Energy-Efficient and Privacy-Preserved Incentive Mechanism for Mobile Edge Computing-Assisted Federated Learning in Healthcare System

Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing (MEC)-assisted federated learning (FL) has emerged as a promising technology for providing fast, efficient, and reliable healthcare services w...

Full description

Saved in:
Bibliographic Details
Published inIEEE eTransactions on network and service management Vol. 21; no. 4; pp. 4801 - 4815
Main Authors Liu, Jingyuan, Chang, Zheng, Wang, Kai, Zhao, Zhiwei, Hamalainen, Timo
Format Journal Article
LanguageEnglish
Published IEEE 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing (MEC)-assisted federated learning (FL) has emerged as a promising technology for providing fast, efficient, and reliable healthcare services while ensuring patient privacy. However, concerns about the privacy and security of sensitive information often make patients hesitant to share their data. Moreover, MEC servers face challenges accessing the necessary radio resources for data transmission. To address these issues, designing an effective incentive mechanism that encourages healthcare user participation in FL and facilitates resource provision from the base station (BS) is vital. This work proposes an efficient and privacy-preserving incentive scheme that considers the interaction among the BS, MEC servers, and MEC users in the MEC-assisted FL healthcare system. Utilizing the Stackelberg game model, we investigate the allocation of transmit power, determination of differential privacy (DP) budgets for MEC users, reward strategies, radio resource demands for MEC servers, and pricing for radio resources at the BS. Furthermore, we analyze the Stackelberg equilibrium and empirically validate the effectiveness of our proposed scheme using a real-world medical dataset.
AbstractList Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing (MEC)-assisted federated learning (FL) has emerged as a promising technology for providing fast, efficient, and reliable healthcare services while ensuring patient privacy. However, concerns about the privacy and security of sensitive information often make patients hesitant to share their data. Moreover, MEC servers face challenges accessing the necessary radio resources for data transmission. To address these issues, designing an effective incentive mechanism that encourages healthcare user participation in FL and facilitates resource provision from the base station (BS) is vital. This work proposes an efficient and privacy-preserving incentive scheme that considers the interaction among the BS, MEC servers, and MEC users in the MEC-assisted FL healthcare system. Utilizing the Stackelberg game model, we investigate the allocation of transmit power, determination of differential privacy (DP) budgets for MEC users, reward strategies, radio resource demands for MEC servers, and pricing for radio resources at the BS. Furthermore, we analyze the Stackelberg equilibrium and empirically validate the effectiveness of our proposed scheme using a real-world medical dataset.
Author Liu, Jingyuan
Hamalainen, Timo
Chang, Zheng
Wang, Kai
Zhao, Zhiwei
Author_xml – sequence: 1
  givenname: Jingyuan
  orcidid: 0000-0001-7127-0911
  surname: Liu
  fullname: Liu, Jingyuan
  email: liujingyuan@std.uestc.edu.cn
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Zheng
  orcidid: 0000-0003-3766-820X
  surname: Chang
  fullname: Chang, Zheng
  email: zheng.chang@jyu.fi
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Kai
  orcidid: 0000-0001-9839-966X
  surname: Wang
  fullname: Wang, Kai
  email: kwang-surgeon@foxmail.com
  organization: Department of Acute Care Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Zhiwei
  orcidid: 0000-0001-5293-0558
  surname: Zhao
  fullname: Zhao, Zhiwei
  email: zzw@uestc.edu.cn
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Timo
  orcidid: 0000-0002-4168-9102
  surname: Hamalainen
  fullname: Hamalainen, Timo
  email: timo.t.hamalainen@jyu.fi
  organization: Faculty of Information Technology, University of Jyväskylä, Jyväskylä, Finland
BookMark eNpNkNFqwjAUhsNwMHV7gMEu8gJ1TZOm7aWITkE3QXddTpNTzbCpJJ3QB9h7r0UvvDo__P93Lr4RGdjaIiGvLJwwFmbv-8_dZhKFkZhwwYRgyQMZsoxHgYh5MrjLT2Tk_U8YxinLoiH5m1t0hzaYl6VRBm1DwWq6deYCqg22Dj26C2q6sqorzQXpBtURrPEVLWtHN3VhTkjn-oB0Vlfn38bYQzD13vimwxao0UGf1gjOdh01li4RTs1RgUO6a7td9UweSzh5fLndMflezPezZbD--ljNputAMZE2AVcAErWMQilToUFKhaoALuKQC8xYBpGWCY9KoXQsBeOFjEGnPAOuhSwEHxN2_atc7b3DMj87U4Frcxbmvce895j3HvObx455uzIGEe_2cZxIIfk_UEBzQA
CODEN ITNSC4
Cites_doi 10.1007/s13349-022-00615-y
10.1002/ett.3710
10.1109/JIOT.2021.3112686
10.1109/TNSE.2021.3100096
10.1109/JBHI.2023.3282955
10.1109/JIOT.2020.2987843
10.1109/TCOMM.2023.3245659
10.1609/aaai.v36i1.19993
10.1109/TWC.2020.2971981
10.1109/SP.2019.00065
10.1109/GLOBECOM42002.2020.9322592
10.1155/2022/5776954
10.1109/TIFS.2020.2988575
10.1109/TNSM.2020.3000274
10.1109/JBHI.2022.3143576
10.1109/TWC.2020.3031503
10.1109/JBHI.2023.3317632
10.1109/JIOT.2020.3033806
10.1109/TMI.2018.2867350
10.1109/TCSS.2023.3250656
10.1109/ICC.2012.6364100
10.1109/JBHI.2023.3279096
10.1007/s12652-021-03157-1
10.1109/TII.2021.3134257
10.1109/TMI.2022.3233574
10.1109/TWC.2020.3024629
10.1109/TWC.2023.3313968
10.1109/JIOT.2020.3028602
10.1145/3501813
10.1109/JIOT.2023.3264611
10.1109/MCOM.001.2000397
10.1109/JIOT.2021.3120998
10.1109/JSYST.2022.3188997
10.1109/TNET.2020.3035770
10.1002/cpe.5906
10.1016/j.icte.2022.05.006
10.1016/j.asoc.2021.107330
10.1109/GLOBECOM48099.2022.10000933
10.1561/9781601988195
10.1109/JIOT.2020.2967772
10.1016/j.jobcr.2021.01.015
10.1109/ICDCS47774.2020.00017
10.1109/JSAC.2021.3118354
10.1109/TCE.2023.3315415
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TNSM.2024.3414417
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library Online
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library Online
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1932-4537
EndPage 4815
ExternalDocumentID 10_1109_TNSM_2024_3414417
10557646
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 62071105
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AASAJ
ABQJQ
ACGFO
ACIWK
AENEX
AETIX
AIBXA
AKJIK
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
HZ~
IES
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RIG
AAYXX
CITATION
ID FETCH-LOGICAL-c148t-3caa6ed6206684da66cecba345034e919a2d6732f4cd56413b65ad839a3d46b43
IEDL.DBID RIE
ISSN 1932-4537
IngestDate Wed Sep 04 12:45:49 EDT 2024
Wed Aug 28 05:46:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c148t-3caa6ed6206684da66cecba345034e919a2d6732f4cd56413b65ad839a3d46b43
ORCID 0000-0001-9839-966X
0000-0001-7127-0911
0000-0003-3766-820X
0000-0001-5293-0558
0000-0002-4168-9102
PageCount 15
ParticipantIDs crossref_primary_10_1109_TNSM_2024_3414417
ieee_primary_10557646
PublicationCentury 2000
PublicationDate 2024-Aug.
2024-8-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-Aug.
PublicationDecade 2020
PublicationTitle IEEE eTransactions on network and service management
PublicationTitleAbbrev T-NSM
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
McMahan (ref19)
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref18
Li (ref44)
ref24
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Karimireddy (ref46)
ref40
References_xml – ident: ref21
  doi: 10.1007/s13349-022-00615-y
– ident: ref28
  doi: 10.1002/ett.3710
– ident: ref1
  doi: 10.1109/JIOT.2021.3112686
– ident: ref16
  doi: 10.1109/TNSE.2021.3100096
– ident: ref22
  doi: 10.1109/JBHI.2023.3282955
– ident: ref32
  doi: 10.1109/JIOT.2020.2987843
– start-page: 5132
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref46
  article-title: SCAFFOLD: Stochastic controlled averaging for federated learning
  contributor:
    fullname: Karimireddy
– ident: ref29
  doi: 10.1109/TCOMM.2023.3245659
– ident: ref47
  doi: 10.1609/aaai.v36i1.19993
– ident: ref36
  doi: 10.1109/TWC.2020.2971981
– ident: ref8
  doi: 10.1109/SP.2019.00065
– ident: ref12
  doi: 10.1109/GLOBECOM42002.2020.9322592
– ident: ref30
  doi: 10.1155/2022/5776954
– ident: ref9
  doi: 10.1109/TIFS.2020.2988575
– ident: ref39
  doi: 10.1109/TNSM.2020.3000274
– start-page: 1273
  volume-title: Proc. Int. Conf. Artif. Intell. Stat.
  ident: ref19
  article-title: Communication-efficient learning of deep networks from decentralized data
  contributor:
    fullname: McMahan
– ident: ref26
  doi: 10.1109/JBHI.2022.3143576
– ident: ref14
  doi: 10.1109/TWC.2020.3031503
– ident: ref23
  doi: 10.1109/JBHI.2023.3317632
– ident: ref34
  doi: 10.1109/JIOT.2020.3033806
– ident: ref18
  doi: 10.1109/TMI.2018.2867350
– ident: ref25
  doi: 10.1109/TCSS.2023.3250656
– ident: ref40
  doi: 10.1109/ICC.2012.6364100
– ident: ref2
  doi: 10.1109/JBHI.2023.3279096
– ident: ref4
  doi: 10.1007/s12652-021-03157-1
– ident: ref15
  doi: 10.1109/TII.2021.3134257
– ident: ref24
  doi: 10.1109/TMI.2022.3233574
– ident: ref13
  doi: 10.1109/TWC.2020.3024629
– ident: ref45
  doi: 10.1109/TWC.2023.3313968
– ident: ref43
  doi: 10.1109/JIOT.2020.3028602
– ident: ref5
  doi: 10.1145/3501813
– ident: ref33
  doi: 10.1109/JIOT.2023.3264611
– ident: ref11
  doi: 10.1109/MCOM.001.2000397
– ident: ref6
  doi: 10.1109/JIOT.2021.3120998
– ident: ref37
  doi: 10.1109/JSYST.2022.3188997
– ident: ref41
  doi: 10.1109/TNET.2020.3035770
– ident: ref31
  doi: 10.1002/cpe.5906
– ident: ref27
  doi: 10.1016/j.icte.2022.05.006
– ident: ref7
  doi: 10.1016/j.asoc.2021.107330
– ident: ref17
  doi: 10.1109/GLOBECOM48099.2022.10000933
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent. (ICLR)
  ident: ref44
  article-title: On the convergence of FedAvg on non-IID data
  contributor:
    fullname: Li
– ident: ref38
  doi: 10.1561/9781601988195
– ident: ref35
  doi: 10.1109/JIOT.2020.2967772
– ident: ref3
  doi: 10.1016/j.jobcr.2021.01.015
– ident: ref10
  doi: 10.1109/ICDCS47774.2020.00017
– ident: ref42
  doi: 10.1109/JSAC.2021.3118354
– ident: ref20
  doi: 10.1109/TCE.2023.3315415
SSID ssj0058192
Score 2.3672152
Snippet Recent advancements in the Internet of Medical Things (IoMT) have significantly influenced the development of smart healthcare systems. Mobile edge computing...
SourceID crossref
ieee
SourceType Aggregation Database
Publisher
StartPage 4801
SubjectTerms Computational modeling
Data models
Data privacy
energy efficiency
Federated learning
Games
healthcare
incentive mechanism
Medical services
mobile edge computing
power allocation
Privacy
privacy-preserving
Servers
Title Energy-Efficient and Privacy-Preserved Incentive Mechanism for Mobile Edge Computing-Assisted Federated Learning in Healthcare System
URI https://ieeexplore.ieee.org/document/10557646
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5sT3rwWbG-2IMnYdM8NpvmKJJShBbBFnoL-5iUIqZS24Le_d_ubFKpguBtCcmy7AzfzmS_-YaQm64OE1AFZ1JLzqyHBExCVDCTFGnX4l_AtVP7HIr-mD9M4kldrO5qYQDAkc_Aw6G7yzdzvcJfZR1s5pgILhqkkaRpVay1gd0Ylb3qa8vATzuj4dPApn8h9yxOY5-tHwfPVicVd5D0Dshws4SKP_LsrZbK0x-_1Bn_vcZDsl-HlPSu8oEjsgPlMdnbEho8IZ-ZK_FjmROMsBNQWRr6uJitpX5nSMNA4qOhFi2QPbQGOgAsCZ69vVAb1dLBXFn0oJmZAq36QNhpmTUtOomhPVSkkDiq5VqndFbS_je1jFa66C0y7mWj-z6rGzAwbbOkJYu0lAKMQMn3LjdSCA1ayYjHfsQhDVIZGpFEYcG1iYU9DpWIpbEhl4wMF4pHp6RZzks4IzQMIQ1NbOFESC6daIxNlYRfKF8lUIRtcruxTv5a6WzkLj_x0xxNmaMp89qUbdLCjd96sdrz8z-eX5Bd_Lzi7V2S5nKxgisbSyzVtfOhL9GyyWA
link.rule.ids 315,783,787,799,27936,27937,55086
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60HtSDb_HtHjwJW9Nks2mOIi1V2yJYwVvYx0SKmIq2gt79385sUqmC4G1ZwrDsDPPIfvMNYydNGyZgcim01VKghTSEhigXLsnTJvq_hrSe7bOvOnfy6j6-r5rVfS8MAHjwGdRp6d_y3chO6FfZGQ1zTJRU82wBE-umKtu1po43Jm6v6uGyEaRng_5tDwvAUNbRU9OkrR-hZ2aWig8l7VXWnx6iRJA81idjU7cfv_gZ_33KNbZSJZX8vLSCdTYHxQZbnqEa3GSfLd_kJ1qeMgIFcF04fvMyfNP2XRAQg6CPjqO_IPzQG_AeUFPw8PWJY17LeyOD_oO33APwchIEihWoXDITx9vESaFpVRG2PvBhwTvf4DJeMqNvsbt2a3DREdUIBmGxThqLyGqtwCkifW9Kp5WyYI2OZBxEEtJGqkOnkijMpXWxwoBoVKwdJl06clIZGW2zWjEqYIfxMIQ0dDE6FKWl9rQxWCypIDeBSSAPd9npVDvZc8m0kfkKJUgzUmVGqswqVe6yLbr4mQ_LO9_7Y_-YLXYGvW7Wvexf77MlElWi-A5YbfwygUPMLMbmyNvTF4DYzKs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-Efficient+and+Privacy-Preserved+Incentive+Mechanism+for+Mobile+Edge+Computing-Assisted+Federated+Learning+in+Healthcare+System&rft.jtitle=IEEE+eTransactions+on+network+and+service+management&rft.au=Liu%2C+Jingyuan&rft.au=Chang%2C+Zheng&rft.au=Wang%2C+Kai&rft.au=Zhao%2C+Zhiwei&rft.date=2024-08-01&rft.pub=IEEE&rft.eissn=1932-4537&rft.volume=21&rft.issue=4&rft.spage=4801&rft.epage=4815&rft_id=info:doi/10.1109%2FTNSM.2024.3414417&rft.externalDocID=10557646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4537&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4537&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4537&client=summon