Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data

The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic coordination of neural activity over large-scale and hierarchical brain networks. State-of-the-art approaches involve the characterization of brain re...

Full description

Saved in:
Bibliographic Details
Published inJournal of open source software Vol. 7; no. 79; p. 3842
Main Authors Combrisson, Etienne, Basanisi, Ruggero, Cordeiro, Vinicius Lima, Ince, Robin A. A, Brovelli, Andrea
Format Journal Article
LanguageEnglish
Published Open Journals 11.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic coordination of neural activity over large-scale and hierarchical brain networks. State-of-the-art approaches involve the characterization of brain regions and inter-areal interactions that participate in cognitive processes (Battaglia & Brovelli, 2020). More precisely, the study of cognitive brain networks underlies linking local neural activity or interactions between brain regions to experimental variables, such as sensory stimuli or behavioral responses. The relation between the brain data and external variables might take complex forms (e.g. non-linear relationships) with strong variations across brain regions and participants. Therefore, powerful measures of information are required to detect complex relations and the statistical relevance at the population level should be able to adapt to the inter subject variability.
AbstractList The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic coordination of neural activity over large-scale and hierarchical brain networks. State-of-the-art approaches involve the characterization of brain regions and inter-areal interactions that participate in cognitive processes (Battaglia & Brovelli, 2020). More precisely, the study of cognitive brain networks underlies linking local neural activity or interactions between brain regions to experimental variables, such as sensory stimuli or behavioral responses. The relation between the brain data and external variables might take complex forms (e.g. non-linear relationships) with strong variations across brain regions and participants. Therefore, powerful measures of information are required to detect complex relations and the statistical relevance at the population level should be able to adapt to the inter subject variability.
Author Ince, Robin A. A
Brovelli, Andrea
Combrisson, Etienne
Cordeiro, Vinicius Lima
Basanisi, Ruggero
Author_xml – sequence: 1
  givenname: Etienne
  orcidid: 0000-0002-7362-3247
  surname: Combrisson
  fullname: Combrisson, Etienne
– sequence: 2
  givenname: Ruggero
  orcidid: 0000-0003-4776-596X
  surname: Basanisi
  fullname: Basanisi, Ruggero
– sequence: 3
  givenname: Vinicius Lima
  orcidid: 0000-0001-7115-9041
  surname: Cordeiro
  fullname: Cordeiro, Vinicius Lima
– sequence: 4
  givenname: Robin A. A
  orcidid: 0000-0001-8427-0507
  surname: Ince
  fullname: Ince, Robin A. A
– sequence: 5
  givenname: Andrea
  orcidid: 0000-0002-5342-1330
  surname: Brovelli
  fullname: Brovelli, Andrea
BackLink https://hal.science/hal-03843440$$DView record in HAL
BookMark eNptUE1LAzEUDKJgrT35B3IV2ZpkN_vhrRRrhYIe9BzSfLSpa7IkaWH_vdlWQcTTmzfMzOPNFTi3zioAbjCaEowRvd-5EKYorwtyBkakqGjWoLI8_4UvwSSEHUII1yUpMR6BsPAmqvAAZ_C1j1tnYcfFB98oqJ2Hem9FNM7yFgpnrUrLwcQe8sT0wYQEJNx4t--yVh1UC0Pk0YRoRIBOQ6v23nXbpHSt2xiRYiSP_BpcaN4GNfmeY_C-eHybL7PVy9PzfLbKBC4akjW0rCSmpaQIVTpvakUpRU0u8LoSaF3JWhYECYG5Jo3QjSAolzmlkuo1IRzlY3B7yt3ylnXefHLfM8cNW85WbOCGrvKiQAectPikFT616JVmwgy_OBs9Ny3DiB1LZkPJRyNJnrs_np8j_6m_AKF1gbs
CitedBy_id crossref_primary_10_1002_hbm_70024
crossref_primary_10_7554_eLife_92938
crossref_primary_10_7554_eLife_92938_3
crossref_primary_10_1088_1741_2552_ad5938
crossref_primary_10_1523_JNEUROSCI_0157_23_2023
Cites_doi 10.1523/jneurosci.4892-14.2015
10.3389/fnins.2013.00267
10.1002/hbm.23471
10.21105/joss.01081
10.1016/j.neuroimage.2009.10.003
10.1371/journal.pcbi.1008302
10.1523/JNEUROSCI.1672-16.2016
10.1016/j.neuroimage.2022.119347
10.7551/mitpress/11442.001.0001
10.1038/s41586-020-2649-2
10.5334/jors.148
10.1016/j.jneumeth.2007.03.024
10.21105/joss.01609
10.1145/2833157.2833162
ContentType Journal Article
Copyright Attribution
Copyright_xml – notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.21105/joss.03842
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2475-9066
ExternalDocumentID oai_HAL_hal_03843440v1
10_21105_joss_03842
GroupedDBID AAFWJ
AAYXX
ADBBV
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
M~E
OK1
1XC
VOOES
ID FETCH-LOGICAL-c1492-9567d156d5007f398e555093c1b7c0b7d8d420cc1af29cf9c203d355d5fb22a03
ISSN 2475-9066
IngestDate Fri May 09 12:14:49 EDT 2025
Tue Jul 01 04:04:43 EDT 2025
Thu Apr 24 23:08:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 79
Language English
License http://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1492-9567d156d5007f398e555093c1b7c0b7d8d420cc1af29cf9c203d355d5fb22a03
ORCID 0000-0001-8427-0507
0000-0002-5342-1330
0000-0002-7362-3247
0000-0003-4776-596X
0000-0001-7115-9041
OpenAccessLink http://dx.doi.org/10.21105/joss.03842
ParticipantIDs hal_primary_oai_HAL_hal_03843440v1
crossref_citationtrail_10_21105_joss_03842
crossref_primary_10_21105_joss_03842
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-11
PublicationDateYYYYMMDD 2022-11-11
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-11
  day: 11
PublicationDecade 2020
PublicationTitle Journal of open source software
PublicationYear 2022
Publisher Open Journals
Publisher_xml – name: Open Journals
References Candadai (Candadai:2019) 2019
Maris (Maris:2007) 2007; 164
Hoyer (Hoyer:2017) 2017; 5
Wollstadt (Wollstadt:2019) 2019; 4
Brovelli (Brovelli:2017) 2017; 37
Pedregosa (Pedregosa:2011) 2011; 12
Combrisson (Combrisson:2022) 2022; 258
Ince (Ince:2017) 2017; 38
Combrisson (Combrisson:2020) 2020; 16
Rubinov (Rubinov:2010) 2010; 52
Gramfort (Gramfort:2013) 2013; 7
Battaglia (Battaglia:2020) 2020
Harris (Harris:2020) 2020; 585
Lam (Lam:2015) 2015
Brovelli (Brovelli:2015) 2015; 35
References_xml – volume: 35
  issue: 37
  year: 2015
  ident: Brovelli:2015
  article-title: Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping
  publication-title: The Journal of Neuroscience
  doi: 10.1523/jneurosci.4892-14.2015
– volume: 7
  issue: 267
  year: 2013
  ident: Gramfort:2013
  article-title: MEG and EEG data analysis with MNE-Python
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2013.00267
– volume: 38
  issue: 3
  year: 2017
  ident: Ince:2017
  article-title: A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula: Gaussian Copula Mutual Information
  publication-title: Human Brain Mapping
  doi: 10.1002/hbm.23471
– volume: 4
  issue: 34
  year: 2019
  ident: Wollstadt:2019
  article-title: IDTxl: The information dynamics toolkit xl: A python package for the efficient analysis of multivariate information dynamics in networks
  publication-title: Journal of Open Source Software
  doi: 10.21105/joss.01081
– volume: 52
  issue: 3
  year: 2010
  ident: Rubinov:2010
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.10.003
– volume: 16
  issn: 1553-7358
  issue: 10
  year: 2020
  ident: Combrisson:2020
  article-title: Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals
  publication-title: PLoS computational biology
  doi: 10.1371/journal.pcbi.1008302
– volume: 37
  issn: 0270-6474
  issue: 4
  year: 2017
  ident: Brovelli:2017
  article-title: Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks
  publication-title: The Journal of Neuroscience
  doi: 10.1523/JNEUROSCI.1672-16.2016
– volume: 258
  issn: 1053-8119
  year: 2022
  ident: Combrisson:2022
  article-title: Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2022.119347
– year: 2020
  ident: Battaglia:2020
  article-title: Functional connectivity and neuronal dynamics: Insights from computational methods
  publication-title: The Cognitive Neurosciences
  doi: 10.7551/mitpress/11442.001.0001
– volume: 585
  issue: 7825
  year: 2020
  ident: Harris:2020
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 5
  issue: 1
  year: 2017
  ident: Hoyer:2017
  article-title: Xarray: ND labeled arrays and datasets in Python
  publication-title: Journal of Open Research Software
  doi: 10.5334/jors.148
– volume: 164
  issue: 1
  year: 2007
  ident: Maris:2007
  article-title: Nonparametric statistical testing of EEG- and MEG-data
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2007.03.024
– year: 2019
  ident: Candadai:2019
  article-title: Infotheory: A c++/python package for multivariate information theoretic analysis
  publication-title: arXiv preprint arXiv:1907.02339
  doi: 10.21105/joss.01609
– year: 2015
  ident: Lam:2015
  article-title: Numba: A LLVM-based Python JIT compiler
  publication-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC
  doi: 10.1145/2833157.2833162
– volume: 12
  year: 2011
  ident: Pedregosa:2011
  article-title: Scikit learn : Machine Learning in Python
  publication-title: Journal of Machine Learning Research
SSID ssj0001862611
Score 2.2015035
Snippet The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic...
SourceID hal
crossref
SourceType Open Access Repository
Enrichment Source
Index Database
StartPage 3842
SubjectTerms Cognitive science
Neuroscience
Title Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data
URI https://hal.science/hal-03843440
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cKF8hTlpRXqicjFXq_XNrcItYoQQgi1qDdrvY8SqBKUOEXwj_iXzOyuHy0-FC6Otdl1osyn2f0m38wQcmBgk9NWFZHgCYu4tDySYOhI5bwWEvhzrJ3a4oOYn_J3Z9nZZPJ7oFraNvWh-jWaV_I_VoUxsCtmyf6DZbuHwgDcg33hChaG641sfAzM3mvaZtOPP7EKwBQo8DeU4aB6EPesEOpTqGdRoVOEbAuRYNDcpXVEF6gdwrhCEwo3o74D63a4yEfnIEMm29hxFttwTf1fAfBimx-yl9WC08HEgpDcddQ4kVkfQ93I5WLjVAWftufnZr3q1621WfhMnM-YwbnYbjAlq9tKwLuZoA_HuM1hiMyGKAYQYFTSJb2zYzzPojIWoSz2yFjw1vkAlL4NTXC9aeHLdF3fE5DhYv2Mr5i0GbezrlbevrYjdjpFYEhueYWLK7d4h9xiwEjYgL27cB4yQ9ftufvWPhvUrX_df_iV88_OlzZ8744zJ3fJnWA4OvOgukcmZnmf7LU9Pmhw-Q_IxmPsDZ1RjzAaEEYBYbRHGB0ijLYIgxtNBwijPcLoytK_EUYRYQ_J6fHRydt5FBp1RAoINouAY-c6yYTO4MRp07IwGRDfMlVJnau4znWhOYuVSqRlpbKlYnGq4aCrM1szJuP0EdldrpbmMaHCJiI3wAo0UOWykLKwpSgV51bC9mLEPnnV_nyVClXssZnKRTViq31y0E3-7ou3jE97CXboZmDB9fnsfYVj-H7KeXyZPLnZs56S2z28n5HdZr01z-HY2tQvHGD-AGd3nms
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frites%3A+A+Python+package+for+functional+connectivity+analysis+and+group-level+statistics+of+neurophysiological+data&rft.jtitle=Journal+of+open+source+software&rft.au=Combrisson%2C+Etienne&rft.au=Basanisi%2C+Ruggero&rft.au=Cordeiro%2C+Vinicius+Lima&rft.au=Ince%2C+Robin+A.+A&rft.date=2022-11-11&rft.issn=2475-9066&rft.eissn=2475-9066&rft.volume=7&rft.issue=79&rft.spage=3842&rft_id=info:doi/10.21105%2Fjoss.03842&rft.externalDBID=n%2Fa&rft.externalDocID=10_21105_joss_03842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-9066&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-9066&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-9066&client=summon