A Unique Characterization of Spectral Extrema for Friendship Graphs

Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán number of the friendship graph $F_k$ for $n\geq 50k^2$, and characterized all its extremal graphs. Cioabă et al. [Electron. J. Combin. 27 (2020) P...

Full description

Saved in:
Bibliographic Details
Published inThe Electronic journal of combinatorics Vol. 29; no. 3
Main Authors Zhai, Mingqing, Liu, Ruifang, Xue, Jie
Format Journal Article
LanguageEnglish
Published 12.08.2022
Online AccessGet full text

Cover

Loading…
Abstract Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán number of the friendship graph $F_k$ for $n\geq 50k^2$, and characterized all its extremal graphs. Cioabă et al. [Electron. J. Combin. 27 (2020) Paper 22] initially introduced Triangle Removal Lemma into a spectral Turán-type problem, then showed that $SPEX(n, F_k)\subseteq EX(n, F_k)$ for $n$ large enough, where $EX(n, F_k)$ and $SPEX(n, F_k)$ are the families of $n$-vertex $F_k$-free graphs with maximum size and maximum spectral radius, respectively. In this paper, the family $SPEX(n, F_k)$ is uniquely determined for sufficiently large $n$. Our key approach is to find various alternating cycles or closed trails in nearly regular graphs. Some typical spectral techniques are also used. This presents a probable way to characterize the uniqueness of extremal graphs for some of other spectral extremal problems. In the end, we mention several related conjectures.
AbstractList Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán number of the friendship graph $F_k$ for $n\geq 50k^2$, and characterized all its extremal graphs. Cioabă et al. [Electron. J. Combin. 27 (2020) Paper 22] initially introduced Triangle Removal Lemma into a spectral Turán-type problem, then showed that $SPEX(n, F_k)\subseteq EX(n, F_k)$ for $n$ large enough, where $EX(n, F_k)$ and $SPEX(n, F_k)$ are the families of $n$-vertex $F_k$-free graphs with maximum size and maximum spectral radius, respectively. In this paper, the family $SPEX(n, F_k)$ is uniquely determined for sufficiently large $n$. Our key approach is to find various alternating cycles or closed trails in nearly regular graphs. Some typical spectral techniques are also used. This presents a probable way to characterize the uniqueness of extremal graphs for some of other spectral extremal problems. In the end, we mention several related conjectures.
Author Zhai, Mingqing
Liu, Ruifang
Xue, Jie
Author_xml – sequence: 1
  givenname: Mingqing
  surname: Zhai
  fullname: Zhai, Mingqing
– sequence: 2
  givenname: Ruifang
  surname: Liu
  fullname: Liu, Ruifang
– sequence: 3
  givenname: Jie
  surname: Xue
  fullname: Xue, Jie
BookMark eNpNj7tOwzAUQC1UJNoC3-CJLeBH4sdYRX0gVWKAzpETXytGbRKujQR8PagwMJ0zHeksyGwYByDklrN7qYVUD5xzIy_InDOtC2OFmv3zK7JI6ZUxLqyt5qRe0cMQ396B1r1D12XA-OVyHAc6Bvo8QZfRHen6IyOcHA0j0g1GGHzq40S36KY-XZPL4I4Jbv64JIfN-qXeFfun7WO92hcdL00uvBfal6VtJQs6KNBla0JrlXHSBlWptvKtNB6Mko6L8GMSmGVaBOi0Z0ouyd1vt8MxJYTQTBhPDj8bzprzenNel99zOEzF
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.37236/11183
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1077-8926
ExternalDocumentID 10_37236_11183
GroupedDBID -~9
29G
2WC
5GY
5VS
AAFWJ
AAYXX
ACGFO
ACIPV
ADBBV
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
E3Z
EBS
EJD
FRP
GROUPED_DOAJ
H13
KWQ
M~E
OK1
OVT
P2P
REM
RNS
TR2
XSB
ID FETCH-LOGICAL-c148t-dd27d449b30f7f6e74b8fb968a39f656b5db38de863a12f8de3e09072fec7d063
ISSN 1077-8926
IngestDate Tue Jul 01 04:24:57 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c148t-dd27d449b30f7f6e74b8fb968a39f656b5db38de863a12f8de3e09072fec7d063
OpenAccessLink https://www.combinatorics.org/ojs/index.php/eljc/article/download/v29i3p32/pdf
ParticipantIDs crossref_primary_10_37236_11183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-12
PublicationDateYYYYMMDD 2022-08-12
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-12
  day: 12
PublicationDecade 2020
PublicationTitle The Electronic journal of combinatorics
PublicationYear 2022
SSID ssj0012995
Score 2.3748236
Snippet Turán-type problem is one of central problems in extremal graph theory. Erdős et al. [J. Combin. Theory Ser. B 64 (1995) 89-100] obtained the exact Turán...
SourceID crossref
SourceType Index Database
Title A Unique Characterization of Spectral Extrema for Friendship Graphs
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSgMxFA1aN7oQn_isWbiT0em8syxlahHGVQvFTUmaBGZh1XYGpAu_3ZtkXi0FH5swhKYMc6a5597enIPQbSAiKRjxrUAQ2_I8Flk0kgwG6kjicmrrbvfkORiMvKexPy4924vTJRm7ny43niv5D6owB7iqU7J_QLb6UpiAa8AXRkAYxl9h3FWUUemv9irZ5WVFAZWzvCpj3MWf2Vy8Ut1Q2Feyxlx3aD0qqepFk5yqVyaubXEaohJw85BBUy0oUpHwl8LKOoHo91FGQNXbk-YauDyVtJ4d56Zan4pmoQFyVCX82qg9QqIIAY04hXL1hrliQy1KGGmdb6_v027oaCcZ2GiNjc2qEPZagKraBiFh0Ssnet022nEgN1C2FclXXP11BPHVN42m5s6MoZRe96DXNRhIg0oMD9B-kQPgrgH0EG2J2RHaSyoB3cUx6nWxgRavQ4vfJC6hxQW0GKDFNbTYQHuCRv142BtYhd-FNYWkNLM4d0LueYS5tgxlIEL45UhGgoi6RALvZj5nbsRFFLi040i4coVN7NCRYhpy4JqnqDV7m4kzhL1OB8iPQxgR1OM2pUFAI04UQ6aU-uQc3ZTPYPJuZE0mq0_34sdPXKLd-jW5Qq1snotrYGgZa-vKRlvj8g2fWz7o
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Unique+Characterization+of+Spectral+Extrema+for+Friendship+Graphs&rft.jtitle=The+Electronic+journal+of+combinatorics&rft.au=Zhai%2C+Mingqing&rft.au=Liu%2C+Ruifang&rft.au=Xue%2C+Jie&rft.date=2022-08-12&rft.issn=1077-8926&rft.eissn=1077-8926&rft.volume=29&rft.issue=3&rft_id=info:doi/10.37236%2F11183&rft.externalDBID=n%2Fa&rft.externalDocID=10_37236_11183
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-8926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-8926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-8926&client=summon