IoT-Based Irrigation System Using Machine Learning for Precision Shallot Farming
Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot cultivation is very challenging because it requires precision irrigation and pest prevention. In this research, we proposed a smart irrigatio...
Saved in:
Published in | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online) Vol. 8; no. 2; pp. 216 - 222 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Ikatan Ahli Informatika Indonesia
20.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot cultivation is very challenging because it requires precision irrigation and pest prevention. In this research, we proposed a smart irrigation system to help farmers manage irrigation with more efficient water usage without hampering their pest prevention. The system outcomes were three options: 1) no water needed, 2) water is required and is efficient for watering and 3) water is required but it is not efficient for watering. We used Wireless Sensor Networks and IoT to collect yield parameters, designed a firebase database, and developed a mobile application and a web service embedded with a machine learning application. All applications interacted by using the Representational State Transfer Application Programming Interface. The proposed system architecture successfully gathered cropland data and distributed them to all applications within the system. Furthermore, we analyzed four supervised learning algorithms (decision trees, random forest, gradient boosting, and K-Nearest neighbor), and the random forest was deployed in the web service because it outperformed other algorithms with an accuracy of 94% and AUC Score of 0.90. |
---|---|
AbstractList | Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot cultivation is very challenging because it requires precision irrigation and pest prevention. In this research, we proposed a smart irrigation system to help farmers manage irrigation with more efficient water usage without hampering their pest prevention. The system outcomes were three options: 1) no water needed, 2) water is required and is efficient for watering and 3) water is required but it is not efficient for watering. We used Wireless Sensor Networks and IoT to collect yield parameters, designed a firebase database, and developed a mobile application and a web service embedded with a machine learning application. All applications interacted by using the Representational State Transfer Application Programming Interface. The proposed system architecture successfully gathered cropland data and distributed them to all applications within the system. Furthermore, we analyzed four supervised learning algorithms (decision trees, random forest, gradient boosting, and K-Nearest neighbor), and the random forest was deployed in the web service because it outperformed other algorithms with an accuracy of 94% and AUC Score of 0.90. |
Author | Putri Ayu Maharani Muh. Agus Rafrin, Mardhiyyah |
Author_xml | – sequence: 1 givenname: Mardhiyyah surname: Rafrin fullname: Rafrin, Mardhiyyah – sequence: 2 surname: Muh. Agus fullname: Muh. Agus – sequence: 3 surname: Putri Ayu Maharani fullname: Putri Ayu Maharani |
BookMark | eNpNkNFKwzAUhoMoOOfuvewLdCZp0ySXOpwWJg7crsNpe7JldI0kRdjbu3YiXp3D_x8-ON8due58h4Q8MDrnmlP5GDD2bv6tHJ8LIfUVmXChaEplQa__7bdkFuOBUsp5XgiVTci69Jv0GSI2SRmC20HvfJd8nmKPx2QbXbdL3qHeuw6TFULohsD6kKwD1i6Ot3toW98nSwjHc3tPbiy0EWe_c0q2y5fN4i1dfbyWi6dVWrNc61RKpEwoi4yyTMlKNUxIqOw5Q4V1Y5XOrOCQQ5HnnDaYVaitYFjlmlEpsykpL9zGw8F8BXeEcDIenBkDH3YGQu_qFo3VCpm0PLPnt3ObAcoCNCheM6sFDCx6YdXBxxjQ_vEYNaNgMwo2g2AzCM5-AApccXA |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.29207/resti.v8i2.5579 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2580-0760 |
EndPage | 222 |
ExternalDocumentID | oai_doaj_org_article_f98e17f23f2244f3ae76a9a82c1f95a7 10_29207_resti_v8i2_5579 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E |
ID | FETCH-LOGICAL-c1499-77e0158fe101387b8d157abf158e8ecdf893f52a4a64420de3be9f51eb4910773 |
IEDL.DBID | DOA |
ISSN | 2580-0760 |
IngestDate | Tue Oct 22 15:07:52 EDT 2024 Fri Aug 23 02:52:52 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1499-77e0158fe101387b8d157abf158e8ecdf893f52a4a64420de3be9f51eb4910773 |
OpenAccessLink | https://doaj.org/article/f98e17f23f2244f3ae76a9a82c1f95a7 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f98e17f23f2244f3ae76a9a82c1f95a7 crossref_primary_10_29207_resti_v8i2_5579 |
PublicationCentury | 2000 |
PublicationDate | 2024-04-20 |
PublicationDateYYYYMMDD | 2024-04-20 |
PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-20 day: 20 |
PublicationDecade | 2020 |
PublicationTitle | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) (Online) |
PublicationYear | 2024 |
Publisher | Ikatan Ahli Informatika Indonesia |
Publisher_xml | – name: Ikatan Ahli Informatika Indonesia |
SSID | ssj0002246583 |
Score | 2.3019245 |
Snippet | Despite the massive production of shallots in Enrekang Regency, South Sulawesi Province, Indonesia, the cultivation method is still very conventional. Shallot... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 216 |
SubjectTerms | enrekang iot shallot farming smart farming wsn sensors |
Title | IoT-Based Irrigation System Using Machine Learning for Precision Shallot Farming |
URI | https://doaj.org/article/f98e17f23f2244f3ae76a9a82c1f95a7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA2yJy-iqLh-kYMXD12b9CPp0RWXXWFlwV3YW0mbmWU9tFKqv99JWqU3L15DCOVN4L3pTN4wdhdiKsCEOkBSC0GMlLNqdL85ysxEZSpS7Z-LLV_T-SZ-2Sbbwagv1xPW2QN3wD1gpkEolBES2cQYGVCpyYyWpcAsMd078jAbJFPv3tQlJmqNurqkG8iknBd3u5986b2cJInr3Brw0MCu3_PK7Jgd9YKQP3YfcsIOoDplq0W9DqZEMJYvmsa7YNQV79zFua_y86XvggTeG6TuOKlPvmr6kTn8zQ1JqVs-M67ZZXfGNrPn9dM86GcfBCXlLBmJXiCi1gjClRJVoa1IlCmQ1kBDaZF0BibSxIYEjQwtRAVkmAgoYhIASkXnbFTVFVwwXkSllaUVVmhN4qfQKZ0EGAu0zo7PjNn9DxL5R2dxkVNq4FHLPWq5Qy13qI3Z1EH1u8-ZU_sFClnehyz_K2SX_3HIFTuUpC9cYUeG12zUNp9wQ_qgLW79VfgGZNu5MA |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IoT-Based+Irrigation+System+Using+Machine+Learning+for+Precision+Shallot+Farming&rft.jtitle=Jurnal+RESTI+%28Rekayasa+Sistem+dan+Teknologi+Informasi%29+%28Online%29&rft.au=Mardhiyyah+Rafrin&rft.au=Muh.+Agus&rft.au=Putri+Ayu+Maharani&rft.date=2024-04-20&rft.pub=Ikatan+Ahli+Informatika+Indonesia&rft.eissn=2580-0760&rft.volume=8&rft.issue=2&rft.spage=216&rft.epage=222&rft_id=info:doi/10.29207%2Fresti.v8i2.5579&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f98e17f23f2244f3ae76a9a82c1f95a7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2580-0760&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2580-0760&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2580-0760&client=summon |