Energy-Efficient and Privacy-Preserved Incentive Mechanism for Mobile Edge Computing-Assisted Federated Learning in Healthcare System
Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing (MEC)-assisted federated learning (FL) has emerged as a promising technology for providing fast, efficient, and reliable healthcare services w...
Saved in:
Published in | IEEE eTransactions on network and service management Vol. 21; no. 4; pp. 4801 - 4815 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.08.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing (MEC)-assisted federated learning (FL) has emerged as a promising technology for providing fast, efficient, and reliable healthcare services while ensuring patient privacy. However, concerns about the privacy and security of sensitive information often make patients hesitant to share their data. Moreover, MEC servers face challenges accessing the necessary radio resources for data transmission. To address these issues, designing an effective incentive mechanism that encourages healthcare user participation in FL and facilitates resource provision from the base station (BS) is vital. This work proposes an efficient and privacy-preserving incentive scheme that considers the interaction among the BS, MEC servers, and MEC users in the MEC-assisted FL healthcare system. Utilizing the Stackelberg game model, we investigate the allocation of transmit power, determination of differential privacy (DP) budgets for MEC users, reward strategies, radio resource demands for MEC servers, and pricing for radio resources at the BS. Furthermore, we analyze the Stackelberg equilibrium and empirically validate the effectiveness of our proposed scheme using a real-world medical dataset. |
---|---|
AbstractList | Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing (MEC)-assisted federated learning (FL) has emerged as a promising technology for providing fast, efficient, and reliable healthcare services while ensuring patient privacy. However, concerns about the privacy and security of sensitive information often make patients hesitant to share their data. Moreover, MEC servers face challenges accessing the necessary radio resources for data transmission. To address these issues, designing an effective incentive mechanism that encourages healthcare user participation in FL and facilitates resource provision from the base station (BS) is vital. This work proposes an efficient and privacy-preserving incentive scheme that considers the interaction among the BS, MEC servers, and MEC users in the MEC-assisted FL healthcare system. Utilizing the Stackelberg game model, we investigate the allocation of transmit power, determination of differential privacy (DP) budgets for MEC users, reward strategies, radio resource demands for MEC servers, and pricing for radio resources at the BS. Furthermore, we analyze the Stackelberg equilibrium and empirically validate the effectiveness of our proposed scheme using a real-world medical dataset. |
Author | Liu, Jingyuan Hamalainen, Timo Chang, Zheng Wang, Kai Zhao, Zhiwei |
Author_xml | – sequence: 1 givenname: Jingyuan orcidid: 0000-0001-7127-0911 surname: Liu fullname: Liu, Jingyuan email: liujingyuan@std.uestc.edu.cn organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Zheng orcidid: 0000-0003-3766-820X surname: Chang fullname: Chang, Zheng email: zheng.chang@jyu.fi organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Kai orcidid: 0000-0001-9839-966X surname: Wang fullname: Wang, Kai email: kwang-surgeon@foxmail.com organization: Department of Acute Care Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Zhiwei orcidid: 0000-0001-5293-0558 surname: Zhao fullname: Zhao, Zhiwei email: zzw@uestc.edu.cn organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Timo orcidid: 0000-0002-4168-9102 surname: Hamalainen fullname: Hamalainen, Timo email: timo.t.hamalainen@jyu.fi organization: Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland |
BookMark | eNpNkNFqwjAUhsNwMHV7gMEu8gJ1TZOm7aWITkE3QXddTpNTzbCpJJ3QB9h7r0UvvDo__P93Lr4RGdjaIiGvLJwwFmbv-8_dZhKFkZhwwYRgyQMZsoxHgYh5MrjLT2Tk_U8YxinLoiH5m1t0hzaYl6VRBm1DwWq6deYCqg22Dj26C2q6sqorzQXpBtURrPEVLWtHN3VhTkjn-oB0Vlfn38bYQzD13vimwxao0UGf1gjOdh01li4RTs1RgUO6a7td9UweSzh5fLndMflezPezZbD--ljNputAMZE2AVcAErWMQilToUFKhaoALuKQC8xYBpGWCY9KoXQsBeOFjEGnPAOuhSwEHxN2_atc7b3DMj87U4Frcxbmvce895j3HvObx455uzIGEe_2cZxIIfk_UEBzQA |
CODEN | ITNSC4 |
Cites_doi | 10.1007/s13349-022-00615-y 10.1002/ett.3710 10.1109/JIOT.2021.3112686 10.1109/TNSE.2021.3100096 10.1109/JBHI.2023.3282955 10.1109/JIOT.2020.2987843 10.1109/TCOMM.2023.3245659 10.1609/aaai.v36i1.19993 10.1109/TWC.2020.2971981 10.1109/SP.2019.00065 10.1109/GLOBECOM42002.2020.9322592 10.1155/2022/5776954 10.1109/TIFS.2020.2988575 10.1109/TNSM.2020.3000274 10.1109/JBHI.2022.3143576 10.1109/TWC.2020.3031503 10.1109/JBHI.2023.3317632 10.1109/JIOT.2020.3033806 10.1109/TMI.2018.2867350 10.1109/TCSS.2023.3250656 10.1109/ICC.2012.6364100 10.1109/JBHI.2023.3279096 10.1007/s12652-021-03157-1 10.1109/TII.2021.3134257 10.1109/TMI.2022.3233574 10.1109/TWC.2020.3024629 10.1109/TWC.2023.3313968 10.1109/JIOT.2020.3028602 10.1145/3501813 10.1109/JIOT.2023.3264611 10.1109/MCOM.001.2000397 10.1109/JIOT.2021.3120998 10.1109/JSYST.2022.3188997 10.1109/TNET.2020.3035770 10.1002/cpe.5906 10.1016/j.icte.2022.05.006 10.1016/j.asoc.2021.107330 10.1109/GLOBECOM48099.2022.10000933 10.1561/9781601988195 10.1109/JIOT.2020.2967772 10.1016/j.jobcr.2021.01.015 10.1109/ICDCS47774.2020.00017 10.1109/JSAC.2021.3118354 10.1109/TCE.2023.3315415 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TNSM.2024.3414417 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library Online CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library Online url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1932-4537 |
EndPage | 4815 |
ExternalDocumentID | 10_1109_TNSM_2024_3414417 10557646 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 62071105 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AASAJ ABQJQ ACGFO ACIWK AENEX AETIX AIBXA AKJIK ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD HZ~ IES IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RIG AAYXX CITATION |
ID | FETCH-LOGICAL-c148t-3caa6ed6206684da66cecba345034e919a2d6732f4cd56413b65ad839a3d46b43 |
IEDL.DBID | RIE |
ISSN | 1932-4537 |
IngestDate | Wed Sep 04 12:45:49 EDT 2024 Wed Aug 28 05:46:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c148t-3caa6ed6206684da66cecba345034e919a2d6732f4cd56413b65ad839a3d46b43 |
ORCID | 0000-0001-9839-966X 0000-0001-7127-0911 0000-0003-3766-820X 0000-0001-5293-0558 0000-0002-4168-9102 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1109_TNSM_2024_3414417 ieee_primary_10557646 |
PublicationCentury | 2000 |
PublicationDate | 2024-Aug. 2024-8-00 |
PublicationDateYYYYMMDD | 2024-08-01 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-Aug. |
PublicationDecade | 2020 |
PublicationTitle | IEEE eTransactions on network and service management |
PublicationTitleAbbrev | T-NSM |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 McMahan (ref19) ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref18 Li (ref44) ref24 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Karimireddy (ref46) ref40 |
References_xml | – ident: ref21 doi: 10.1007/s13349-022-00615-y – ident: ref28 doi: 10.1002/ett.3710 – ident: ref1 doi: 10.1109/JIOT.2021.3112686 – ident: ref16 doi: 10.1109/TNSE.2021.3100096 – ident: ref22 doi: 10.1109/JBHI.2023.3282955 – ident: ref32 doi: 10.1109/JIOT.2020.2987843 – start-page: 5132 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref46 article-title: SCAFFOLD: Stochastic controlled averaging for federated learning contributor: fullname: Karimireddy – ident: ref29 doi: 10.1109/TCOMM.2023.3245659 – ident: ref47 doi: 10.1609/aaai.v36i1.19993 – ident: ref36 doi: 10.1109/TWC.2020.2971981 – ident: ref8 doi: 10.1109/SP.2019.00065 – ident: ref12 doi: 10.1109/GLOBECOM42002.2020.9322592 – ident: ref30 doi: 10.1155/2022/5776954 – ident: ref9 doi: 10.1109/TIFS.2020.2988575 – ident: ref39 doi: 10.1109/TNSM.2020.3000274 – start-page: 1273 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref19 article-title: Communication-efficient learning of deep networks from decentralized data contributor: fullname: McMahan – ident: ref26 doi: 10.1109/JBHI.2022.3143576 – ident: ref14 doi: 10.1109/TWC.2020.3031503 – ident: ref23 doi: 10.1109/JBHI.2023.3317632 – ident: ref34 doi: 10.1109/JIOT.2020.3033806 – ident: ref18 doi: 10.1109/TMI.2018.2867350 – ident: ref25 doi: 10.1109/TCSS.2023.3250656 – ident: ref40 doi: 10.1109/ICC.2012.6364100 – ident: ref2 doi: 10.1109/JBHI.2023.3279096 – ident: ref4 doi: 10.1007/s12652-021-03157-1 – ident: ref15 doi: 10.1109/TII.2021.3134257 – ident: ref24 doi: 10.1109/TMI.2022.3233574 – ident: ref13 doi: 10.1109/TWC.2020.3024629 – ident: ref45 doi: 10.1109/TWC.2023.3313968 – ident: ref43 doi: 10.1109/JIOT.2020.3028602 – ident: ref5 doi: 10.1145/3501813 – ident: ref33 doi: 10.1109/JIOT.2023.3264611 – ident: ref11 doi: 10.1109/MCOM.001.2000397 – ident: ref6 doi: 10.1109/JIOT.2021.3120998 – ident: ref37 doi: 10.1109/JSYST.2022.3188997 – ident: ref41 doi: 10.1109/TNET.2020.3035770 – ident: ref31 doi: 10.1002/cpe.5906 – ident: ref27 doi: 10.1016/j.icte.2022.05.006 – ident: ref7 doi: 10.1016/j.asoc.2021.107330 – ident: ref17 doi: 10.1109/GLOBECOM48099.2022.10000933 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. (ICLR) ident: ref44 article-title: On the convergence of FedAvg on non-IID data contributor: fullname: Li – ident: ref38 doi: 10.1561/9781601988195 – ident: ref35 doi: 10.1109/JIOT.2020.2967772 – ident: ref3 doi: 10.1016/j.jobcr.2021.01.015 – ident: ref10 doi: 10.1109/ICDCS47774.2020.00017 – ident: ref42 doi: 10.1109/JSAC.2021.3118354 – ident: ref20 doi: 10.1109/TCE.2023.3315415 |
SSID | ssj0058192 |
Score | 2.3672152 |
Snippet | Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing... |
SourceID | crossref ieee |
SourceType | Aggregation Database Publisher |
StartPage | 4801 |
SubjectTerms | Computational modeling Data models Data privacy energy efficiency Federated learning Games healthcare incentive mechanism Medical services mobile edge computing power allocation Privacy privacy-preserving Servers |
Title | Energy-Efficient and Privacy-Preserved Incentive Mechanism for Mobile Edge Computing-Assisted Federated Learning in Healthcare System |
URI | https://ieeexplore.ieee.org/document/10557646 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IMnYdM8NpvmKJJShBbBFnoL-5iUIqZS24Le_d_ubFKpguBtCcmy7AzfzmS_-YaQm64OE1AFZ1JLzqyHBExCVDCTFGnX4l_AtVP7HIr-mD9M4kldrO5qYQDAkc_Aw6G7yzdzvcJfZR1s5pgILhqkkaRpVay1gd0Ylb3qa8vATzuj4dPApn8h9yxOY5-tHwfPVicVd5D0Dshws4SKP_LsrZbK0x-_1Bn_vcZDsl-HlPSu8oEjsgPlMdnbEho8IZ-ZK_FjmROMsBNQWRr6uJitpX5nSMNA4qOhFi2QPbQGOgAsCZ69vVAb1dLBXFn0oJmZAq36QNhpmTUtOomhPVSkkDiq5VqndFbS_je1jFa66C0y7mWj-z6rGzAwbbOkJYu0lAKMQMn3LjdSCA1ayYjHfsQhDVIZGpFEYcG1iYU9DpWIpbEhl4wMF4pHp6RZzks4IzQMIQ1NbOFESC6daIxNlYRfKF8lUIRtcruxTv5a6WzkLj_x0xxNmaMp89qUbdLCjd96sdrz8z-eX5Bd_Lzi7V2S5nKxgisbSyzVtfOhL9GyyWA |
link.rule.ids | 315,783,787,799,27936,27937,55086 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HtSDb_HtHjwJW9Nks2mOIi1V2yJYwVvYx0SKmIq2gt79385sUqmC4G1ZwrDsDPPIfvMNYydNGyZgcim01VKghTSEhigXLsnTJvq_hrSe7bOvOnfy6j6-r5rVfS8MAHjwGdRp6d_y3chO6FfZGQ1zTJRU82wBE-umKtu1po43Jm6v6uGyEaRng_5tDwvAUNbRU9OkrR-hZ2aWig8l7VXWnx6iRJA81idjU7cfv_gZ_33KNbZSJZX8vLSCdTYHxQZbnqEa3GSfLd_kJ1qeMgIFcF04fvMyfNP2XRAQg6CPjqO_IPzQG_AeUFPw8PWJY17LeyOD_oO33APwchIEihWoXDITx9vESaFpVRG2PvBhwTvf4DJeMqNvsbt2a3DREdUIBmGxThqLyGqtwCkifW9Kp5WyYI2OZBxEEtJGqkOnkijMpXWxwoBoVKwdJl06clIZGW2zWjEqYIfxMIQ0dDE6FKWl9rQxWCypIDeBSSAPd9npVDvZc8m0kfkKJUgzUmVGqswqVe6yLbr4mQ_LO9_7Y_-YLXYGvW7Wvexf77MlElWi-A5YbfwygUPMLMbmyNvTF4DYzKs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+and+Privacy-Preserved+Incentive+Mechanism+for+Mobile+Edge+Computing-Assisted+Federated+Learning+in+Healthcare+System&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Liu%2C+Jingyuan&rft.au=Chang%2C+Zheng&rft.au=Wang%2C+Kai&rft.au=Zhao%2C+Zhiwei&rft.date=2024-08-01&rft.pub=IEEE&rft.eissn=1932-4537&rft.volume=21&rft.issue=4&rft.spage=4801&rft.epage=4815&rft_id=info:doi/10.1109%2FTNSM.2024.3414417&rft.externalDocID=10557646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon |