Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data
The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic coordination of neural activity over large-scale and hierarchical brain networks. State-of-the-art approaches involve the characterization of brain re...
Saved in:
Published in | Journal of open source software Vol. 7; no. 79; p. 3842 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Open Journals
11.11.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic coordination of neural activity over large-scale and hierarchical brain networks. State-of-the-art approaches involve the characterization of brain regions and inter-areal interactions that participate in cognitive processes (Battaglia & Brovelli, 2020). More precisely, the study of cognitive brain networks underlies linking local neural activity or interactions between brain regions to experimental variables, such as sensory stimuli or behavioral responses. The relation between the brain data and external variables might take complex forms (e.g. non-linear relationships) with strong variations across brain regions and participants. Therefore, powerful measures of information are required to detect complex relations and the statistical relevance at the population level should be able to adapt to the inter subject variability. |
---|---|
AbstractList | The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic coordination of neural activity over large-scale and hierarchical brain networks. State-of-the-art approaches involve the characterization of brain regions and inter-areal interactions that participate in cognitive processes (Battaglia & Brovelli, 2020). More precisely, the study of cognitive brain networks underlies linking local neural activity or interactions between brain regions to experimental variables, such as sensory stimuli or behavioral responses. The relation between the brain data and external variables might take complex forms (e.g. non-linear relationships) with strong variations across brain regions and participants. Therefore, powerful measures of information are required to detect complex relations and the statistical relevance at the population level should be able to adapt to the inter subject variability. |
Author | Ince, Robin A. A Brovelli, Andrea Combrisson, Etienne Cordeiro, Vinicius Lima Basanisi, Ruggero |
Author_xml | – sequence: 1 givenname: Etienne orcidid: 0000-0002-7362-3247 surname: Combrisson fullname: Combrisson, Etienne – sequence: 2 givenname: Ruggero orcidid: 0000-0003-4776-596X surname: Basanisi fullname: Basanisi, Ruggero – sequence: 3 givenname: Vinicius Lima orcidid: 0000-0001-7115-9041 surname: Cordeiro fullname: Cordeiro, Vinicius Lima – sequence: 4 givenname: Robin A. A orcidid: 0000-0001-8427-0507 surname: Ince fullname: Ince, Robin A. A – sequence: 5 givenname: Andrea orcidid: 0000-0002-5342-1330 surname: Brovelli fullname: Brovelli, Andrea |
BackLink | https://hal.science/hal-03843440$$DView record in HAL |
BookMark | eNptUE1LAzEUDKJgrT35B3IV2ZpkN_vhrRRrhYIe9BzSfLSpa7IkaWH_vdlWQcTTmzfMzOPNFTi3zioAbjCaEowRvd-5EKYorwtyBkakqGjWoLI8_4UvwSSEHUII1yUpMR6BsPAmqvAAZ_C1j1tnYcfFB98oqJ2Hem9FNM7yFgpnrUrLwcQe8sT0wYQEJNx4t--yVh1UC0Pk0YRoRIBOQ6v23nXbpHSt2xiRYiSP_BpcaN4GNfmeY_C-eHybL7PVy9PzfLbKBC4akjW0rCSmpaQIVTpvakUpRU0u8LoSaF3JWhYECYG5Jo3QjSAolzmlkuo1IRzlY3B7yt3ylnXefHLfM8cNW85WbOCGrvKiQAectPikFT616JVmwgy_OBs9Ny3DiB1LZkPJRyNJnrs_np8j_6m_AKF1gbs |
CitedBy_id | crossref_primary_10_1002_hbm_70024 crossref_primary_10_7554_eLife_92938 crossref_primary_10_7554_eLife_92938_3 crossref_primary_10_1088_1741_2552_ad5938 crossref_primary_10_1523_JNEUROSCI_0157_23_2023 |
Cites_doi | 10.1523/jneurosci.4892-14.2015 10.3389/fnins.2013.00267 10.1002/hbm.23471 10.21105/joss.01081 10.1016/j.neuroimage.2009.10.003 10.1371/journal.pcbi.1008302 10.1523/JNEUROSCI.1672-16.2016 10.1016/j.neuroimage.2022.119347 10.7551/mitpress/11442.001.0001 10.1038/s41586-020-2649-2 10.5334/jors.148 10.1016/j.jneumeth.2007.03.024 10.21105/joss.01609 10.1145/2833157.2833162 |
ContentType | Journal Article |
Copyright | Attribution |
Copyright_xml | – notice: Attribution |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.21105/joss.03842 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2475-9066 |
ExternalDocumentID | oai_HAL_hal_03843440v1 10_21105_joss_03842 |
GroupedDBID | AAFWJ AAYXX ADBBV AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ M~E OK1 1XC VOOES |
ID | FETCH-LOGICAL-c1492-9567d156d5007f398e555093c1b7c0b7d8d420cc1af29cf9c203d355d5fb22a03 |
ISSN | 2475-9066 |
IngestDate | Fri May 09 12:14:49 EDT 2025 Tue Jul 01 04:04:43 EDT 2025 Thu Apr 24 23:08:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 79 |
Language | English |
License | http://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1492-9567d156d5007f398e555093c1b7c0b7d8d420cc1af29cf9c203d355d5fb22a03 |
ORCID | 0000-0001-8427-0507 0000-0002-5342-1330 0000-0002-7362-3247 0000-0003-4776-596X 0000-0001-7115-9041 |
OpenAccessLink | http://dx.doi.org/10.21105/joss.03842 |
ParticipantIDs | hal_primary_oai_HAL_hal_03843440v1 crossref_citationtrail_10_21105_joss_03842 crossref_primary_10_21105_joss_03842 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-11 |
PublicationDateYYYYMMDD | 2022-11-11 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Journal of open source software |
PublicationYear | 2022 |
Publisher | Open Journals |
Publisher_xml | – name: Open Journals |
References | Candadai (Candadai:2019) 2019 Maris (Maris:2007) 2007; 164 Hoyer (Hoyer:2017) 2017; 5 Wollstadt (Wollstadt:2019) 2019; 4 Brovelli (Brovelli:2017) 2017; 37 Pedregosa (Pedregosa:2011) 2011; 12 Combrisson (Combrisson:2022) 2022; 258 Ince (Ince:2017) 2017; 38 Combrisson (Combrisson:2020) 2020; 16 Rubinov (Rubinov:2010) 2010; 52 Gramfort (Gramfort:2013) 2013; 7 Battaglia (Battaglia:2020) 2020 Harris (Harris:2020) 2020; 585 Lam (Lam:2015) 2015 Brovelli (Brovelli:2015) 2015; 35 |
References_xml | – volume: 35 issue: 37 year: 2015 ident: Brovelli:2015 article-title: Characterization of Cortical Networks and Corticocortical Functional Connectivity Mediating Arbitrary Visuomotor Mapping publication-title: The Journal of Neuroscience doi: 10.1523/jneurosci.4892-14.2015 – volume: 7 issue: 267 year: 2013 ident: Gramfort:2013 article-title: MEG and EEG data analysis with MNE-Python publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2013.00267 – volume: 38 issue: 3 year: 2017 ident: Ince:2017 article-title: A statistical framework for neuroimaging data analysis based on mutual information estimated via a gaussian copula: Gaussian Copula Mutual Information publication-title: Human Brain Mapping doi: 10.1002/hbm.23471 – volume: 4 issue: 34 year: 2019 ident: Wollstadt:2019 article-title: IDTxl: The information dynamics toolkit xl: A python package for the efficient analysis of multivariate information dynamics in networks publication-title: Journal of Open Source Software doi: 10.21105/joss.01081 – volume: 52 issue: 3 year: 2010 ident: Rubinov:2010 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: Neuroimage doi: 10.1016/j.neuroimage.2009.10.003 – volume: 16 issn: 1553-7358 issue: 10 year: 2020 ident: Combrisson:2020 article-title: Tensorpac: An open-source Python toolbox for tensor-based phase-amplitude coupling measurement in electrophysiological brain signals publication-title: PLoS computational biology doi: 10.1371/journal.pcbi.1008302 – volume: 37 issn: 0270-6474 issue: 4 year: 2017 ident: Brovelli:2017 article-title: Dynamic Reconfiguration of Visuomotor-Related Functional Connectivity Networks publication-title: The Journal of Neuroscience doi: 10.1523/JNEUROSCI.1672-16.2016 – volume: 258 issn: 1053-8119 year: 2022 ident: Combrisson:2022 article-title: Group-level inference of information-based measures for the analyses of cognitive brain networks from neurophysiological data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2022.119347 – year: 2020 ident: Battaglia:2020 article-title: Functional connectivity and neuronal dynamics: Insights from computational methods publication-title: The Cognitive Neurosciences doi: 10.7551/mitpress/11442.001.0001 – volume: 585 issue: 7825 year: 2020 ident: Harris:2020 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 5 issue: 1 year: 2017 ident: Hoyer:2017 article-title: Xarray: ND labeled arrays and datasets in Python publication-title: Journal of Open Research Software doi: 10.5334/jors.148 – volume: 164 issue: 1 year: 2007 ident: Maris:2007 article-title: Nonparametric statistical testing of EEG- and MEG-data publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2007.03.024 – year: 2019 ident: Candadai:2019 article-title: Infotheory: A c++/python package for multivariate information theoretic analysis publication-title: arXiv preprint arXiv:1907.02339 doi: 10.21105/joss.01609 – year: 2015 ident: Lam:2015 article-title: Numba: A LLVM-based Python JIT compiler publication-title: Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in HPC doi: 10.1145/2833157.2833162 – volume: 12 year: 2011 ident: Pedregosa:2011 article-title: Scikit learn : Machine Learning in Python publication-title: Journal of Machine Learning Research |
SSID | ssj0001862611 |
Score | 2.2015035 |
Snippet | The field of cognitive computational neuroscience addresses open questions regarding the complex relation between cognitive functions and the dynamic... |
SourceID | hal crossref |
SourceType | Open Access Repository Enrichment Source Index Database |
StartPage | 3842 |
SubjectTerms | Cognitive science Neuroscience |
Title | Frites: A Python package for functional connectivity analysis and group-level statistics of neurophysiological data |
URI | https://hal.science/hal-03843440 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6l5cKF8hTlpRXqicjFXq_XNrcItYoQQgi1qDdrvY8SqBKUOEXwj_iXzOyuHy0-FC6Otdl1osyn2f0m38wQcmBgk9NWFZHgCYu4tDySYOhI5bwWEvhzrJ3a4oOYn_J3Z9nZZPJ7oFraNvWh-jWaV_I_VoUxsCtmyf6DZbuHwgDcg33hChaG641sfAzM3mvaZtOPP7EKwBQo8DeU4aB6EPesEOpTqGdRoVOEbAuRYNDcpXVEF6gdwrhCEwo3o74D63a4yEfnIEMm29hxFttwTf1fAfBimx-yl9WC08HEgpDcddQ4kVkfQ93I5WLjVAWftufnZr3q1621WfhMnM-YwbnYbjAlq9tKwLuZoA_HuM1hiMyGKAYQYFTSJb2zYzzPojIWoSz2yFjw1vkAlL4NTXC9aeHLdF3fE5DhYv2Mr5i0GbezrlbevrYjdjpFYEhueYWLK7d4h9xiwEjYgL27cB4yQ9ftufvWPhvUrX_df_iV88_OlzZ8744zJ3fJnWA4OvOgukcmZnmf7LU9Pmhw-Q_IxmPsDZ1RjzAaEEYBYbRHGB0ijLYIgxtNBwijPcLoytK_EUYRYQ_J6fHRydt5FBp1RAoINouAY-c6yYTO4MRp07IwGRDfMlVJnau4znWhOYuVSqRlpbKlYnGq4aCrM1szJuP0EdldrpbmMaHCJiI3wAo0UOWykLKwpSgV51bC9mLEPnnV_nyVClXssZnKRTViq31y0E3-7ou3jE97CXboZmDB9fnsfYVj-H7KeXyZPLnZs56S2z28n5HdZr01z-HY2tQvHGD-AGd3nms |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frites%3A+A+Python+package+for+functional+connectivity+analysis+and+group-level+statistics+of+neurophysiological+data&rft.jtitle=Journal+of+open+source+software&rft.au=Combrisson%2C+Etienne&rft.au=Basanisi%2C+Ruggero&rft.au=Cordeiro%2C+Vinicius+Lima&rft.au=Ince%2C+Robin+A.+A&rft.date=2022-11-11&rft.issn=2475-9066&rft.eissn=2475-9066&rft.volume=7&rft.issue=79&rft.spage=3842&rft_id=info:doi/10.21105%2Fjoss.03842&rft.externalDBID=n%2Fa&rft.externalDocID=10_21105_joss_03842 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-9066&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-9066&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-9066&client=summon |