A Unique Characterization of Spectral Extrema for Friendship Graphs
Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán number of the friendship graph $F_k$ for $n\geq 50k^2$, and characterized all its extremal graphs. Cioabă et al. [Electron. J. Combin. 27 (2020) P...
Saved in:
Published in | The Electronic journal of combinatorics Vol. 29; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
12.08.2022
|
Online Access | Get full text |
Cover
Loading…
Abstract | Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán number of the friendship graph $F_k$ for $n\geq 50k^2$, and characterized all its extremal graphs. Cioabă et al. [Electron. J. Combin. 27 (2020) Paper 22] initially introduced Triangle Removal Lemma into a spectral Turán-type problem, then showed that $SPEX(n, F_k)\subseteq EX(n, F_k)$ for $n$ large enough, where $EX(n, F_k)$ and $SPEX(n, F_k)$ are the families of $n$-vertex $F_k$-free graphs with maximum size and maximum spectral radius, respectively. In this paper, the family $SPEX(n, F_k)$ is uniquely determined for sufficiently large $n$. Our key approach is to find various alternating cycles or closed trails in nearly regular graphs. Some typical spectral techniques are also used. This presents a probable way to characterize the uniqueness of extremal graphs for some of other spectral extremal problems. In the end, we mention several related conjectures. |
---|---|
AbstractList | Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán number of the friendship graph $F_k$ for $n\geq 50k^2$, and characterized all its extremal graphs. Cioabă et al. [Electron. J. Combin. 27 (2020) Paper 22] initially introduced Triangle Removal Lemma into a spectral Turán-type problem, then showed that $SPEX(n, F_k)\subseteq EX(n, F_k)$ for $n$ large enough, where $EX(n, F_k)$ and $SPEX(n, F_k)$ are the families of $n$-vertex $F_k$-free graphs with maximum size and maximum spectral radius, respectively. In this paper, the family $SPEX(n, F_k)$ is uniquely determined for sufficiently large $n$. Our key approach is to find various alternating cycles or closed trails in nearly regular graphs. Some typical spectral techniques are also used. This presents a probable way to characterize the uniqueness of extremal graphs for some of other spectral extremal problems. In the end, we mention several related conjectures. |
Author | Zhai, Mingqing Liu, Ruifang Xue, Jie |
Author_xml | – sequence: 1 givenname: Mingqing surname: Zhai fullname: Zhai, Mingqing – sequence: 2 givenname: Ruifang surname: Liu fullname: Liu, Ruifang – sequence: 3 givenname: Jie surname: Xue fullname: Xue, Jie |
BookMark | eNpNj7tOwzAUQC1UJNoC3-CJLeBH4sdYRX0gVWKAzpETXytGbRKujQR8PagwMJ0zHeksyGwYByDklrN7qYVUD5xzIy_InDOtC2OFmv3zK7JI6ZUxLqyt5qRe0cMQ396B1r1D12XA-OVyHAc6Bvo8QZfRHen6IyOcHA0j0g1GGHzq40S36KY-XZPL4I4Jbv64JIfN-qXeFfun7WO92hcdL00uvBfal6VtJQs6KNBla0JrlXHSBlWptvKtNB6Mko6L8GMSmGVaBOi0Z0ouyd1vt8MxJYTQTBhPDj8bzprzenNel99zOEzF |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.37236/11183 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1077-8926 |
ExternalDocumentID | 10_37236_11183 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAFWJ AAYXX ACGFO ACIPV ADBBV AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION E3Z EBS EJD FRP GROUPED_DOAJ H13 KWQ M~E OK1 OVT P2P REM RNS TR2 XSB |
ID | FETCH-LOGICAL-c148t-dd27d449b30f7f6e74b8fb968a39f656b5db38de863a12f8de3e09072fec7d063 |
ISSN | 1077-8926 |
IngestDate | Tue Jul 01 04:24:57 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c148t-dd27d449b30f7f6e74b8fb968a39f656b5db38de863a12f8de3e09072fec7d063 |
OpenAccessLink | https://www.combinatorics.org/ojs/index.php/eljc/article/download/v29i3p32/pdf |
ParticipantIDs | crossref_primary_10_37236_11183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-08-12 |
PublicationDateYYYYMMDD | 2022-08-12 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | The Electronic journal of combinatorics |
PublicationYear | 2022 |
SSID | ssj0012995 |
Score | 2.3748236 |
Snippet | Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán... |
SourceID | crossref |
SourceType | Index Database |
Title | A Unique Characterization of Spectral Extrema for Friendship Graphs |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA1aN7oQn_isWbiT0em8syxlahHGVQvFTUmaBGZh1XYGpAu_3ZtkXi0FH5swhKYMc6a5597enIPQbSAiKRjxrUAQ2_I8Flk0kgwG6kjicmrrbvfkORiMvKexPy4924vTJRm7ny43niv5D6owB7iqU7J_QLb6UpiAa8AXRkAYxl9h3FWUUemv9irZ5WVFAZWzvCpj3MWf2Vy8Ut1Q2Feyxlx3aD0qqepFk5yqVyaubXEaohJw85BBUy0oUpHwl8LKOoHo91FGQNXbk-YauDyVtJ4d56Zan4pmoQFyVCX82qg9QqIIAY04hXL1hrliQy1KGGmdb6_v027oaCcZ2GiNjc2qEPZagKraBiFh0Ssnet022nEgN1C2FclXXP11BPHVN42m5s6MoZRe96DXNRhIg0oMD9B-kQPgrgH0EG2J2RHaSyoB3cUx6nWxgRavQ4vfJC6hxQW0GKDFNbTYQHuCRv142BtYhd-FNYWkNLM4d0LueYS5tgxlIEL45UhGgoi6RALvZj5nbsRFFLi040i4coVN7NCRYhpy4JqnqDV7m4kzhL1OB8iPQxgR1OM2pUFAI04UQ6aU-uQc3ZTPYPJuZE0mq0_34sdPXKLd-jW5Qq1snotrYGgZa-vKRlvj8g2fWz7o |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unique+Characterization+of+Spectral+Extrema+for+Friendship+Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Zhai%2C+Mingqing&rft.au=Liu%2C+Ruifang&rft.au=Xue%2C+Jie&rft.date=2022-08-12&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=29&rft.issue=3&rft_id=info:doi/10.37236%2F11183&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_11183 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon |