IoT-Based Irrigation System Using Machine Learning for Precision Shallot Farming

Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot cultivation is very challenging because it requires precision irrigation and pest prevention. In this research, we proposed a smart irrigatio...

Full description

Saved in:
Bibliographic Details
Published inJurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online) Vol. 8; no. 2; pp. 216 - 222
Main Authors Rafrin, Mardhiyyah, Muh. Agus, Putri Ayu Maharani
Format Journal Article
LanguageEnglish
Published Ikatan Ahli Informatika Indonesia 20.04.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot cultivation is very challenging because it requires precision irrigation and pest prevention. In this research, we proposed a smart irrigation system to help farmers manage irrigation with more efficient water usage without hampering their pest prevention. The system outcomes were three options: 1) no water needed, 2) water is required and is efficient for watering and 3) water is required but it is not efficient for watering. We used Wireless Sensor Networks and IoT to collect yield parameters, designed a firebase database, and developed a mobile application and a web service embedded with a machine learning application. All applications interacted by using the Representational State Transfer Application Programming Interface. The proposed system architecture successfully gathered cropland data and distributed them to all applications within the system. Furthermore, we analyzed four supervised learning algorithms (decision trees, random forest, gradient boosting, and K-Nearest neighbor), and the random forest was deployed in the web service because it outperformed other algorithms with an accuracy of 94% and AUC Score of 0.90.
AbstractList Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot cultivation is very challenging because it requires precision irrigation and pest prevention. In this research, we proposed a smart irrigation system to help farmers manage irrigation with more efficient water usage without hampering their pest prevention. The system outcomes were three options: 1) no water needed, 2) water is required and is efficient for watering and 3) water is required but it is not efficient for watering. We used Wireless Sensor Networks and IoT to collect yield parameters, designed a firebase database, and developed a mobile application and a web service embedded with a machine learning application. All applications interacted by using the Representational State Transfer Application Programming Interface. The proposed system architecture successfully gathered cropland data and distributed them to all applications within the system. Furthermore, we analyzed four supervised learning algorithms (decision trees, random forest, gradient boosting, and K-Nearest neighbor), and the random forest was deployed in the web service because it outperformed other algorithms with an accuracy of 94% and AUC Score of 0.90.
Author Putri Ayu Maharani
Muh. Agus
Rafrin, Mardhiyyah
Author_xml – sequence: 1
  givenname: Mardhiyyah
  surname: Rafrin
  fullname: Rafrin, Mardhiyyah
– sequence: 2
  surname: Muh. Agus
  fullname: Muh. Agus
– sequence: 3
  surname: Putri Ayu Maharani
  fullname: Putri Ayu Maharani
BookMark eNpNkNFKwzAUhoMoOOfuvewLdCZp0ySXOpwWJg7crsNpe7JldI0kRdjbu3YiXp3D_x8-ON8due58h4Q8MDrnmlP5GDD2bv6tHJ8LIfUVmXChaEplQa__7bdkFuOBUsp5XgiVTci69Jv0GSI2SRmC20HvfJd8nmKPx2QbXbdL3qHeuw6TFULohsD6kKwD1i6Ot3toW98nSwjHc3tPbiy0EWe_c0q2y5fN4i1dfbyWi6dVWrNc61RKpEwoi4yyTMlKNUxIqOw5Q4V1Y5XOrOCQQ5HnnDaYVaitYFjlmlEpsykpL9zGw8F8BXeEcDIenBkDH3YGQu_qFo3VCpm0PLPnt3ObAcoCNCheM6sFDCx6YdXBxxjQ_vEYNaNgMwo2g2AzCM5-AApccXA
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.29207/resti.v8i2.5579
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2580-0760
EndPage 222
ExternalDocumentID oai_doaj_org_article_f98e17f23f2244f3ae76a9a82c1f95a7
10_29207_resti_v8i2_5579
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
ID FETCH-LOGICAL-c1499-77e0158fe101387b8d157abf158e8ecdf893f52a4a64420de3be9f51eb4910773
IEDL.DBID DOA
ISSN 2580-0760
IngestDate Tue Oct 22 15:07:52 EDT 2024
Fri Aug 23 02:52:52 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1499-77e0158fe101387b8d157abf158e8ecdf893f52a4a64420de3be9f51eb4910773
OpenAccessLink https://doaj.org/article/f98e17f23f2244f3ae76a9a82c1f95a7
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_f98e17f23f2244f3ae76a9a82c1f95a7
crossref_primary_10_29207_resti_v8i2_5579
PublicationCentury 2000
PublicationDate 2024-04-20
PublicationDateYYYYMMDD 2024-04-20
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-20
  day: 20
PublicationDecade 2020
PublicationTitle Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online)
PublicationYear 2024
Publisher Ikatan Ahli Informatika Indonesia
Publisher_xml – name: Ikatan Ahli Informatika Indonesia
SSID ssj0002246583
Score 2.3019245
Snippet Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 216
SubjectTerms enrekang
iot
shallot farming
smart farming
wsn sensors
Title IoT-Based Irrigation System Using Machine Learning for Precision Shallot Farming
URI https://doaj.org/article/f98e17f23f2244f3ae76a9a82c1f95a7
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJy-iqLh-kYMXD12b9CPp0RWXXWFlwV3YW0mbmWU9tFKqv99JWqU3L15DCOVN4L3pTN4wdhdiKsCEOkBSC0GMlLNqdL85ysxEZSpS7Z-LLV_T-SZ-2Sbbwagv1xPW2QN3wD1gpkEolBES2cQYGVCpyYyWpcAsMd078jAbJFPv3tQlJmqNurqkG8iknBd3u5986b2cJInr3Brw0MCu3_PK7Jgd9YKQP3YfcsIOoDplq0W9DqZEMJYvmsa7YNQV79zFua_y86XvggTeG6TuOKlPvmr6kTn8zQ1JqVs-M67ZZXfGNrPn9dM86GcfBCXlLBmJXiCi1gjClRJVoa1IlCmQ1kBDaZF0BibSxIYEjQwtRAVkmAgoYhIASkXnbFTVFVwwXkSllaUVVmhN4qfQKZ0EGAu0zo7PjNn9DxL5R2dxkVNq4FHLPWq5Qy13qI3Z1EH1u8-ZU_sFClnehyz_K2SX_3HIFTuUpC9cYUeG12zUNp9wQ_qgLW79VfgGZNu5MA
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoT-Based+Irrigation+System+Using+Machine+Learning+for+Precision+Shallot+Farming&rft.jtitle=Jurnal+RESTI+%28Rekayasa+Sistem+dan+Teknologi+Informasi%29+%28Online%29&rft.au=Mardhiyyah+Rafrin&rft.au=Muh.+Agus&rft.au=Putri+Ayu+Maharani&rft.date=2024-04-20&rft.pub=Ikatan+Ahli+Informatika+Indonesia&rft.eissn=2580-0760&rft.volume=8&rft.issue=2&rft.spage=216&rft.epage=222&rft_id=info:doi/10.29207%2Fresti.v8i2.5579&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f98e17f23f2244f3ae76a9a82c1f95a7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2580-0760&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2580-0760&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2580-0760&client=summon