Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth
Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress...
Saved in:
Published in | Materials chemistry frontiers Vol. 8; no. 18; pp. 3017 - 3027 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
09.09.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N 2 . Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs’ performance, facilitating the commercial application of tandem solar cells. |
---|---|
AbstractList | Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N 2 . Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs’ performance, facilitating the commercial application of tandem solar cells. Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the efficiency limit of single junction solar cells. However, the small perovskite grain size and large defect density of WBG perovskites suppress the further improvement of the device power conversion efficiency (PCE). In this work, we offer a grain regrowth and defect passivation (GRDP) strategy to inhibit the nonradiative recombination loss at the perovskite grain boundary and in bulk simultaneously. Introducing guanidine thiocyanate (GuSCN) by post-treating the perovskite film can address this issue. GuSCN promotes the regrowth of perovskite grains and makes the grain size of perovskites larger than 1700 nm, thus reducing the defect density of perovskite solar cells (PSCs) by one order of magnitude. Consequently, a MA-free opaque WBG PSC achieves 20.92% PCE with excellent stability, maintaining 95.4% of its initial PCE after 3384 hours in N2. Furthermore, we fabricated a four-terminal perovskite-silicon tandem solar cell and the champion device obtained 27.16% PCE. This work provides an effective way to improve WBG PSCs’ performance, facilitating the commercial application of tandem solar cells. |
Author | Huang, Shihua Zhu, Keqi Li, Ziyu Li, Denggao Wang, Chenyu Chi, Dan Huang, Hao Chen, Zhijia Shi, Hongxi Lu, Zhangbo |
Author_xml | – sequence: 1 givenname: Hao surname: Huang fullname: Huang, Hao organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 2 givenname: Ziyu surname: Li fullname: Li, Ziyu organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 3 givenname: Zhijia surname: Chen fullname: Chen, Zhijia organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 4 givenname: Denggao surname: Li fullname: Li, Denggao organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 5 givenname: Hongxi surname: Shi fullname: Shi, Hongxi organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 6 givenname: Keqi surname: Zhu fullname: Zhu, Keqi organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 7 givenname: Chenyu surname: Wang fullname: Wang, Chenyu organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 8 givenname: Zhangbo surname: Lu fullname: Lu, Zhangbo organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 9 givenname: Shihua surname: Huang fullname: Huang, Shihua organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China – sequence: 10 givenname: Dan orcidid: 0000-0002-1947-2011 surname: Chi fullname: Chi, Dan organization: Provincial Key Laboratory of Solid-State Optoelectronic Devices, Zhejiang Normal University, Jinhua 321004, China |
BookMark | eNpNkF1LwzAYhYNMcM7d-AsC3gnVfLVpL8fmx2BDhN2XtH1TM7ukJplj-OetTNCr88JzOC_nXKKRdRYQuqbkjhJe3C_E65oQIcXiDI0ZSVlCUy5H_-4LNA1hSwihUjJO6Bh9LW0Er1VtVId3rjHa1CoaZzHY1lgAb2yLtfMY9IAM2IiVbXCIquoAr2eJ9gD4YBpIqgG0qsc9ePcZ3k0EHFynPK6h6wKujrj1yljsofXuEN-u0LlWXYDpr07Q5vFhM39OVi9Py_lsldRU5DHhlMisZkUmK14JSdNMkSbPWSYhAwUNVwXXLE8LVmcCBlhUVCnFNBkai5pP0M0ptvfuYw8hllu393b4WA7RtBCUp8Xguj25au9C8KDL3pud8seSkvJn3vJvXv4NyVVvWw |
Cites_doi | 10.1126/science.aaz3691 10.1021/ja809598r 10.1016/j.cej.2022.135107 10.1002/advs.202105085 10.1016/j.nanoen.2022.107747 10.1002/adma.202206345 10.1016/j.cej.2023.143860 10.1039/D3EE02818F 10.1021/acs.chemrev.0c01006 10.1039/D2EE02698H 10.1021/acsnano.2c02876 10.1002/adfm.202108567 10.1002/aenm.202203607 10.1126/science.aap9282 10.1002/chem.202300576 10.1038/s41560-022-01046-1 10.1021/acsenergylett.7b01255 10.1126/sciadv.abj7930 10.1039/d1ta08402j 10.1002/smll.202202144 10.1002/adfm.202203873 10.1002/aenm.202203230 10.1039/D3EE00247K 10.1002/aenm.202201672 10.1039/C9EE02020A 10.1002/adfm.202307471 10.1126/science.1243982 10.1002/advs.202204138 10.1002/aenm.202300957 10.1016/j.nanoen.2021.106608 10.1126/science.aam5655 10.1038/s41467-023-43016-5 10.1002/aenm.202201501 10.1002/aenm.202201733 10.1002/adma.202110356 10.1126/science.aad5845 10.1016/j.jallcom.2023.170670 10.1002/smll.202303213 10.1016/j.matt.2021.02.020 10.1002/adma.202307987 10.1038/s41586-023-06784-0 10.1002/adma.201907058 10.1002/aenm.202202802 10.1021/jacs.9b02846 10.1002/ange.202016085 10.1002/adfm.202308795 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 |
DOI | 10.1039/D4QM00474D |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | CrossRef Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2052-1537 |
EndPage | 3027 |
ExternalDocumentID | 10_1039_D4QM00474D |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ AARTK AAXHV AAYXX ABASK ABDVN ABPDG ABRYZ AENGV AETIL AFOGI AGEGJ AGRSR AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP BLAPV C6K CITATION EBS ECGLT GGIMP H13 O9- OK1 RAOCF RCNCU RRC RSCEA RVUXY SMJ 7SR 8BQ 8FD JG9 |
ID | FETCH-LOGICAL-c148t-31076c2967b3b47156a0d88267e6eaed3a93f28592c64e6a09b1aaa2f05374c3 |
ISSN | 2052-1537 |
IngestDate | Thu Oct 10 21:55:35 EDT 2024 Wed Sep 11 13:53:24 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c148t-31076c2967b3b47156a0d88267e6eaed3a93f28592c64e6a09b1aaa2f05374c3 |
ORCID | 0000-0002-1947-2011 |
PQID | 3101941359 |
PQPubID | 2048883 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3101941359 crossref_primary_10_1039_D4QM00474D |
PublicationCentury | 2000 |
PublicationDate | 2024-09-09 |
PublicationDateYYYYMMDD | 2024-09-09 |
PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Materials chemistry frontiers |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Luo (D4QM00474D/cit10/1) 2018; 360 Wei (D4QM00474D/cit22/1) 2020; 32 Sun (D4QM00474D/cit28/1) 2021; 60 Tao (D4QM00474D/cit15/1) 2022; 16 Zhao (D4QM00474D/cit7/1) 2023 Li (D4QM00474D/cit16/1) 2021; 121 Kojima (D4QM00474D/cit1/1) 2009; 131 Zhang (D4QM00474D/cit5/1) 2022; 9 Duong (D4QM00474D/cit32/1) 2023; 13 Zhang (D4QM00474D/cit41/1) 2023 Shi (D4QM00474D/cit46/1) 2022; 18 Hu (D4QM00474D/cit23/1) 2022; 15 Yang (D4QM00474D/cit6/1) 2023; 13 Hoffman (D4QM00474D/cit25/1) 2019; 141 Liang (D4QM00474D/cit27/1) 2023; 624 Sun (D4QM00474D/cit35/1) 2023; 960 Wang (D4QM00474D/cit43/1) 2023; 16 Wang (D4QM00474D/cit26/1) 2022; 32 Liu (D4QM00474D/cit47/1) 2023; 13 Shi (D4QM00474D/cit42/1) 2022; 32 An (D4QM00474D/cit30/1) 2021; 4 Hou (D4QM00474D/cit3/1) 2020; 367 Ou (D4QM00474D/cit45/1) 2023; 469 McMeekin (D4QM00474D/cit4/1) 2016; 351 Coffey (D4QM00474D/cit17/1) 2023; 13 Liu (D4QM00474D/cit39/1) 2023; 13 Stolterfoht (D4QM00474D/cit29/1) 2019; 12 Li (D4QM00474D/cit11/1) 2022; 435 Wen (D4QM00474D/cit31/1) 2022; 34 Chen (D4QM00474D/cit21/1) 2023; 35 Bush (D4QM00474D/cit44/1) 2018; 3 Stranks (D4QM00474D/cit2/1) 2013; 342 Guan (D4QM00474D/cit14/1) 2023 Mahmud (D4QM00474D/cit18/1) 2022; 12 Tong (D4QM00474D/cit19/1) 2022; 7 Arora (D4QM00474D/cit37/1) 2017; 358 Degani (D4QM00474D/cit24/1) 2021; 7 Chen (D4QM00474D/cit38/1) 2021 He (D4QM00474D/cit40/1) 2023; 13 Hou (D4QM00474D/cit12/1) 2022; 10 Hou (D4QM00474D/cit34/1) 2022; 10 Wen (D4QM00474D/cit33/1) 2023; 14 Song (D4QM00474D/cit36/1) 2023; 29 Cui (D4QM00474D/cit13/1) 2023; 16 Zhuang (D4QM00474D/cit20/1) 2022; 102 Tong (D4QM00474D/cit8/1) 2022; 9 Zhang (D4QM00474D/cit9/1) 2023; 19 |
References_xml | – volume: 367 start-page: 1135 issue: 6482 year: 2020 ident: D4QM00474D/cit3/1 publication-title: Science doi: 10.1126/science.aaz3691 contributor: fullname: Hou – volume: 131 start-page: 6050 issue: 17 year: 2009 ident: D4QM00474D/cit1/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r contributor: fullname: Kojima – volume: 435 start-page: 135107 year: 2022 ident: D4QM00474D/cit11/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135107 contributor: fullname: Li – volume: 9 start-page: 2105085 year: 2022 ident: D4QM00474D/cit8/1 publication-title: Adv. Sci. doi: 10.1002/advs.202105085 contributor: fullname: Tong – volume: 102 start-page: 107747 year: 2022 ident: D4QM00474D/cit20/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107747 contributor: fullname: Zhuang – volume: 35 start-page: 2206345 year: 2023 ident: D4QM00474D/cit21/1 publication-title: Adv. Mater. doi: 10.1002/adma.202206345 contributor: fullname: Chen – volume: 469 start-page: 143860 year: 2023 ident: D4QM00474D/cit45/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.143860 contributor: fullname: Ou – volume: 16 start-page: 5992 year: 2023 ident: D4QM00474D/cit13/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE02818F contributor: fullname: Cui – volume: 121 start-page: 2230 year: 2021 ident: D4QM00474D/cit16/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01006 contributor: fullname: Li – volume: 15 start-page: 5340 year: 2022 ident: D4QM00474D/cit23/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE02698H contributor: fullname: Hu – volume: 16 start-page: 10798 issue: 7 year: 2022 ident: D4QM00474D/cit15/1 publication-title: ACS Nano doi: 10.1021/acsnano.2c02876 contributor: fullname: Tao – volume: 32 start-page: 2108567 year: 2022 ident: D4QM00474D/cit26/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202108567 contributor: fullname: Wang – volume: 13 start-page: 2203607 year: 2023 ident: D4QM00474D/cit32/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203607 contributor: fullname: Duong – volume: 360 start-page: 1442 issue: 6396 year: 2018 ident: D4QM00474D/cit10/1 publication-title: Science doi: 10.1126/science.aap9282 contributor: fullname: Luo – volume: 29 start-page: e202300576 issue: 37 year: 2023 ident: D4QM00474D/cit36/1 publication-title: Chem doi: 10.1002/chem.202300576 contributor: fullname: Song – volume: 7 start-page: 642 year: 2022 ident: D4QM00474D/cit19/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01046-1 contributor: fullname: Tong – volume: 3 start-page: 428 issue: 2 year: 2018 ident: D4QM00474D/cit44/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01255 contributor: fullname: Bush – volume: 7 start-page: eabj7930 year: 2021 ident: D4QM00474D/cit24/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.abj7930 contributor: fullname: Degani – volume: 10 start-page: 2105 issue: 4 year: 2022 ident: D4QM00474D/cit12/1 publication-title: J. Mater. Chem. A doi: 10.1039/d1ta08402j contributor: fullname: Hou – volume: 18 start-page: 2202144 year: 2022 ident: D4QM00474D/cit46/1 publication-title: Small doi: 10.1002/smll.202202144 contributor: fullname: Shi – volume: 32 start-page: 2203873 year: 2022 ident: D4QM00474D/cit42/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202203873 contributor: fullname: Shi – volume: 13 start-page: 2203230 year: 2023 ident: D4QM00474D/cit47/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202203230 contributor: fullname: Liu – volume: 16 start-page: 2646 year: 2023 ident: D4QM00474D/cit43/1 publication-title: Energy Environ. Sci. doi: 10.1039/D3EE00247K contributor: fullname: Wang – volume: 12 start-page: 2201672 year: 2022 ident: D4QM00474D/cit18/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201672 contributor: fullname: Mahmud – volume: 12 start-page: 2778 year: 2019 ident: D4QM00474D/cit29/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE02020A contributor: fullname: Stolterfoht – start-page: 2307471 year: 2023 ident: D4QM00474D/cit41/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202307471 contributor: fullname: Zhang – volume: 342 start-page: 341 issue: 6156 year: 2013 ident: D4QM00474D/cit2/1 publication-title: Science doi: 10.1126/science.1243982 contributor: fullname: Stranks – volume: 9 start-page: 2204138 year: 2022 ident: D4QM00474D/cit5/1 publication-title: Adv. Sci. doi: 10.1002/advs.202204138 contributor: fullname: Zhang – volume: 13 start-page: 2300957 year: 2023 ident: D4QM00474D/cit40/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202300957 contributor: fullname: He – start-page: 90 year: 2021 ident: D4QM00474D/cit38/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.106608 contributor: fullname: Chen – volume: 358 start-page: 768 year: 2017 ident: D4QM00474D/cit37/1 publication-title: Science doi: 10.1126/science.aam5655 contributor: fullname: Arora – volume: 14 start-page: 7118 year: 2023 ident: D4QM00474D/cit33/1 publication-title: Nat. Commun. doi: 10.1038/s41467-023-43016-5 contributor: fullname: Wen – volume: 13 start-page: 2201501 year: 2023 ident: D4QM00474D/cit17/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201501 contributor: fullname: Coffey – volume: 13 start-page: 2201733 year: 2023 ident: D4QM00474D/cit6/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202201733 contributor: fullname: Yang – volume: 34 start-page: 2110356 year: 2022 ident: D4QM00474D/cit31/1 publication-title: Adv. Mater. doi: 10.1002/adma.202110356 contributor: fullname: Wen – volume: 351 start-page: 151 issue: 6269 year: 2016 ident: D4QM00474D/cit4/1 publication-title: Science doi: 10.1126/science.aad5845 contributor: fullname: McMeekin – volume: 960 start-page: 170670 year: 2023 ident: D4QM00474D/cit35/1 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.170670 contributor: fullname: Sun – volume: 19 start-page: 2303213 year: 2023 ident: D4QM00474D/cit9/1 publication-title: Small doi: 10.1002/smll.202303213 contributor: fullname: Zhang – volume: 4 start-page: 1683 year: 2021 ident: D4QM00474D/cit30/1 publication-title: Matter doi: 10.1016/j.matt.2021.02.020 contributor: fullname: An – start-page: 2307987 year: 2023 ident: D4QM00474D/cit14/1 publication-title: Adv. Mater. doi: 10.1002/adma.202307987 contributor: fullname: Guan – volume: 624 start-page: 557 issue: 7992 year: 2023 ident: D4QM00474D/cit27/1 publication-title: Nature doi: 10.1038/s41586-023-06784-0 contributor: fullname: Liang – volume: 32 start-page: 1907058 year: 2020 ident: D4QM00474D/cit22/1 publication-title: Adv. Mater. doi: 10.1002/adma.201907058 contributor: fullname: Wei – volume: 13 start-page: 2202802 issue: 4 year: 2023 ident: D4QM00474D/cit39/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202202802 contributor: fullname: Liu – volume: 141 start-page: 10661 year: 2019 ident: D4QM00474D/cit25/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02846 contributor: fullname: Hoffman – volume: 60 start-page: 7227 year: 2021 ident: D4QM00474D/cit28/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202016085 contributor: fullname: Sun – start-page: 2308795 year: 2023 ident: D4QM00474D/cit7/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202308795 contributor: fullname: Zhao – volume: 10 start-page: 2105 issue: 4 year: 2022 ident: D4QM00474D/cit34/1 publication-title: J. Mater. Chem. A doi: 10.1039/d1ta08402j contributor: fullname: Hou |
SSID | ssj0001772301 |
Score | 2.314167 |
Snippet | Wide bandgap (WBG) perovskites are a key component of perovskite-silicon and all-perovskite tandem solar cells, which provides an effective way to exceed the... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 3017 |
SubjectTerms | Bulk density Crystal defects Energy conversion efficiency Energy gap Grain boundaries Grain size Perovskites Photovoltaic cells Silicon Solar cells Thiocyanates |
Title | Interfacial modification engineering for efficient and stable MA-free wide-bandgap perovskite solar cells by grain regrowth |
URI | https://www.proquest.com/docview/3101941359 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKduGCQIAYDGQJblEgjZ0PHys6VBBFQirStEtkx04XpLVTm4IG_wh_Lu85TpxCD4NLFDmJFef98r788zMhr8DlEEozHiaSY4CSIwlAR6HMIlFlWY4RNLItPqWzL_zDeXI-Gv0asJZ2jXpd_ji4ruR_pAptIFdcJfsPku07hQY4B_nCESQMx1vJ2KbzKmmz3ldrjayfVp7GVxlsa3rbQhEdnRwcQlwvNZ-E1caY4HutTajgwlJeYxnj9bctpnSDLUa9AWb2t-ikLnEziWBjlhC4N5dDp3Yum3a0QdltH4fLVlZNbfxc0WznMtMzue5ZQJZKcFHf7DzLoFWDF5f111ru3zeFUS3dwy5PEXNLxBJencVREoegX1vzag60OX2cD2GXD5Qr6KJsYKhxxvWgEYgY1lCd8s9zrIXJp97UddP7f1jAnpdoZ-SZKPyzd8hxDCoMdOfx5Gzx_qPP30FYwuzu2v0guuq3TLzxHez7O_vm3vowi_vkngs-6KRF0gMyMquH5OcARXSIIjpAEQUU0R5FFMBCWxRRhyI6RBH1KKIWRdSiiKobalFEOxQ9Iot3Z4u3s9BtyRGWEDc3YLGjLC1jkWaKKfBrklRGGoK0NDOpkUYzKViFNRHjMuUGLgo1llLGFZYN4iV7TI5W65V5QihLhDZmLBKVl7w0lUzGTHMdpdCRjg0_IS-771Zct4VXir_Fc0JOu09auB9zW8BLjgU4Z4l4eqtOnpG7HrCn5KjZ7MxzcDUb9cJJ_TeeJ4HL |
link.rule.ids | 315,783,787,27936,27937 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interfacial+modification+engineering+for+efficient+and+stable+MA-free+wide-bandgap+perovskite+solar+cells+by+grain+regrowth&rft.jtitle=Materials+chemistry+frontiers&rft.au=Huang%2C+Hao&rft.au=Li%2C+Ziyu&rft.au=Chen%2C+Zhijia&rft.au=Li%2C+Denggao&rft.date=2024-09-09&rft.issn=2052-1537&rft.eissn=2052-1537&rft.volume=8&rft.issue=18&rft.spage=3017&rft.epage=3027&rft_id=info:doi/10.1039%2FD4QM00474D&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4QM00474D |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2052-1537&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2052-1537&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2052-1537&client=summon |