A Distance-Based Health Indicator and Its Use in an Interacting Multiple Model for Failure Prognosis in Power Electronic Devices

Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of components that are subject to predictable degradation. Here, we propose a RUL estimation framework for PE components. The framework has two conse...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on reliability pp. 1 - 15
Main Authors Yang, Qian, Joshi, Shailesh, Viviano, Raymond, Ukegawa, Hiroshi, Pattipati, Krishna R.
Format Journal Article
LanguageEnglish
Published IEEE 04.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of components that are subject to predictable degradation. Here, we propose a RUL estimation framework for PE components. The framework has two consecutive phases: Generation of distance-based health indicators through an unsupervised learning procedure, such as self-organizing map (SOM) or K-means clustering, and subsequent deployment of interacting multiple model (IMM) that integrate linear and extended Kalman filters with varied degradation profiles to forecast future values of the indicator and RUL. Specifically, a nominal SOM or K-means model is learned, using the on -state median signal data from the PE component. The indicator is then calculated by measuring the distance between the test vector and the cluster center. To adaptively track the health indicator and its rate of change, accounting for the noise intrinsic to degradation processes, various degradation profiles, and the measurement system, the IMMs are applied. The RUL is evaluated as the difference between a predefined threshold and the health indicator estimate, divided by the present degradation rate. Validation of the framework involved accelerated aging experimental datasets, encompassing both low-frequency and high-frequency switching scenarios. The results reveal the framework's versatility and potential for implementation across diverse applications.
AbstractList Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of components that are subject to predictable degradation. Here, we propose a RUL estimation framework for PE components. The framework has two consecutive phases: Generation of distance-based health indicators through an unsupervised learning procedure, such as self-organizing map (SOM) or K-means clustering, and subsequent deployment of interacting multiple model (IMM) that integrate linear and extended Kalman filters with varied degradation profiles to forecast future values of the indicator and RUL. Specifically, a nominal SOM or K-means model is learned, using the on -state median signal data from the PE component. The indicator is then calculated by measuring the distance between the test vector and the cluster center. To adaptively track the health indicator and its rate of change, accounting for the noise intrinsic to degradation processes, various degradation profiles, and the measurement system, the IMMs are applied. The RUL is evaluated as the difference between a predefined threshold and the health indicator estimate, divided by the present degradation rate. Validation of the framework involved accelerated aging experimental datasets, encompassing both low-frequency and high-frequency switching scenarios. The results reveal the framework's versatility and potential for implementation across diverse applications.
Author Ukegawa, Hiroshi
Yang, Qian
Joshi, Shailesh
Viviano, Raymond
Pattipati, Krishna R.
Author_xml – sequence: 1
  givenname: Qian
  orcidid: 0000-0002-9870-1133
  surname: Yang
  fullname: Yang, Qian
  organization: University of Connecticut, Storrs, CT, USA
– sequence: 2
  givenname: Shailesh
  orcidid: 0000-0001-7218-1187
  surname: Joshi
  fullname: Joshi, Shailesh
  organization: Toyota Research Institute of North America, Ann Arbor, MI, USA
– sequence: 3
  givenname: Raymond
  orcidid: 0000-0002-9051-5037
  surname: Viviano
  fullname: Viviano, Raymond
  organization: Toyota Research Institute of North America, Ann Arbor, MI, USA
– sequence: 4
  givenname: Hiroshi
  surname: Ukegawa
  fullname: Ukegawa, Hiroshi
  organization: Toyota Research Institute of North America, Ann Arbor, MI, USA
– sequence: 5
  givenname: Krishna R.
  orcidid: 0000-0002-0565-181X
  surname: Pattipati
  fullname: Pattipati, Krishna R.
  organization: University of Connecticut, Storrs, CT, USA
BookMark eNpNkMFOAjEQhhujiYievXjoCyy03d1ue0QEIYFICJw3pTvFmrUlbdF489FdAgeTSSZ__vnm8N2ha-cdIPRIyYBSIoeb9YARVg7ykvFSFleoR8tSZLRi9Br1CKEikyWTt-guxo8uFoUUPfQ7wi82JuU0ZM8qQoNnoNr0jueusVolH7ByDZ6niLcRsHVd7LoEQelk3R4vj22yhxbw0jfQYtMBU2XbYwC8Cn7vfLTxhK38NwQ8aUGn4J3V-AW-rIZ4j26MaiM8XHYfbaeTzXiWLd5e5-PRItO04CmTqiGVEFLSqjE72o0ARlmpuTaGGSBATUN4pSUju4rTXFXCGM4LmTOtGpP30fD8VwcfYwBTH4L9VOGnpqQ-Caw36_oksL4I7IinM2EB4N-14FLkPP8DvIRvhg
CODEN IERQAD
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TR.2025.3526594
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-1721
EndPage 15
ExternalDocumentID 10_1109_TR_2025_3526594
10869836
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
OCL
P2P
RIA
RIE
RNS
TN5
8WZ
A6W
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
RIG
VH1
VJK
ID FETCH-LOGICAL-c146t-9ad07889917dfb1fb18e2125c6cff2fe0e1fd067c920b7613a78ff664932cadf3
IEDL.DBID RIE
ISSN 0018-9529
IngestDate Tue Jul 01 00:49:12 EDT 2025
Wed Aug 27 01:53:39 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c146t-9ad07889917dfb1fb18e2125c6cff2fe0e1fd067c920b7613a78ff664932cadf3
ORCID 0000-0002-0565-181X
0000-0001-7218-1187
0000-0002-9051-5037
0000-0002-9870-1133
PageCount 15
ParticipantIDs ieee_primary_10869836
crossref_primary_10_1109_TR_2025_3526594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-04
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-04
  day: 04
PublicationDecade 2020
PublicationTitle IEEE transactions on reliability
PublicationTitleAbbrev TR
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0014498
Score 2.4230635
Snippet Power electronic (PE) reliability is critical to electric vehicle performance and safety. Thus, it is vital to predict the remaining useful life (RUL) of...
SourceID crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Adaptation models
Data models
Degradation
Extended Kalman filter (EKF)
interacting multiple model (IMM)
K-means
Mathematical models
MOSFET
power electronics
Predictive models
remaining useful life (RUL)
Self-organizing feature maps
self-organizing map (SOM)
Semiconductor device modeling
Switches
Vectors
Title A Distance-Based Health Indicator and Its Use in an Interacting Multiple Model for Failure Prognosis in Power Electronic Devices
URI https://ieeexplore.ieee.org/document/10869836
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEA7qSQ8-V3wzBw9euvaRps1RXRdXWBHZBW8lSSeyKF1xuxdP_nQnaZVVEIQe2tJAyKQz35d5MXaKypaYRDYgQmsCnqdhoBF1kGoVCZS5kMolJw_vxM2Y3z6mj22yus-FQUQffIZdd-t9-eXUzN1R2bnrCiTzRCyzZWJuTbLWt8uAc9mqXfqD01i2dXyiUJ6PHogIxmnX14KX_IcJWuip4k1Kf4PdfU2miSR57s5r3TXvv-o0_nu2m2y9BZdw0eyGLbaE1TZbWyg5uMM-LqDnICPJOrgkC1ZCk4gEg8p5bIiBg6pKGNQzGM8QJhU9gj82dBkQ1RMM2whEcF3UXoAwL_TVxAW3w_3b1IXtTWZu2L1rvwbX3112oIdeKXXYuH89uroJ2i4MgSEtWgdSlQQjiJZFWWl1RFeOZO9SI4y1scUQI1uSzTMyDnVG6EBlubVCcEKGRpU22WUr1bTCPQahiYSQNjVZZLkOlY65ShKDhDIzQbxnn519CaZ4bYptFJ6khLIYPRROhkUrw33WcSu-8Fmz2Ad_vD9kq264j7fmR2ylfpvjMcGJWp_4bfQJOSDIYA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9NAEB6VcgAOPIsozzmAxMWpH-uN98ChkEYJbaqqSqTezO56FkUgByWOEJz4I_wVfhuzazcKSBwrIflgW7Yl736amW_3mxmAl6RdRVniIia0NhJFHkeGyES50YkkVUilfXLy5FSOZuL9RX6xAz83uTBEFMRn1POnYS-_Wti1Xyo78F2BVJHJTkN5TN--MkNbvRkPeDpfpenwaPpuFHVNBCLLRqCJlK7YCzKrSPqVMwkfBbG5zq20zqWOYkpcxSbbqjQ2zOkz3S-ck1JwYGN15TL-7jW4zoFGnrbpYZtNCiFUZ-jZZuSp6ioHJbE6mJ4z9UzzXqg-r8QfTm-ri0twYsM78Ovy91vtyqfeujE9-_2vypD_7fjchdtd-IyHLd7vwQ7V9-HWVlHFB_DjEAc-KGY0R2_ZR1fYplrhuPZ7Us1iibqucNyscLYinNd8iWFh1Od41B9x0mks0feJ-4wc1eNQz718H8-WCy9MnK_8a2e-wRwebfoI4YCC2d2D2ZUMwUPYrRc1PQKMbSKlcrntJ06YWJtU6CyzxHF0XzKz24fXl0Aov7TlRMpAw2JVTs9Lj5myw8w-7PkZ3nqsndzH_7j_Am6MppOT8mR8evwEbvpPBXW5eAq7zXJNzzh4aszzAGGED1eNid_6oSbt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Distance-Based+Health+Indicator+and+Its+Use+in+an+Interacting+Multiple+Model+for+Failure+Prognosis+in+Power+Electronic+Devices&rft.jtitle=IEEE+transactions+on+reliability&rft.au=Yang%2C+Qian&rft.au=Joshi%2C+Shailesh&rft.au=Viviano%2C+Raymond&rft.au=Ukegawa%2C+Hiroshi&rft.date=2025-02-04&rft.pub=IEEE&rft.issn=0018-9529&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTR.2025.3526594&rft.externalDocID=10869836
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9529&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9529&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9529&client=summon