeb6ca47339674df9daeb61cafcba56a774a87a68b7cc2c1706c1352ac3
ORCID 0000-0002-8894-3294
0000-0002-6433-7767
0000-0002-2364-8892
0000-0002-2355-2671
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000162
PageCount 27
ParticipantIDs hal_primary_oai_HAL_hal_04799996v1
crossref_primary_10_1029_2024JH000162
wiley_primary_10_1029_2024JH000162_JGR141
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Journal of geophysical research. Machine learning and computation
PublicationYear 2024
Publisher American Geophysical Union/Wiley
Publisher_xml – name: American Geophysical Union/Wiley
References 2020; 360
2021; 288
2021; 445
2021; 447
2019; 57
2019; 12
2024; 81
2024; 383
2020; 367
2020; 11
2022; 457
2023; 64
2021; 915
2021; 32
2004; 39
2022; 74
2024b
2024a
1990; 91
2019; 397
2022; 127
2010; 9
2021; 8
1989; 2
2021; 43
2019; 3
2014; 90
2019; 6
2022; 92
2012
2000; 157
2023; 16
2015; 50
2020; 384
2021; 425
2015; 120
2021; 426
2023; 403
2013; 102
2011; 37
1959
2001; 63
2021; 14
2017; 52
1989; 94
2023
1997; 32
2022; 5
2022; 6
2020
2015; 114
2022; 7
2023; 476
2015; 112
2020; 358
2022; 15
2014
2020; 476
2018; 56
2018; 11
2023; 50
2016; 9
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Krishnapriyan A. S. (e_1_2_10_31_1) 2021; 32
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Blackman R. B. (e_1_2_10_3_1) 1959
Li Z. (e_1_2_10_34_1) 2020
e_1_2_10_61_1
e_1_2_10_63_1
e_1_2_10_27_1
e_1_2_10_65_1
Glorot X. (e_1_2_10_20_1) 2010; 9
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
Kingma D. P. (e_1_2_10_29_1) 2014
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_62_1
e_1_2_10_64_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 2
  start-page: 303
  issue: 4
  year: 1989
  end-page: 314
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Mathematics of Control, Signals, and Systems
– volume: 120
  start-page: 3928
  issue: 5
  year: 2015
  end-page: 3940
  article-title: Estimation of mesoscale thermospheric wind structure using a network of interferometers
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 57
  start-page: 10088
  issue: 12
  year: 2019
  end-page: 10098
  article-title: Sparse signal recovery in MIMO specular meteor radars with waveform diversity
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– year: 2024b
– volume: 43
  start-page: A3055
  issue: 5
  year: 2021
  end-page: A3081
  article-title: Understanding and mitigating gradient flow pathologies in physics‐informed neural networks
  publication-title: SIAM Journal on Scientific Computing
– volume: 14
  start-page: 1
  issue: 11
  year: 2021
  end-page: 29
  article-title: Four‐dimensional mesospheric and lower thermospheric wind fields using Gaussian process regression on multistatic specular meteor radar observations
  publication-title: Atmospheric Measurement Techniques Discussions
– volume: 37
  start-page: 316
  issue: 6–7
  year: 2011
  end-page: 326
  article-title: A hybrid MPI–OpenMP scheme for scalable parallel pseudospectral computations for fluid turbulence
  publication-title: Parallel Computing
– volume: 11
  start-page: 4891
  issue: 8
  year: 2018
  end-page: 4907
  article-title: Retrieving horizontally resolved wind fields using multi‐static meteor radar observations
  publication-title: Atmospheric Measurement Techniques
– volume: 16
  issue: 5
  year: 2023
  article-title: A review of physics‐informed machine learning in fluid mechanics
  publication-title: Energies
– volume: 92
  issue: 3
  year: 2022
  article-title: Scientific machine learning through physics–informed neural networks: Where we are and what’s next
  publication-title: Journal of Scientific Computing
– volume: 367
  start-page: 1026
  issue: 6481
  year: 2020
  end-page: 1030
  article-title: Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations
  publication-title: Science
– volume: 127
  issue: 5
  year: 2022
  article-title: Validation of multistatic meteor radar analysis using modeled mesospheric dynamics: An assessment of the reliability of gradients and vertical velocities
  publication-title: Journal of Geophysical Research: Atmospheres
– volume: 8
  issue: 1
  year: 2021
  article-title: Multistatic specular meteor radar network in Peru: System description and initial results
  publication-title: Earth and Space Science
– volume: 3
  start-page: 218
  issue: 3
  year: 2019
  end-page: 229
  article-title: DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators
  publication-title: Nature Machine Intelligence
– volume: 476
  year: 2023
  article-title: DAS‐PINNs: A deep adaptive sampling method for solving high‐dimensional partial differential equations
  publication-title: Journal of Computational Physics
– volume: 9
  start-page: 829
  issue: 2
  year: 2016
  end-page: 839
  article-title: Coded continuous wave meteor radar
  publication-title: Atmospheric Measurement Techniques
– volume: 383
  start-page: 1005
  issue: 6686
  year: 2024
  end-page: 1009
  article-title: Large‐scale self‐organization in dry turbulent atmospheres
  publication-title: Science
– volume: 94
  start-page: 14605
  issue: D12
  year: 1989
  end-page: 14615
  article-title: Dynamics, radiation, and photochemistry in the mesosphere: Implications for the formation of noctilucent clouds
  publication-title: Journal of Geophysical Research
– volume: 360
  year: 2020
  article-title: Physics‐informed neural networks for high‐speed flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 8
  issue: 2
  year: 2021
  article-title: First studies of mesosphere and lower thermosphere dynamics using a multistatic specular meteor radar network over southern Patagonia
  publication-title: Earth and Space Science
– volume: 6
  start-page: 1171
  issue: 7
  year: 2019
  end-page: 1195
  article-title: Observing mesospheric turbulence with specular meteor radars: A novel method for estimating second‐order statistics of wind velocity
  publication-title: Earth and Space Science
– year: 2014
– volume: 74
  start-page: 1
  issue: 1
  year: 2022
  end-page: 19
  article-title: Frequency spectra of horizontal winds in the mesosphere and lower thermosphere region from multistatic specular meteor radar observations during the SIMONe 2018 campaign
  publication-title: Earth Planets and Space
– volume: 64
  issue: 5
  year: 2023
  article-title: Reconstructing turbulent velocity and pressure fields from under‐resolved noisy particle tracks using physics‐informed neural networks
  publication-title: Experiments in Fluids
– volume: 9
  start-page: 249
  year: 2010
  end-page: 256
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Journal of Machine Learning Research—Proceedings Track
– volume: 11
  issue: 2
  year: 2020
  article-title: GPU parallelization of a hybrid pseudospectral geophysical turbulence framework using CUDA
  publication-title: Atmosphere
– volume: 915
  year: 2021
  article-title: Flow over an espresso cup: Inferring 3‐D velocity and pressure fields from tomographic background oriented Schlieren via physics‐informed neural networks
  publication-title: Journal of Fluid Mechanics
– year: 1959
– volume: 39
  issue: 5
  year: 2004
  article-title: Buckland Park all‐sky interferometric meteor radar
  publication-title: Radio Science
– volume: 50
  issue: 12
  year: 2023
  article-title: Extreme horizontal wind perturbations in the mesosphere and lower thermosphere over South America associated with the 2022 Hunga eruption
  publication-title: Geophysical Research Letters
– volume: 16
  start-page: 4233
  issue: 14
  year: 2023
  end-page: 4247
  article-title: Simplified Kalman smoother and ensemble Kalman smoother for improving reanalyses
  publication-title: Geoscientific Model Development
– volume: 5
  start-page: 1
  issue: 3
  year: 2022
  end-page: 15
  article-title: Learning in sinusoidal spaces with physics‐informed neural networks
  publication-title: IEEE Transactions on Artificial Intelligence
– volume: 12
  start-page: 2113
  issue: 4
  year: 2019
  end-page: 2127
  article-title: Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere
  publication-title: Atmospheric Measurement Techniques
– volume: 63
  start-page: 155
  issue: 2–3
  year: 2001
  end-page: 169
  article-title: Real‐time determination of meteor‐related parameters utilizing modern digital technology
  publication-title: Journal of Atmospheric and Solar‐Terrestrial Physics
– volume: 457
  year: 2022
  article-title: Adaptive deep density approximation for Fokker‐Planck equations
  publication-title: Journal of Computational Physics
– volume: 358
  year: 2020
  article-title: Machine learning in cardiovascular flows modeling: Predicting arterial blood pressure from non‐invasive 4D flow MRI data using physics‐informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 90
  issue: 2
  year: 2014
  article-title: Large‐scale anisotropy in stably stratified rotating flows
  publication-title: Physical Review E
– volume: 15
  start-page: 5769
  issue: 19
  year: 2022
  end-page: 5792
  article-title: Meteor radar vertical wind observation biases and mathematical debiasing strategies including the 3DVAR+DIV algorithm
  publication-title: Atmospheric Measurement Techniques
– volume: 403
  year: 2023
  article-title: A comprehensive study of non‐adaptive and residual‐based adaptive sampling for physics‐informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 157
  start-page: 371
  issue: 1
  year: 2000
  end-page: 403
  article-title: A compact‐difference scheme for the Navier–Stokes equations in vorticity–velocity formulation
  publication-title: Journal of Computational Physics
– volume: 102
  issue: 4
  year: 2013
  article-title: Inverse cascades in rotating stratified turbulence: Fast growth of large scales
  publication-title: Europhysics Letters
– volume: 447
  year: 2021
  article-title: Solving and learning nonlinear PDEs with Gaussian processes
  publication-title: Journal of Computational Physics
– volume: 50
  start-page: 431
  issue: 5
  year: 2015
  end-page: 442
  article-title: A multistatic and multifrequency novel approach for specular meteor radars to improve wind measurements in the MLT region
  publication-title: Radio Science
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  end-page: 366
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
– volume: 425
  year: 2021
  article-title: B‐PINNs: Bayesian physics‐informed neural networks for forward and inverse PDE problems with noisy data
  publication-title: Journal of Computational Physics
– volume: 397
  year: 2019
  article-title: Quantifying total uncertainty in physics‐informed neural networks for solving forward and inverse stochastic problems
  publication-title: Journal of Computational Physics
– volume: 426
  year: 2021
  article-title: NSFnets (Navier‐Stokes flow nets): Physics‐informed neural networks for the incompressible Navier‐Stokes equations
  publication-title: Journal of Computational Physics
– volume: 288
  year: 2021
  article-title: Spatiotemporal wind field prediction based on physics‐informed deep learning and LIDAR measurements
  publication-title: Applied Energy
– volume: 56
  start-page: 2980
  issue: 5
  year: 2018
  end-page: 2990
  article-title: Coherent MIMO to improve aperture synthesis radar imaging of field‐aligned irregularities: First results at Jicamarca
  publication-title: IEEE Transactions on Geoscience and Remote Sensing
– volume: 114
  issue: 11
  year: 2015
  article-title: Resolving the paradox of oceanic large‐scale balance and small‐scale mixing
  publication-title: Physical Review Letters
– year: 2024a
– volume: 91
  start-page: 110
  issue: 1
  year: 1990
  end-page: 131
  article-title: Neural algorithm for solving differential equations
  publication-title: Journal of Computational Physics
– volume: 384
  year: 2020
  article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi‐scale PDEs with physics‐informed neural networks
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 52
  start-page: 811
  issue: 7
  year: 2017
  end-page: 828
  article-title: Polar mesospheric horizontal divergence and relative vorticity measurements using multiple specular meteor radars
  publication-title: Radio Science
– volume: 6
  issue: 4
  year: 2022
  article-title: Physics‐informed neural network (PINN) evolution and beyond: A systematic literature review and bibliometric analysis
  publication-title: Big Data and Cognitive Computing
– volume: 7
  issue: 3
  year: 2022
  article-title: Turbulence generation by large‐scale extreme vertical drafts and the modulation of local energy dissipation in stably stratified geophysical flows
  publication-title: Physical Review Fluids
– volume: 32
  start-page: 26548
  year: 2021
  end-page: 26560
  article-title: Characterizing possible failure modes in physics‐informed neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 12
  start-page: 3541
  issue: 8
  year: 2019
  end-page: 3569
  article-title: The upper‐atmosphere extension of the ICON general circulation model
  publication-title: Geoscientific Model Development
– volume: 112
  issue: 4
  year: 2015
  article-title: Interplay of waves and eddies in rotating stratified turbulence and the link with kinetic‐potential energy partition
  publication-title: Europhysics Letters
– volume: 81
  start-page: 93
  issue: 1
  year: 2024
  end-page: 104
  article-title: Investigation of mesosphere and lower thermosphere dynamics over central and northern Peru using SIMONe systems
  publication-title: Journal of the Atmospheric Sciences
– year: 2020
– volume: 445
  year: 2021
  article-title: SPINN: Sparse, physics‐based, and partially interpretable neural networks for PDEs
  publication-title: Journal of Computational Physics
– year: 2023
– volume: 476
  issue: 2239
  year: 2020
  article-title: Locally adaptive activation functions with slope recovery for deep and physics‐informed neural networks
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
– volume: 32
  start-page: 833
  issue: 2
  year: 1997
  end-page: 865
  article-title: Simultaneous and colocated observation of winds and tides by MF and meteor radars over London, Canada (43°N, 81°W), during 1994‐1996
  publication-title: Radio Science
– year: 2012
  article-title: Improving neural networks by preventing co‐adaptation of feature detectors
  publication-title: CoRR
– volume: 50
  issue: 10
  year: 2023
  article-title: Atmospheric and ionospheric responses to Hunga‐Tonga volcano eruption simulated by WACCM‐X
  publication-title: Geophysical Research Letters
– volume-title: 34th conference on neural information processing systems (NeurIPS 2020)
  year: 2020
  ident: e_1_2_10_34_1
– ident: e_1_2_10_17_1
  doi: 10.1007/BF02551274/METRICS
– ident: e_1_2_10_37_1
  doi: 10.1016/J.CMA.2019.112789
– ident: e_1_2_10_43_1
  doi: 10.1006/jcph.1999.6387
– ident: e_1_2_10_47_1
  doi: 10.1016/J.JCP.2021.110600
– ident: e_1_2_10_58_1
  doi: 10.22000/1933
– volume-title: The measurement of power spectra from the point of view of communications engineering
  year: 1959
  ident: e_1_2_10_3_1
– ident: e_1_2_10_54_1
  doi: 10.1016/J.JCP.2022.111868
– ident: e_1_2_10_6_1
  doi: 10.1029/2021JD036039
– ident: e_1_2_10_23_1
  doi: 10.1016/S1364‐6826(00)00138‐3
– ident: e_1_2_10_35_1
  doi: 10.1029/2023GL103682
– ident: e_1_2_10_41_1
  doi: 10.1103/PhysRevLett.114.114504
– ident: e_1_2_10_64_1
  doi: 10.1016/j.cma.2021.113938
– ident: e_1_2_10_27_1
  doi: 10.1098/rspa.2020.0334
– ident: e_1_2_10_32_1
  doi: 10.3390/BDCC6040140/S1
– ident: e_1_2_10_60_1
  doi: 10.5194/amt‐9‐829‐2016
– ident: e_1_2_10_8_1
  doi: 10.1002/2016RS006225
– ident: e_1_2_10_12_1
  doi: 10.1109/TAI.2022.3192362
– ident: e_1_2_10_40_1
  doi: 10.1103/PhysRevE.90.023018
– ident: e_1_2_10_25_1
  doi: 10.1029/2003RS003014
– ident: e_1_2_10_11_1
  doi: 10.1016/j.jcp.2021.110668
– volume: 32
  start-page: 26548
  year: 2021
  ident: e_1_2_10_31_1
  article-title: Characterizing possible failure modes in physics‐informed neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 9
  start-page: 249
  year: 2010
  ident: e_1_2_10_20_1
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Journal of Machine Learning Research—Proceedings Track
– ident: e_1_2_10_65_1
  doi: 10.1016/J.CMA.2022.115671
– ident: e_1_2_10_18_1
  doi: 10.5194/gmd‐16‐4233‐2023
– ident: e_1_2_10_10_1
  doi: 10.5194/amt‐12‐2113‐2019
– ident: e_1_2_10_48_1
  doi: 10.3390/ATMOS11020178
– ident: e_1_2_10_19_1
  doi: 10.1029/JD094ID12P14605
– ident: e_1_2_10_42_1
  doi: 10.1209/0295‐5075/112/49001
– ident: e_1_2_10_30_1
  doi: 10.1016/J.CMA.2019.112623
– volume-title: 3rd international conference on learning representations, ICLR 2015—Conference track proceedings
  year: 2014
  ident: e_1_2_10_29_1
– ident: e_1_2_10_51_1
  doi: 10.5194/amt‐11‐4891‐2018
– ident: e_1_2_10_33_1
  doi: 10.1016/0021‐9991(90)90007‐N
– ident: e_1_2_10_36_1
  doi: 10.1038/s42256‐021‐00302‐5
– ident: e_1_2_10_52_1
  doi: 10.5194/AMT‐15‐5769‐2022
– ident: e_1_2_10_38_1
  doi: 10.1103/PhysRevFluids.7.033801
– ident: e_1_2_10_13_1
  doi: 10.1007/s00348‐023‐03629‐4
– ident: e_1_2_10_22_1
  doi: 10.48550/arXiv.1207.0580
– ident: e_1_2_10_67_1
  doi: 10.1016/j.jcp.2019.07.048
– ident: e_1_2_10_7_1
  doi: 10.1186/S40623‐022‐01620‐7/METRICS
– ident: e_1_2_10_45_1
  doi: 10.1029/2023GL103809
– ident: e_1_2_10_46_1
  doi: 10.1126/science.aaw4741
– ident: e_1_2_10_14_1
  doi: 10.1029/2020EA001356
– ident: e_1_2_10_16_1
  doi: 10.1007/s10915‐022‐01939‐z
– ident: e_1_2_10_62_1
  doi: 10.5194/AMT‐2021‐40
– ident: e_1_2_10_5_1
  doi: 10.1017/JFM.2021.135
– ident: e_1_2_10_66_1
  doi: 10.1016/j.jcp.2020.109913
– ident: e_1_2_10_55_1
  doi: 10.1109/TGRS.2017.2788425
– ident: e_1_2_10_56_1
  doi: 10.1109/TGRS.2019.2931375
– ident: e_1_2_10_9_1
  doi: 10.1029/2020EA001293
– ident: e_1_2_10_26_1
  doi: 10.1016/0893‐6080(89)90020‐8
– ident: e_1_2_10_24_1
  doi: 10.1029/96RS03467
– ident: e_1_2_10_4_1
  doi: 10.5194/GMD‐12‐3541‐2019
– ident: e_1_2_10_49_1
  doi: 10.3390/en16052343
– ident: e_1_2_10_21_1
  doi: 10.1002/2015JA021025
– ident: e_1_2_10_57_1
  doi: 10.5281/zenodo.12671264
– ident: e_1_2_10_68_1
  doi: 10.1016/j.apenergy.2021.116641
– ident: e_1_2_10_28_1
  doi: 10.1016/j.jcp.2020.109951
– ident: e_1_2_10_39_1
  doi: 10.1209/0295‐5075/102/44006
– ident: e_1_2_10_15_1
  doi: 10.1175/JAS‐D‐23‐0030.1
– ident: e_1_2_10_2_1
  doi: 10.1126/science.adg8269
– ident: e_1_2_10_44_1
  doi: 10.1016/J.PARCO.2011.05.004
– ident: e_1_2_10_50_1
  doi: 10.1002/2014RS005591
– ident: e_1_2_10_53_1
  doi: 10.1016/J.JCP.2022.111080
– ident: e_1_2_10_59_1
  doi: 10.1029/2019EA000570
– ident: e_1_2_10_61_1
  doi: 10.5281/zenodo.7779648
– ident: e_1_2_10_63_1
  doi: 10.1137/20M1318043
SSID ssj0003320807
Score 2.266992
Snippet The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes and by the...
Abstract The mesosphere and lower thermosphere (MLT) is a fluid framework whose multiscale dynamics is determined by a superposition of non‐linear processes...
SourceID hal
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Physics
Title Augmented Four‐Dimensional Mesosphere and Lower Thermosphere Wind Field Reconstruction via the Physics‐Informed Machine Learning Approach HYPER
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2024JH000162
https://hal.science/hal-04799996
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcXrRcvoqhYH2URPXgI5rHdJMegjaE0UorFegr7avVgK1Z7FD-C4Df0kzizSWu9CF5yGJYNTPbxn83Mbwk54b5vtHGl0-RaOky5yokZTPeIx0ooAxLdcrbza571WXvQHFQHblgLU_IhFgduODPseo0TXMhpBRtARiZE7aydWc0CS_AaVtdiSp_PuoszliDw3bJi2sc0Ndip3Cr3Hbo4X-7g1660eo85kcta1W426SbZqFQiTcrPukVWzHibfCavI4vQ1DSFBl_vH5eI5i-xGjQ308kUGQGGirGmHbz9jMIgeH6cm28h_KYpZqxRDDp_0LF09iAoCEFq00HVFHouq5TgTblNtjS04rCOaFJByGl21231dkg_bd1cZE51p4KjQPp5DsgT5HEbyZVgYRDEPGR6GGsBFk-JoZKiyQVoQhGFgkcyVMpXiNhRHkg1oYJdUhtPxmaPUK2HoA2ZNF7TMC6Y4CAfRDQ0oQZZELp1cjr3afFUojMK-8vbj4tl39fJMTh80QR511nSKdCG_HuMyGZenZzZ7_FnT0X7qucxb_8fbQ_IOlrLrLFDUgPPmyOQGS-yYcdSwwbp8MzfWt9j-s67
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV29TsMwED7xM8CCQIAovxaCgSEicVynGRgqoITSIoRAwBQc2y0MFET5ERuPgMSD8E48CXdOWsqCxMBqnZzofM5953z-DmBNcm6N9TOvLE3mCe1rLxa43Ssy1kpbhOhOZ7t5KJNTUT8vnw_BR-8uTK4P0T9wo53hvte0welAulAbIJFMLNtFPXGghResygP78ow1W3drfwcXeJ3z2u7JduIVbQU8jegn8DBDkyS1zaRWIgrDWEbCtGKjcCTQqqUzVZYKYZGqREpWskhrrkllRgeIVpQOcd5hGBWSR9QygYuj_qFOGHI_v6LNiReHqdEvyPb4ypuDL_wjDQ5fEQlzEBy77FabhIkClrJqHkdTMGQ70_BefWw7zU7Damjw-fq2Q70Ach0P1rTd2y6JElimOoY1qN0aw6i7v-kNn2G9z2pEkWNU5X5r1bKna8UQeTLHP9VdnDm_FoVPajp2p2WF8GubVQvVc5ZcHO0ez8Dpv3h7FkY6tx07B8yYFoJRkdmgbIVUQknEK6rSspFBHBL5JVjv-TS9y7U6UvePncfpoO9LsIoO75uQwHZSbaQ0RoL7VAI-BSXYcOvx60xpfe84EMH8H2xXYCw5aTbSxv7hwQKMk0VOWVuEEVwFu4QY5yFbdnHF4PK_A_kLey0LOg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB5BKiEuCNRWhJ9iVXDoYcWu1_FmDxyihmUJCYpQEXBavLY37YGACARx6yNU4j14qD5JZ7ybkF6QOHC1Rl5rPN75xv78GWBbcm6N9XOvIU3uCe1rLxa43Jsy1kpbhOhOZ7t3LNNT0TlvnM_B8-QuTKkPMd1wo5Xh_te0wG9MUYkNkEYmVu2ikzrMwitS5ZF9fMCSbbR32Mb53eE82f_xPfWqVwU8jeAn8DBBkyK1zaVWIgrDWEbCFLFR2BJoVehcNaRCVKSakZLNPNKaaxKZ0QGCFaVD7HcePtD5IlHIuOhP93TCkPvlDW1OtDjMjH7Ftcch784O-L8sOP-TOJiz2Nglt2QZlipUylplGK3AnB1-hKfW_cBJdhqWoMHf33_a9BRAKePBenZ0PSJNAsvU0LAuvbbGMOhurybNZ1jus4QYcoyK3BepWjb-pRgCT-bop3qEPZe3ovBLPUfutKzSfR2wViV6ztKL_v7JJzh9F29_htrwemhXgRlTIBYVuQ0aVkgllES4opqFjQzCkMivw87Ep9lNKdWRuSN2Hmezvq_DV3T41IT0tdNWN6M20tunCnAc1OGbm49Xe8o6ByeBCNbeYLsFC_12knUPj4_WYZEMSsLaBtRwEuwmIpy7_IsLKwaX7x3H_wDG1Aps
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Augmented+Four%E2%80%90Dimensional+Mesosphere+and+Lower+Thermosphere+Wind+Field+Reconstruction+via+the+Physics%E2%80%90Informed+Machine+Learning+Approach+HYPER&rft.jtitle=Journal+of+geophysical+research.+Machine+learning+and+computation&rft.au=Urco%2C+Juan&rft.au=Feraco%2C+Fabio&rft.au=Marino%2C+Raffaele&rft.date=2024-09-01&rft.pub=American+Geophysical+Union%2FWiley&rft.eissn=2993-5210&rft.volume=1&rft.issue=3&rft_id=info:doi/10.1029%2F2024JH000162&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai_HAL_hal_04799996v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2993-5210&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2993-5210&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2993-5210&client=summon