Fuzzy Adaptive Learning Secure Control for Nonstrict-Pure-Feedback Cyber-Physical Systems Subject to Malicious Attacks

In this paper, fuzzy adaptive learning secure control (FALSC) strategy against uncertain malicious attacks is proposed for a class of nonlinear cyber-physical systems (CPSs) in the nonstrict-pure-feedback form. By means of appropriate system transformations and integral Lyapunov functions, the intra...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial cyber-physical systems Vol. 2; pp. 626 - 638
Main Authors Zou, Shengxiang, Sun, Mingxuan, Zhong, Guoming, He, Xiongxiong
Format Journal Article
LanguageEnglish
Published IEEE 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, fuzzy adaptive learning secure control (FALSC) strategy against uncertain malicious attacks is proposed for a class of nonlinear cyber-physical systems (CPSs) in the nonstrict-pure-feedback form. By means of appropriate system transformations and integral Lyapunov functions, the intractable problems associated with nonstrict-feedback and nonaffine structures are tackled, and the FALSC scheme presented is applicable to CPSs with more general system dynamics. Additionally, by the helpful property of basis function of the adopted fuzzy logic system, an improved backstepping based adaptive resilient control design is developed. As a result, the challenges caused by sensor and actuator deception attacks, including the original system information becoming unavailable and involving unknown time-varying attack gains, are overcome. Furthermore, an incremental adaptive mechanism is exploited and proved efficient in the treatment of unknown nonlinearities. The theoretical results about the tracking performance is established, where the boundedness of the signals in the closed-loop system is examined, and the robust stabilization of the system output under malicious attacks is characterized. Numerical results are provided to illustrate effectiveness of the proposed FALSC scheme.
AbstractList In this paper, fuzzy adaptive learning secure control (FALSC) strategy against uncertain malicious attacks is proposed for a class of nonlinear cyber-physical systems (CPSs) in the nonstrict-pure-feedback form. By means of appropriate system transformations and integral Lyapunov functions, the intractable problems associated with nonstrict-feedback and nonaffine structures are tackled, and the FALSC scheme presented is applicable to CPSs with more general system dynamics. Additionally, by the helpful property of basis function of the adopted fuzzy logic system, an improved backstepping based adaptive resilient control design is developed. As a result, the challenges caused by sensor and actuator deception attacks, including the original system information becoming unavailable and involving unknown time-varying attack gains, are overcome. Furthermore, an incremental adaptive mechanism is exploited and proved efficient in the treatment of unknown nonlinearities. The theoretical results about the tracking performance is established, where the boundedness of the signals in the closed-loop system is examined, and the robust stabilization of the system output under malicious attacks is characterized. Numerical results are provided to illustrate effectiveness of the proposed FALSC scheme.
Author Sun, Mingxuan
He, Xiongxiong
Zou, Shengxiang
Zhong, Guoming
Author_xml – sequence: 1
  givenname: Shengxiang
  surname: Zou
  fullname: Zou, Shengxiang
  email: 1112003013@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 2
  givenname: Mingxuan
  orcidid: 0000-0003-2553-6154
  surname: Sun
  fullname: Sun, Mingxuan
  email: mxsun@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 3
  givenname: Guoming
  surname: Zhong
  fullname: Zhong, Guoming
  email: zgm@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
– sequence: 4
  givenname: Xiongxiong
  orcidid: 0000-0002-5806-1047
  surname: He
  fullname: He, Xiongxiong
  email: hxx@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
BookMark eNpNkNFOwjAYhRuDiYi8gPGiLzBsu7Gul2QRJUElGV4vXfdXi2MlbSEZT-8QLrg6Jzn5zsV3jwatbQGhR0omlBLxvF7kq2LCCEsmcZLRmE9v0JBlMYs4Icngqt-hsfcbQggTKUspH6LDfH88dnhWy10wB8BLkK417TcuQO0d4Ny2wdkGa-vwh219cEaFaNVP0RygrqT6xXlXgYtWP503Sja46HyArcfFvtqACjhY_C4bo4zdezwLoUf8A7rVsvEwvuQIfc1f1vlbtPx8XeSzZaRoIkKU1oxDDJIKSGSiBdTABWeM1LqqiNI8roVKZUqnmZpqTkSmK6kzLWQmeE3jeITY-Vc5670DXe6c2UrXlZSUJ3nlv7zyJK-8yOuhpzNkAOAK4Iz0l_Ef6SRv1w
CODEN ITICCX
Cites_doi 10.1109/TFUZZ.2021.3070700
10.1109/tcyb.2023.3338165
10.1109/TICPS.2023.3298267
10.1109/JPROC.2012.2189792
10.1109/TCYB.2022.3205765
10.1109/TFUZZ.2022.3229487
10.1109/TNNLS.2015.2508926
10.1109/TSMC.2023.3339199
10.1109/TAC.2017.2652127
10.1109/TSMC.2023.3341073
10.1109/tfuzz.2024.3363839
10.1109/TFUZZ.2023.3342737
10.1109/TNNLS.2019.2955132
10.1109/tase.2023.3334613
10.1109/TSMC.2019.2961371
10.1109/tie.2024.3357884
10.1109/TFUZZ.2022.3189412
10.1109/TFUZZ.2012.2190048
10.1109/TNNLS.2022.3163443
10.1016/j.ins.2017.09.042
10.1109/TCYB.2020.3003752
10.1109/TCSII.2023.3329802
10.1109/TCYB.2022.3209694
10.1109/TSMC.2020.3003801
10.1109/TFUZZ.2023.3302854
10.1109/TSMC.2022.3228798
10.1109/tase.2023.3292367
10.1109/TNNLS.2020.3026078
10.1109/TII.2023.3281703
10.1109/TCYB.2022.3206861
10.1109/TSMC.2023.3294425
10.1109/TICPS.2023.3283232
10.1109/TCSII.2023.3318523
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TICPS.2024.3481375
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2832-7004
EndPage 638
ExternalDocumentID 10_1109_TICPS_2024_3481375
10720133
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62073291; 62233016
  funderid: 10.13039/501100001809
GroupedDBID 0R~
97E
AASAJ
AAWTH
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c149t-6d27e3ea19e4a4f9ede797220dfbb0cf73d9c6a6158c5f7098fbaf8f9a897d133
IEDL.DBID RIE
ISSN 2832-7004
IngestDate Tue Jul 01 03:19:26 EDT 2025
Wed Aug 27 01:57:01 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c149t-6d27e3ea19e4a4f9ede797220dfbb0cf73d9c6a6158c5f7098fbaf8f9a897d133
ORCID 0000-0003-2553-6154
0000-0002-5806-1047
PageCount 13
ParticipantIDs crossref_primary_10_1109_TICPS_2024_3481375
ieee_primary_10720133
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationTitle IEEE transactions on industrial cyber-physical systems
PublicationTitleAbbrev TICPS
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref14
  doi: 10.1109/TFUZZ.2021.3070700
– ident: ref26
  doi: 10.1109/tcyb.2023.3338165
– ident: ref13
  doi: 10.1109/TICPS.2023.3298267
– ident: ref1
  doi: 10.1109/JPROC.2012.2189792
– ident: ref19
  doi: 10.1109/TCYB.2022.3205765
– ident: ref18
  doi: 10.1109/TFUZZ.2022.3229487
– ident: ref27
  doi: 10.1109/TNNLS.2015.2508926
– ident: ref23
  doi: 10.1109/TSMC.2023.3339199
– ident: ref4
  doi: 10.1109/TAC.2017.2652127
– ident: ref22
  doi: 10.1109/TSMC.2023.3341073
– ident: ref24
  doi: 10.1109/tfuzz.2024.3363839
– ident: ref33
  doi: 10.1109/TFUZZ.2023.3342737
– ident: ref7
  doi: 10.1109/TNNLS.2019.2955132
– ident: ref20
  doi: 10.1109/tase.2023.3334613
– ident: ref30
  doi: 10.1109/TSMC.2019.2961371
– ident: ref2
  doi: 10.1109/tie.2024.3357884
– ident: ref15
  doi: 10.1109/TFUZZ.2022.3189412
– ident: ref28
  doi: 10.1109/TFUZZ.2012.2190048
– ident: ref31
  doi: 10.1109/TNNLS.2022.3163443
– ident: ref5
  doi: 10.1016/j.ins.2017.09.042
– ident: ref6
  doi: 10.1109/TCYB.2020.3003752
– ident: ref3
  doi: 10.1109/TCSII.2023.3329802
– ident: ref16
  doi: 10.1109/TCYB.2022.3209694
– ident: ref8
  doi: 10.1109/TSMC.2020.3003801
– ident: ref25
  doi: 10.1109/TFUZZ.2023.3302854
– ident: ref12
  doi: 10.1109/TSMC.2022.3228798
– ident: ref17
  doi: 10.1109/tase.2023.3292367
– ident: ref29
  doi: 10.1109/TNNLS.2020.3026078
– ident: ref21
  doi: 10.1109/TII.2023.3281703
– ident: ref11
  doi: 10.1109/TCYB.2022.3206861
– ident: ref32
  doi: 10.1109/TSMC.2023.3294425
– ident: ref10
  doi: 10.1109/TICPS.2023.3283232
– ident: ref9
  doi: 10.1109/TCSII.2023.3318523
SSID ssj0002962617
Score 2.2501354
Snippet In this paper, fuzzy adaptive learning secure control (FALSC) strategy against uncertain malicious attacks is proposed for a class of nonlinear cyber-physical...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 626
SubjectTerms Actuators
Adaptive learning
Adaptive learning control
adaptive resilient control
Adaptive systems
Backstepping
Complexity theory
Control design
Cyber-physical systems
deception attacks
Feedback
incremental adaptation
Lyapunov methods
nonstrict-pure-feedback
Performance analysis
Sensors
Uncertainty
Title Fuzzy Adaptive Learning Secure Control for Nonstrict-Pure-Feedback Cyber-Physical Systems Subject to Malicious Attacks
URI https://ieeexplore.ieee.org/document/10720133
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JasMwEBVNTr10oSlNN3Torci1JdmyjsE0pIWEQBPIzWjtIZCEYBeSr68kOyUUCr0ZLyDryTNvnmdGADxhrSmLU42cqdOIJkKhPFEpShPLNaXayiANjCfZaE7fF-miLVYPtTDGmJB8ZiJ_GP7l67WqvVTmvnDm_BUhHdBxkVtTrPUjqGCe-e7ih8KYmL_M3orphwsBMY18uSnxuYRHzudoN5XgTIbnYHIYRpNDsozqSkZq_6tD47_HeQHOWloJB806uAQnZnUFvob1fr-DAy023qjBtpfqJwwiu4FFk6YOHW-FE88TnU2s0NRdQkPn1KRQS1jspNmiaYsmbBucQ2dvvIADqzUcOyavfCYtHFSVr9jvgfnwdVaMULvPAlIuPqpQpjEzxIiEGyqo5UYbxhnGsUNKxsoyornKhOM-uUoti3lupbC55SLnTLv3vAbd1XplbgDERCZWkEyRlFHf6hCneZbxFFsjY01JHzwfACg3TTuNMoQhMS8DXKWHq2zh6oOen9yjO5t5vf3j_B049Y83Csk96Fbb2jw4zlDJx7BWvgGJnsDl
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF58HPTiAyvW5x68ydZkH9nssRRL1bYUrOAt7NNDoS0lFdpf7-4mlSII3kISwma_zcw3k_lmAbjHxlCeMIO8qTOIplKjPNUMsdQJQ6lxKqYGBsOs905fPthHLVaPWhhrbSw-s61wGP_lm5lehlSZ_8K591eE7IJ97_hZWsm1flIqWGShv_hGGpOIx_FzZ_Tmg0BMW0FwSkI14Zb72dpPJbqT7jEYbgZSVZFMWstStfT6V4_Gf4_0BBzVxBK2q5VwCnbs9Ax8dZfr9Qq2jZwHswbrbqqfMKbZLexUherQM1c4DEzRW8USjfwl1PVuTUk9gZ2Vsgs0qvGEdYtz6C1OSOHAcgYHnsvrUEsL22UZNPsN8N59Gnd6qN5pAWkfIZUoM5hbYmUqLJXUCWssFxzjxGOlEu04MUJn0rOfXDPHE5E7JV3uhMwFN_49z8HedDa1FwBiolInSaYJ4zQ0O8QszzLBsLMqMZQ0wcMGgGJeNdQoYiCSiCLCVQS4ihquJmiEyd26s5rXyz_O34GD3njQL_rPw9crcBgeVeVLrsFeuVjaG88gSnUb1803xRDELg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+Adaptive+Learning+Secure+Control+for+Nonstrict-Pure-Feedback+Cyber-Physical+Systems+Subject+to+Malicious+Attacks&rft.jtitle=IEEE+transactions+on+industrial+cyber-physical+systems&rft.au=Zou%2C+Shengxiang&rft.au=Sun%2C+Mingxuan&rft.au=Zhong%2C+Guoming&rft.au=He%2C+Xiongxiong&rft.date=2024&rft.issn=2832-7004&rft.eissn=2832-7004&rft.volume=2&rft.spage=626&rft.epage=638&rft_id=info:doi/10.1109%2FTICPS.2024.3481375&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TICPS_2024_3481375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2832-7004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2832-7004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2832-7004&client=summon