Enhanced oxygen evolution and urea oxidation reaction using a nanosheet-structured NiO@P-doped carbon composite as an anode catalyst
One promising approach to solving energy and environmental problems is urea electrolysis. In order to catalyze the urea oxidation process (UOR), we were able to successfully construct a NiO hierarchical nanosheet on a P-doped carbon layer (NiO@PC). Because of the increased electrical conductivity an...
Saved in:
Published in | New journal of chemistry Vol. 48; no. 42; pp. 18329 - 18339 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One promising approach to solving energy and environmental problems is urea electrolysis. In order to catalyze the urea oxidation process (UOR), we were able to successfully construct a NiO hierarchical nanosheet on a P-doped carbon layer (NiO@PC). Because of the increased electrical conductivity and the widespread practice of using the direct electro-oxidation mechanism to initiate the UOR, NiO@PC is a good substitute for valuable metals like IrO 2 because it has UOR activity that is on par with the most active modern catalysts. The outermost layer of P-doped carbon enhanced Ni–O bond fabrication at the anion–cation interface; because of this, the NiO@PC hierarchical nanosheet initiates the UOR process with a lower onset-potential (1.30 V vs. RHE) than the Ni(OH) 2 nanosheet. The NiO@PC nanosheet acts as a reaction site during the UOR process for the generated NiOOH rather than the NiO phase, although both the NiOOH and the NiO phase operate as active sites during the OER process. This study contributes to our comprehension of the UOR mechanism and creates a new path for the development of affordable P-doped carbon UOR catalysts based on Ni. |
---|---|
AbstractList | One promising approach to solving energy and environmental problems is urea electrolysis. In order to catalyze the urea oxidation process (UOR), we were able to successfully construct a NiO hierarchical nanosheet on a P-doped carbon layer (NiO@PC). Because of the increased electrical conductivity and the widespread practice of using the direct electro-oxidation mechanism to initiate the UOR, NiO@PC is a good substitute for valuable metals like IrO2 because it has UOR activity that is on par with the most active modern catalysts. The outermost layer of P-doped carbon enhanced Ni–O bond fabrication at the anion–cation interface; because of this, the NiO@PC hierarchical nanosheet initiates the UOR process with a lower onset-potential (1.30 V vs. RHE) than the Ni(OH)2 nanosheet. The NiO@PC nanosheet acts as a reaction site during the UOR process for the generated NiOOH rather than the NiO phase, although both the NiOOH and the NiO phase operate as active sites during the OER process. This study contributes to our comprehension of the UOR mechanism and creates a new path for the development of affordable P-doped carbon UOR catalysts based on Ni. One promising approach to solving energy and environmental problems is urea electrolysis. In order to catalyze the urea oxidation process (UOR), we were able to successfully construct a NiO hierarchical nanosheet on a P-doped carbon layer (NiO@PC). Because of the increased electrical conductivity and the widespread practice of using the direct electro-oxidation mechanism to initiate the UOR, NiO@PC is a good substitute for valuable metals like IrO 2 because it has UOR activity that is on par with the most active modern catalysts. The outermost layer of P-doped carbon enhanced Ni–O bond fabrication at the anion–cation interface; because of this, the NiO@PC hierarchical nanosheet initiates the UOR process with a lower onset-potential (1.30 V vs. RHE) than the Ni(OH) 2 nanosheet. The NiO@PC nanosheet acts as a reaction site during the UOR process for the generated NiOOH rather than the NiO phase, although both the NiOOH and the NiO phase operate as active sites during the OER process. This study contributes to our comprehension of the UOR mechanism and creates a new path for the development of affordable P-doped carbon UOR catalysts based on Ni. |
Author | Tamilarasi, S. Srinivasan, Thiruvenkadam Kumar, Ramasamy Santhosh Yoo, Dong Jin |
Author_xml | – sequence: 1 givenname: S. surname: Tamilarasi fullname: Tamilarasi, S. organization: Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea – sequence: 2 givenname: Ramasamy Santhosh surname: Kumar fullname: Kumar, Ramasamy Santhosh organization: Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea – sequence: 3 givenname: Thiruvenkadam surname: Srinivasan fullname: Srinivasan, Thiruvenkadam organization: School of Electrical Engineering, Vellore Institute of Technology, Vellore, Tamilnadu, India – sequence: 4 givenname: Dong Jin orcidid: 0000-0002-5707-3361 surname: Yoo fullname: Yoo, Dong Jin organization: Department of Energy Storage/Conversion Engineering of Graduate School (BK21 FOUR), Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea, Department of Life Science, Jeonbuk National University, Jeonju, Jeollabuk-do 54896, Republic of Korea |
BookMark | eNpFUE1LAzEQDVLBtnrxFwS8CauZ_c5Nqa0flNaDnpdsMttuaZM1yYq9-8ONrSAMzJt5jzfMG5GBNhoJuQR2Ayzhtw_p4oUlANnshAwhyXnE4xwGAUOaRixL8zMycm7DGECRw5B8T_VaaImKmq_9CjXFT7PtfWs0FVrR3qIITKvEYRUmeQC9a_WKCqqFNm6N6CPnbS990Cu6aJd3r5EyXcBS2Dropdl1xrUeqXDBOJRRGEgvtnvnz8lpI7YOL_76mLzPpm-Tp2i-fHye3M8jCWnpI9nEPK9zzJEVaRNnCjKelcghyziW4UHeFDwBVtcFkxIxL1ksFUdVx9BgWiRjcnX07az56NH5amN6q8PJKoE4JBJDAkF1fVRJa5yz2FSdbXfC7itg1W_K1X_KyQ9KSXLZ |
Cites_doi | 10.1016/j.cej.2022.138471 10.1016/j.electacta.2022.141621 10.1039/D1TA08224H 10.1021/ja503372r 10.1002/cey2.553 10.1016/j.apsusc.2021.149765 10.1002/anie.201407031 10.1016/j.est.2023.109224 10.1016/j.energy.2015.08.013 10.1016/j.cej.2024.151003 10.1016/j.electacta.2018.05.049 10.1002/cphc.202300889 10.1002/adfm.201910741 10.1016/j.jcis.2022.08.145 10.1016/j.jpowsour.2016.09.161 10.1002/cey2.206 10.1016/j.est.2023.108186 10.1016/j.apsusc.2023.158469 10.1039/D1NR05912B 10.1039/C9TA01438A 10.1002/cssc.202001185 10.1039/B905974A 10.1039/D4NR01191K 10.1016/j.jcis.2023.09.153 10.1016/j.electacta.2013.06.137 10.1016/j.carbon.2022.11.029 10.1016/j.mtener.2018.03.004 10.1039/D0NR08025J 10.1002/advs.202303525 10.1038/nenergy.2016.130 10.1039/D2NJ06299B 10.1039/D4NJ00427B 10.1016/j.jcis.2024.05.155 10.1016/j.cattod.2018.12.016 10.1038/s41598-017-17899-6 10.1021/acscatal.3c04967 10.1039/C9NR05204F 10.1039/C7CC08340H 10.1016/S0378-7753(99)00437-1 10.1007/s10853-016-0377-7 10.1021/acsenergylett.8b00514 10.1351/goldbook.E01977 10.1039/D3NJ05877H 10.1016/j.nanoen.2016.08.027 10.1016/j.apcatb.2020.119381 10.1016/j.electacta.2023.142634 10.1016/j.mtchem.2023.101765 10.1016/j.carbon.2007.11.002 10.1016/j.carbon.2018.06.034 10.1021/acsanm.2c00222 10.1016/j.electacta.2019.06.013 10.1016/j.carbon.2017.07.027 10.1039/D4NJ01404A 10.1039/D2NR04409A 10.1016/S1872-2067(23)64490-0 10.1016/j.electacta.2018.01.140 10.1016/j.apsusc.2016.01.114 10.1038/ncomms5695 10.1039/D3NJ03260D 10.1039/D1MA00384D 10.1016/j.coelec.2020.01.004 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H9R JG9 KA0 |
DOI | 10.1039/D4NJ03115F |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Illustrata: Natural Sciences Materials Research Database ProQuest Illustrata: Technology Collection |
DatabaseTitle | CrossRef Materials Research Database ProQuest Illustrata: Natural Sciences Engineered Materials Abstracts ProQuest Illustrata: Technology Collection Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1369-9261 |
EndPage | 18339 |
ExternalDocumentID | 10_1039_D4NJ03115F |
GroupedDBID | --- -DZ -JG -~X 0-7 0R~ 123 29N 4.4 705 70~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABCQX ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ACNCT ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGKEF AGRSR AGSTE AHGCF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CITATION CS3 D0L DU5 EBS ECGLT EE0 EF- F5P GGIMP GNO H13 HZ~ H~N IDZ J3I L7B M4U N9A O9- OK1 P2P R7B R7C R7D RAOCF RCNCU RNS RPMJG RRA RRC RSCEA SKA SKF SKH SLH TN5 TWZ VH6 YNT YQT 7SR 8BQ 8FD H9R JG9 KA0 |
ID | FETCH-LOGICAL-c148t-cf296b6e6e074f25d15958e91559e81449f79310bb70ccee6802cd9edb21fe473 |
ISSN | 1144-0546 |
IngestDate | Mon Oct 28 10:24:55 EDT 2024 Wed Oct 30 12:26:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 42 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c148t-cf296b6e6e074f25d15958e91559e81449f79310bb70ccee6802cd9edb21fe473 |
ORCID | 0000-0002-5707-3361 |
PQID | 3121172131 |
PQPubID | 2048886 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3121172131 crossref_primary_10_1039_D4NJ03115F |
PublicationCentury | 2000 |
PublicationDate | 2024-10-28 |
PublicationDateYYYYMMDD | 2024-10-28 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | New journal of chemistry |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Nolan (D4NJ03115F/cit2/1) 2020; 21 Singh (D4NJ03115F/cit52/1) 2018; 278 Santhosh Kumar (D4NJ03115F/cit15/1) 2021; 556 Ramakrishnan (D4NJ03115F/cit19/1) 2020; 279 Zhou (D4NJ03115F/cit25/1) 2016; 28 Tamilarasi (D4NJ03115F/cit31/1) 2023; 34 Boggs (D4NJ03115F/cit9/1) 2009 Xu (D4NJ03115F/cit39/1) 2022; 14 Kumar (D4NJ03115F/cit43/1) 2023; 10 Liu (D4NJ03115F/cit5/1) 2018; 139 Zheng (D4NJ03115F/cit1/1) 2015; 54 Feng (D4NJ03115F/cit49/1) 2023; 73 Wu (D4NJ03115F/cit6/1) 2024; 48 Liu (D4NJ03115F/cit29/1) 2017; 53 Kim (D4NJ03115F/cit33/1) 2024; 489 Hao (D4NJ03115F/cit38/1) 2021; 13 Qiu (D4NJ03115F/cit55/1) 2023; 629 Jiao (D4NJ03115F/cit24/1) 2016; 1 Santhosh Kumar (D4NJ03115F/cit11/1) 2023; 451 Wan (D4NJ03115F/cit30/1) 2017; 52 Zhou (D4NJ03115F/cit42/1) 2022; 4 Liu (D4NJ03115F/cit23/1) 2020; 30 Liu (D4NJ03115F/cit7/1) 2021; 13 Liu (D4NJ03115F/cit57/1) 2019; 11 Deabate (D4NJ03115F/cit37/1) 2000; 87 Zhou (D4NJ03115F/cit27/1) 2023; 47 Liu (D4NJ03115F/cit35/1) 2017; 7 Jamesh (D4NJ03115F/cit17/1) 2016; 333 Tian (D4NJ03115F/cit28/1) 2014; 136 Santhosh Kumar (D4NJ03115F/cit4/1) 2022; 10 Santhosh Kumar (D4NJ03115F/cit32/1) 2024; 16 Liu (D4NJ03115F/cit12/1) 2022; 5 Pang (D4NJ03115F/cit50/1) 2023; 439 Rasal (D4NJ03115F/cit59/1) 2023; 71 Ma (D4NJ03115F/cit34/1) 2024; 48 Raoof (D4NJ03115F/cit18/1) 2015; 90 Yang (D4NJ03115F/cit22/1) 2017; 122 Zhang (D4NJ03115F/cit36/1) 2008; 46 Ji (D4NJ03115F/cit56/1) 2020; 13 Mukherjee (D4NJ03115F/cit20/1) 2018; 8 Vedharathinam (D4NJ03115F/cit53/1) 2013; 108 Jinlong (D4NJ03115F/cit14/1) 2016; 366 Fu (D4NJ03115F/cit47/1) 2019; 7 Wu (D4NJ03115F/cit60/1) 2024; 653 Yin (D4NJ03115F/cit61/1) 2024 Tatarchuk (D4NJ03115F/cit54/1) 2024; 25 D4NJ03115F/cit45/1 Santhosh Kumar (D4NJ03115F/cit46/1) 2023; 641 Zhang (D4NJ03115F/cit21/1) 2019; 335 Zhang (D4NJ03115F/cit48/1) 2018; 3 Rao (D4NJ03115F/cit58/1) 2024; 14 Zhao (D4NJ03115F/cit44/1) 2021; 2 Meng (D4NJ03115F/cit8/1) 2019; 318 Zhang (D4NJ03115F/cit10/1) 2024; 48 Nolan (D4NJ03115F/cit26/1) 2023; 202 Gong (D4NJ03115F/cit13/1) 2014; 5 Yin (D4NJ03115F/cit41/1) 2023; 51 Xu (D4NJ03115F/cit51/1) 2024; 671 Chu (D4NJ03115F/cit16/1) 2018; 264 Guan (D4NJ03115F/cit40/1) 2023; 47 Chauhan (D4NJ03115F/cit3/1) 2023; 460 |
References_xml | – volume: 451 start-page: 138471 year: 2023 ident: D4NJ03115F/cit11/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.138471 contributor: fullname: Santhosh Kumar – volume: 439 start-page: 141621 year: 2023 ident: D4NJ03115F/cit50/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2022.141621 contributor: fullname: Pang – volume: 10 start-page: 1999 year: 2022 ident: D4NJ03115F/cit4/1 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA08224H contributor: fullname: Santhosh Kumar – volume: 136 start-page: 7587 year: 2014 ident: D4NJ03115F/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503372r contributor: fullname: Tian – start-page: e553 year: 2024 ident: D4NJ03115F/cit61/1 publication-title: Carbon Energy doi: 10.1002/cey2.553 contributor: fullname: Yin – volume: 556 start-page: 149765 year: 2021 ident: D4NJ03115F/cit15/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2021.149765 contributor: fullname: Santhosh Kumar – volume: 54 start-page: 52 year: 2015 ident: D4NJ03115F/cit1/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201407031 contributor: fullname: Zheng – volume: 73 start-page: 109224 year: 2023 ident: D4NJ03115F/cit49/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2023.109224 contributor: fullname: Feng – volume: 90 start-page: 1075 year: 2015 ident: D4NJ03115F/cit18/1 publication-title: Energy doi: 10.1016/j.energy.2015.08.013 contributor: fullname: Raoof – volume: 489 start-page: 151003 year: 2024 ident: D4NJ03115F/cit33/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.151003 contributor: fullname: Kim – volume: 278 start-page: 405 year: 2018 ident: D4NJ03115F/cit52/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.049 contributor: fullname: Singh – volume: 25 start-page: e202300889 year: 2024 ident: D4NJ03115F/cit54/1 publication-title: ChemPhysChem doi: 10.1002/cphc.202300889 contributor: fullname: Tatarchuk – volume: 30 start-page: 1910741 year: 2020 ident: D4NJ03115F/cit23/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201910741 contributor: fullname: Liu – volume: 629 start-page: 297 year: 2023 ident: D4NJ03115F/cit55/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2022.08.145 contributor: fullname: Qiu – volume: 333 start-page: 213 year: 2016 ident: D4NJ03115F/cit17/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.161 contributor: fullname: Jamesh – volume: 4 start-page: 924 year: 2022 ident: D4NJ03115F/cit42/1 publication-title: Carbon Energy doi: 10.1002/cey2.206 contributor: fullname: Zhou – volume: 71 start-page: 108186 year: 2023 ident: D4NJ03115F/cit59/1 publication-title: J. Energy Storage doi: 10.1016/j.est.2023.108186 contributor: fullname: Rasal – volume: 641 start-page: 158469 year: 2023 ident: D4NJ03115F/cit46/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2023.158469 contributor: fullname: Santhosh Kumar – volume: 13 start-page: 20213 year: 2021 ident: D4NJ03115F/cit38/1 publication-title: Nanoscale doi: 10.1039/D1NR05912B contributor: fullname: Hao – volume: 7 start-page: 9386 year: 2019 ident: D4NJ03115F/cit47/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA01438A contributor: fullname: Fu – volume: 13 start-page: 5004 year: 2020 ident: D4NJ03115F/cit56/1 publication-title: ChemSusChem doi: 10.1002/cssc.202001185 contributor: fullname: Ji – start-page: 4859 year: 2009 ident: D4NJ03115F/cit9/1 publication-title: Chem. Commun. doi: 10.1039/B905974A contributor: fullname: Boggs – volume: 16 start-page: 14861 year: 2024 ident: D4NJ03115F/cit32/1 publication-title: Nanoscale doi: 10.1039/D4NR01191K contributor: fullname: Santhosh Kumar – volume: 653 start-page: 1094 year: 2024 ident: D4NJ03115F/cit60/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2023.09.153 contributor: fullname: Wu – volume: 108 start-page: 660 year: 2013 ident: D4NJ03115F/cit53/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2013.06.137 contributor: fullname: Vedharathinam – volume: 202 start-page: 70 year: 2023 ident: D4NJ03115F/cit26/1 publication-title: Carbon doi: 10.1016/j.carbon.2022.11.029 contributor: fullname: Nolan – volume: 8 start-page: 118 year: 2018 ident: D4NJ03115F/cit20/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2018.03.004 contributor: fullname: Mukherjee – volume: 13 start-page: 1759 year: 2021 ident: D4NJ03115F/cit7/1 publication-title: Nanoscale doi: 10.1039/D0NR08025J contributor: fullname: Liu – volume: 10 start-page: 2303525 year: 2023 ident: D4NJ03115F/cit43/1 publication-title: Adv. Sci. doi: 10.1002/advs.202303525 contributor: fullname: Kumar – volume: 1 start-page: 16130 year: 2016 ident: D4NJ03115F/cit24/1 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.130 contributor: fullname: Jiao – volume: 47 start-page: 4009 year: 2023 ident: D4NJ03115F/cit27/1 publication-title: New J. Chem. doi: 10.1039/D2NJ06299B contributor: fullname: Zhou – volume: 48 start-page: 7885 year: 2024 ident: D4NJ03115F/cit34/1 publication-title: New J. Chem. doi: 10.1039/D4NJ00427B contributor: fullname: Ma – volume: 671 start-page: 46 year: 2024 ident: D4NJ03115F/cit51/1 publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2024.05.155 contributor: fullname: Xu – volume: 335 start-page: 326 year: 2019 ident: D4NJ03115F/cit21/1 publication-title: Catal. Today doi: 10.1016/j.cattod.2018.12.016 contributor: fullname: Zhang – volume: 7 start-page: 17709 year: 2017 ident: D4NJ03115F/cit35/1 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17899-6 contributor: fullname: Liu – volume: 14 start-page: 981 year: 2024 ident: D4NJ03115F/cit58/1 publication-title: ACS Catal. doi: 10.1021/acscatal.3c04967 contributor: fullname: Rao – volume: 11 start-page: 16017 year: 2019 ident: D4NJ03115F/cit57/1 publication-title: Nanoscale doi: 10.1039/C9NR05204F contributor: fullname: Liu – volume: 53 start-page: 13153 year: 2017 ident: D4NJ03115F/cit29/1 publication-title: Chem. Commun. doi: 10.1039/C7CC08340H contributor: fullname: Liu – volume: 87 start-page: 125 year: 2000 ident: D4NJ03115F/cit37/1 publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00437-1 contributor: fullname: Deabate – volume: 52 start-page: 804 year: 2017 ident: D4NJ03115F/cit30/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-016-0377-7 contributor: fullname: Wan – volume: 3 start-page: 1360 year: 2018 ident: D4NJ03115F/cit48/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00514 contributor: fullname: Zhang – ident: D4NJ03115F/cit45/1 doi: 10.1351/goldbook.E01977 – volume: 48 start-page: 5621 year: 2024 ident: D4NJ03115F/cit6/1 publication-title: New J. Chem. doi: 10.1039/D3NJ05877H contributor: fullname: Wu – volume: 28 start-page: 29 year: 2016 ident: D4NJ03115F/cit25/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.08.027 contributor: fullname: Zhou – volume: 279 start-page: 119381 year: 2020 ident: D4NJ03115F/cit19/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119381 contributor: fullname: Ramakrishnan – volume: 460 start-page: 142634 year: 2023 ident: D4NJ03115F/cit3/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2023.142634 contributor: fullname: Chauhan – volume: 34 start-page: 101765 year: 2023 ident: D4NJ03115F/cit31/1 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2023.101765 contributor: fullname: Tamilarasi – volume: 46 start-page: 196 year: 2008 ident: D4NJ03115F/cit36/1 publication-title: Carbon doi: 10.1016/j.carbon.2007.11.002 contributor: fullname: Zhang – volume: 139 start-page: 1 year: 2018 ident: D4NJ03115F/cit5/1 publication-title: Carbon doi: 10.1016/j.carbon.2018.06.034 contributor: fullname: Liu – volume: 5 start-page: 2953 year: 2022 ident: D4NJ03115F/cit12/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.2c00222 contributor: fullname: Liu – volume: 318 start-page: 32 year: 2019 ident: D4NJ03115F/cit8/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2019.06.013 contributor: fullname: Meng – volume: 122 start-page: 710 year: 2017 ident: D4NJ03115F/cit22/1 publication-title: Carbon doi: 10.1016/j.carbon.2017.07.027 contributor: fullname: Yang – volume: 48 start-page: 7856 year: 2024 ident: D4NJ03115F/cit10/1 publication-title: New J. Chem. doi: 10.1039/D4NJ01404A contributor: fullname: Zhang – volume: 14 start-page: 16490 year: 2022 ident: D4NJ03115F/cit39/1 publication-title: Nanoscale doi: 10.1039/D2NR04409A contributor: fullname: Xu – volume: 51 start-page: 225 year: 2023 ident: D4NJ03115F/cit41/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(23)64490-0 contributor: fullname: Yin – volume: 264 start-page: 284 year: 2018 ident: D4NJ03115F/cit16/1 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.01.140 contributor: fullname: Chu – volume: 366 start-page: 353 year: 2016 ident: D4NJ03115F/cit14/1 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.01.114 contributor: fullname: Jinlong – volume: 5 start-page: 4695 year: 2014 ident: D4NJ03115F/cit13/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5695 contributor: fullname: Gong – volume: 47 start-page: 16964 year: 2023 ident: D4NJ03115F/cit40/1 publication-title: New J. Chem. doi: 10.1039/D3NJ03260D contributor: fullname: Guan – volume: 2 start-page: 4667 year: 2021 ident: D4NJ03115F/cit44/1 publication-title: Mater. Adv. doi: 10.1039/D1MA00384D contributor: fullname: Zhao – volume: 21 start-page: 55 year: 2020 ident: D4NJ03115F/cit2/1 publication-title: Curr. Opin. Electrochem. doi: 10.1016/j.coelec.2020.01.004 contributor: fullname: Nolan |
SSID | ssj0011761 |
Score | 2.4776778 |
Snippet | One promising approach to solving energy and environmental problems is urea electrolysis. In order to catalyze the urea oxidation process (UOR), we were able... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 18329 |
SubjectTerms | Anodizing Carbon Catalysts Electrical resistivity Electrolysis Nanosheets Nickel oxides Oxidation Ureas |
Title | Enhanced oxygen evolution and urea oxidation reaction using a nanosheet-structured NiO@P-doped carbon composite as an anode catalyst |
URI | https://www.proquest.com/docview/3121172131 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELXK7gEuiE-xsCBLwKkK5KtpfGMFrZaqdBFqpXKKbMemATVZbdoVcOav8b-YseM0FSsEXKLGqdxo_Doej5_fEPIMi_eIIOAehxWyF0sOfjBOpKd9zQWTPBka-eJ3s-R0EU-Wg2Wv97PDWtpuxAv5_cpzJf8zqtAG44qnZP9hZNtOoQE-w_jCFUYYrn81xqNyZTfwq6_fPqFc_2Xzc2ZLAPnm8KSwVZP6cGfLgm9NeoD3S15W9UqpjWdFZLdIRZ8VZ89j_72XV-dwJ_mFqCxRHcldCqvScOy9ypEvtkFBk73kPtIlO2IU0pWT2yUI1gWspXld7KVdP_A1r_na8s446hnUq75hf7cZINxpuoQv2WrKq-JiC276C8_5uo3FsWzSpCj7H6uqm8wIY5wFmsPhlgWFKRPHVzV8lO5rWhcNS0APAs1GQNu2RQnzWGhl3Z1fj9MOfq2EV-Ol0Y2xzpQP91ZR6bf5xI9QjjWPy88-yhLp3azpmAKzs2y8mE6z-Wg5v0YOQ_B34GgPT0bzt9N2OysYWuFe9-pOJzdiL3d970dG-4GBiXbmt8jNZplCTyzmbpOeKu-Q662d7pIfDnvUYo-22KOAPYrYoy32qMMeNdijnF6FPQrYe9Ugj1rk0RZ5lNfQMTXIow5598hiPJq_PvWaih6ehGX3xpM6ZIlIVKIgctXhIIdgepAqU6NApWAdpsF-gS_E0JcQviWpH8qcqVyEgVbxMLpPDsqqVA8I1TrCTWwWQDgVpwEXImVM6VTkMpVaiyPy1FkzO7fCLZkhXEQsexPPJsbm4yNy7AydNf-OOotQ9nAYBlHw8M-PH5EbOxAfkwMwmHoMMepGPGkQ8Atg05z4 |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+oxygen+evolution+and+urea+oxidation+reaction+using+a+nanosheet-structured+NiO%40P-doped+carbon+composite+as+an+anode+catalyst&rft.jtitle=New+journal+of+chemistry&rft.au=Tamilarasi%2C+S&rft.au=Ramasamy%2C+Santhosh+Kumar&rft.au=Srinivasan%2C+Thiruvenkadam&rft.au=Dong+Jin+Yoo&rft.date=2024-10-28&rft.pub=Royal+Society+of+Chemistry&rft.issn=1144-0546&rft.eissn=1369-9261&rft.volume=48&rft.issue=42&rft.spage=18329&rft.epage=18339&rft_id=info:doi/10.1039%2Fd4nj03115f&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1144-0546&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1144-0546&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1144-0546&client=summon |