Statistical analysis for the pitch of mask-wearing Arabic speech
According to Fourier analysis, any periodic function can be analyzed as an infinite series of trigonometric functions (sets of sines and cosines). The kernel of decay cosine yields an extension for the previous frequency-based, sieve-type detection algorithm by giving smooth peaks for decaying ampli...
Saved in:
Published in | Telkomnika Vol. 20; no. 4; pp. 846 - 857 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Yogyakarta
Ahmad Dahlan University
01.08.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | According to Fourier analysis, any periodic function can be analyzed as an infinite series of trigonometric functions (sets of sines and cosines). The kernel of decay cosine yields an extension for the previous frequency-based, sieve-type detection algorithm by giving smooth peaks for decaying amplitudes with the harmonics of the signal correlation. The sequential outline of the RAPT algorithm is: 1) Providing speech samples with their sampling rate and with a reduced sampling rate. 2) Periodically, computing normalized cross-correlation function (NCCF) of the reduced sampling rate speech signal with lags in the F0 range. 3) Indicating the locations of maximum at the 1st pass of NCCF. 4) For the vicinity of the peaks in that 1st pass, calculate the NCCF for the original sampling rate. 5) Again, finding the maximum in that NCCF. Obtaining the location and amplitude of the modified peak. 6) For each peak obtained from the NCCF (high resolution), estimate the F0 of the processed frame. 7) The hypothesis of the frame for unvoiced/voiced is advanced for each frame. 8) Finding the group of the NCCF peaks via optimization process for the unvoiced/voiced hypotheses for all the frames which have the best match with the above characteristics. 9) Using the well-known speech pitch tracking algorithm (PTA), RAPT has the following differences: - PTA computes the NCCF in the linear prediction coding (LPC). |
---|---|
AbstractList | According to Fourier analysis, any periodic function can be analyzed as an infinite series of trigonometric functions (sets of sines and cosines). The kernel of decay cosine yields an extension for the previous frequency-based, sieve-type detection algorithm by giving smooth peaks for decaying amplitudes with the harmonics of the signal correlation. The sequential outline of the RAPT algorithm is: 1) Providing speech samples with their sampling rate and with a reduced sampling rate. 2) Periodically, computing normalized cross-correlation function (NCCF) of the reduced sampling rate speech signal with lags in the F0 range. 3) Indicating the locations of maximum at the 1st pass of NCCF. 4) For the vicinity of the peaks in that 1st pass, calculate the NCCF for the original sampling rate. 5) Again, finding the maximum in that NCCF. Obtaining the location and amplitude of the modified peak. 6) For each peak obtained from the NCCF (high resolution), estimate the F0 of the processed frame. 7) The hypothesis of the frame for unvoiced/voiced is advanced for each frame. 8) Finding the group of the NCCF peaks via optimization process for the unvoiced/voiced hypotheses for all the frames which have the best match with the above characteristics. 9) Using the well-known speech pitch tracking algorithm (PTA), RAPT has the following differences: - PTA computes the NCCF in the linear prediction coding (LPC). |
Author | Abdulhussien, Saif A. Kadhim, Hasan M. Ahmed, Alaa H. |
Author_xml | – sequence: 1 givenname: Hasan M. surname: Kadhim fullname: Kadhim, Hasan M. – sequence: 2 givenname: Alaa H. surname: Ahmed fullname: Ahmed, Alaa H. – sequence: 3 givenname: Saif A. surname: Abdulhussien fullname: Abdulhussien, Saif A. |
BookMark | eNpFkE1LAzEQhoMoWGt_gwHPW5NJs9ncLMUvKHhQz2E2TWza7e6apEr_vUsr-MLwHuZhGJ4rct52rSPkhrMpBw3VXXbNttu1YYvTb2BhNgVgip-REQgGhQYtzsmIl1oUw7BLMklpw4YoBlJXI3L_ljGHlIPFhmKLzSGFRH0XaV472ods17TzdIdpW_w4jKH9pPOIdbA09c7Z9TW58NgkN_nrMfl4fHhfPBfL16eXxXxZWD4rcwESNGqsJQLTEpRnTjAB6EpQkmvrmJe25L5CVq3USjLloK5WVtbDFmouxuT2dLeP3dfepWw23T4ODycDpdZKwkzLgVInysYupei86WPYYTwYzszRmPk3Zo7GzNGY-AXp6GOY |
ContentType | Journal Article |
Copyright | 2022. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BVBZV CCPQU COVID DWQXO HCIFZ P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS |
DOI | 10.12928/telkomnika.v20i4.22071 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection East & South Asia Database ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection (Proquest) (PQ_SDU_P3) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China East & South Asia Database ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2302-9293 |
EndPage | 857 |
ExternalDocumentID | 10_12928_telkomnika_v20i4_22071 |
GroupedDBID | 3V. 5VS 8FE 8FG AAKDD AAYXX ABDBF ABUWG AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ BPHCQ BVBZV CCPQU CITATION EOJEC ESX GROUPED_DOAJ HCIFZ I-F KQ8 MK~ ML~ OBODZ OK1 P62 PIMPY PQQKQ PROAC RIG TUS AZQEC COVID DWQXO PQEST PQUKI PRINS |
ID | FETCH-LOGICAL-c146t-2529a9ab5a209527f0e3032ae627519ce0f5c61f8a08d7d507e2b8dc5b5192b13 |
IEDL.DBID | COVID |
ISSN | 1693-6930 |
IngestDate | Thu Oct 10 16:47:34 EDT 2024 Fri Aug 23 01:55:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c146t-2529a9ab5a209527f0e3032ae627519ce0f5c61f8a08d7d507e2b8dc5b5192b13 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.proquest.com/docview/2699752495?pq-origsite=%requestingapplication% |
PQID | 2699752495 |
PQPubID | 376296 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2699752495 crossref_primary_10_12928_telkomnika_v20i4_22071 |
PublicationCentury | 2000 |
PublicationDate | 2022-08-01 20220801 |
PublicationDateYYYYMMDD | 2022-08-01 |
PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Yogyakarta |
PublicationPlace_xml | – name: Yogyakarta |
PublicationTitle | Telkomnika |
PublicationYear | 2022 |
Publisher | Ahmad Dahlan University |
Publisher_xml | – name: Ahmad Dahlan University |
SSID | ssj0000702598 |
Score | 2.269355 |
Snippet | According to Fourier analysis, any periodic function can be analyzed as an infinite series of trigonometric functions (sets of sines and cosines). The kernel... |
SourceID | proquest crossref |
SourceType | Aggregation Database |
StartPage | 846 |
SubjectTerms | Accuracy Algorithms Amplitudes COVID-19 Cross correlation Fourier analysis Harmony (Music) Hypotheses Infinite series Linear prediction Males Optimization Periodic functions Sampling Signal processing Speaking Speech Statistical analysis Trigonometric functions |
Title | Statistical analysis for the pitch of mask-wearing Arabic speech |
URI | https://www.proquest.com/docview/2699752495 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFH6C9sIODAYTMKhy2NWtYydNfAIGLXTd2gkVxC1ynBet6mgLTUHaX89z6jLKgcNOOTiJkvfLn5-fvwfw1UcpfY2coc85Cww3TJssIHdHioRKmjwrC2R7zcvr4PtteOsSbjNXVrmMiWWgzibG5sgboqlUFNpOycfTe2a7RtndVddCYx2qMg5FXIHqWf-mc_6SZSGDJnxfnodrKsls3z9X5CWUiBuD1o9u_2ev0z2tPwo-DOpC8MhfnaJWI3Q57bQ_QrL84EW1yag-L9K6-fuGy_H__2gLNh0i9U4XJrQNazj-BB9e8RTuwImFpCWjM92oHY2JR3DXI_joTYekeW-Se3d6NmJP5Dr0EL1Pp0PjzaaI5vcuXLdbg7NL5lovMEOhs2AiFEornYZaEAYTUc6R5jqh0ZIa-8ogz0PT9PNY8ziLMgKVKNI4M2FKoyL15WeojCdj3ANPKsJgyFFHQR7QVWUBrUn9SKIwucyDfeBLaSfTBcNGYlcmVkFJgX9Gk7vxcKSTUkFJqaB9OFxKNHEuN0v-ifPg_eEvsCHsGYayiu8QKsXDHI8IWRRpDdbj9kUNqt9avV9XNWdMz-rr0QQ |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,38528,43612,43817,43907,74363,74630,74740 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LU8IwEM4oHtSD43NEUXvwGkiTlJKTMg4I8vACM9w6abodGeShRf37bkJRuXjqIU0Ou8nul83ut4Tc-iCEr4FR8Bmj0jBDtUkkHndAS6iESROXINuvtobyaRSM8oBblqdVrm2iM9TJ3NgYeYVXlQoD2yn5bvFGbdco-7qat9DYJjtSoK-2leLNx58YC25nRPeuGq6qBLVd__IUL654rTJodDvPvX67Uy9_cjaWZc5Z6G86qE377JxO85Ac5GjRq6_Ue0S2YHZM9v9wCJ6QewsXHdsy_qhzihEPoaiH0M5bjFEr3jz1pjqb0C_c1jgJ19Px2HjZAsC8nJJhszF4aNG8LQI1aNaWlAdcaaXjQHPERzxMGaAf4hos4bCvDLA0MFU_rWlWS8IEAR_wuJaYIMZRHvvijBRm8xmcE08oxEfAQIcylfhVicT7oh8K4CYVqSwStpZFtFixX0T21mDFFy3hdTKfzsYTHTnxRU58RVJayyzKj0MW_Srv4v_hG7LbGvS6Ubfd71ySPW5rDVy2XYkUlu8fcIUIYBlfOzV_A45zrQo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JTsMwELVYJAQHxCrKmgNXU8dZfQIELYVC4dBKvUWOMxZV6QIJ8PuMXZflwikHxznMjGeenec3hJz6EAS-BEbBZ4yGiikqVRHicgfMhCJQurAE2U7c6oV3_ajv-E-lo1XOc6JN1MVEmTPyOo-FSCLTKbmuHS3i6bp5Pn2lpoOU-dPq2mkskmWsirGJ-bR5833egqGNSN_ejItFQE0HQEf34oKn9W7jvv340LltX559cDYIzzhnif-3WP3N1bYANTfIukOO3uXM1ZtkAcZbZO2XnuA2uTDQ0Sov44vSyY14CEs9hHnedIAe8ibaG8lySD8xxHESfk_mA-WVUwD1vEN6zUb3qkVdiwSqMMVVlEdcSCHzSHLESjzRDLAmcQlGfNgXCpiOVOzrVLK0SAoEf8DztFBRjqM894NdsjSejGGPeIFArAQMZBLqEJ-iCHHv6CcBcKUDHdYIm9sim86UMDKzgzDmyyp4GU5G48FQZtZ8mTVfjRzObZa5pVFmP47c_3_4hKygh7P72077gKxyc-3AEu8OyVL19g5HCAaq_Nh6-QuOfLFC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+analysis+for+the+pitch+of+mask-wearing+Arabic+speech&rft.jtitle=Telkomnika&rft.au=Kadhim%2C+Hasan+M&rft.au=Ahmed%2C+Alaa+H&rft.au=Abdulhussien%2C+Saif+A&rft.date=2022-08-01&rft.pub=Ahmad+Dahlan+University&rft.issn=1693-6930&rft.eissn=2302-9293&rft.volume=20&rft.issue=4&rft.spage=846&rft.epage=857&rft_id=info:doi/10.12928%2FTELKOMNIKA.v20i4.22071&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1693-6930&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1693-6930&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1693-6930&client=summon |