The Interneurons of the Abdominal Positioning System of the Crayfish
Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal...
Saved in:
Published in | Brain, behavior and evolution Vol. 55; no. 5; pp. 241 - 247 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel, Switzerland
S. Karger AG
01.05.2000
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal segments each controlled by a set of flexor and extensor tonic muscles. Each segment has a dozen tonic motor neurons controlled in turn by a large number of interneurons. A similar set of phasic muscles, motor neurons and interneurons control a fast system. The fast components underlie such behaviors as escape and swimming. Lucifier-filled microelectrodes were used to stimulate, record and dye-fill the motor neurons and interneurons of the tonic systems. It was soon apparent that all of these neurons are identifiable. These data allowed us to determine how many interneurons served in a circuit generating a behavior, while the use of pairs of electrodes permitted the study of synaptic interactions between interneurons. Interneurons involved in abdominal positioning produced either flexion (flexion producing interneurons or FPI), extension (EPI) or inhibition (I). Significantly, FPIs tended to synaptically excite other FPIs and inhibit EPIs. In turn EPIs excited other EPIs and inhibited FPIs. As a result, impaling and stimulating an FPI, for example, tended to recruit others and their combined activity evoked a natural-looking behavior. The inhibition between FPI and EPI and vice versa tended to account for the reciprocity seen between the two behaviors in all experiments. Finally the synaptic connections between EPI–EPI on FPI–FPI were found to be essentially invariable. Thus repeated stimulation of an FPI or the stimulation of this same FPI in another preparation, at another time, gave essentially the same overall behavior such that the stimulation of one FPI or EPI could evoke a wide spread output resembling a normal behavior. |
---|---|
AbstractList | Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal segments each controlled by a set of flexor and extensor tonic muscles. Each segment has a dozen tonic motor neurons controlled in turn by a large number of interneurons. A similar set of phasic muscles, motor neurons and interneurons control a fast system. The fast components underlie such behaviors as escape and swimming. Lucifier-filled microelectrodes were used to stimulate, record and dye-fill the motor neurons and interneurons of the tonic systems. It was soon apparent that all of these neurons are identifiable. These data allowed us to determine how many interneurons served in a circuit generating a behavior, while the use of pairs of electrodes permitted the study of synaptic interactions between interneurons. Interneurons involved in abdominal positioning produced either flexion (flexion producing interneurons or FPI), extension (EPI) or inhibition (I). Significantly, FPIs tended to synaptically excite other FPIs and inhibit EPIs. In turn EPIs excited other EPIs and inhibited FPIs. As a result, impaling and stimulating an FPI, for example, tended to recruit others and their combined activity evoked a natural-looking behavior. The inhibition between FPI and EPI and vice versa tended to account for the reciprocity seen between the two behaviors in all experiments. Finally the synaptic connections between EPI–EPI on FPI–FPI were found to be essentially invariable. Thus repeated stimulation of an FPI or the stimulation of this same FPI in another preparation, at another time, gave essentially the same overall behavior such that the stimulation of one FPI or EPI could evoke a wide spread output resembling a normal behavior. |
Author | Larimer, James L. |
Author_xml | – sequence: 1 givenname: James L. surname: Larimer fullname: Larimer, James L. |
BookMark | eNptkE1PwzAMhgMMsQ924MqpcONQiOskbY7bGDBpEkjsXqVdsnVszUi6w_49rQo74Yv1-n1s2e6TTmlLTcgN0EcALp9oE0Lw5IwMZZwgQlJrZOKc9IBFEMqY4UXrJZTzGBiTHdJrusJExnGX9L3f1JJFDK5IF6iMgQLtkefFWgezstKu1AdnSx9YE1R1bZQt7a4o1Tb4sL6oClsW5Sr4PPpK7_6YiVNHU_j1Nbk0auv18DcPyOJlupi8hfP319lkNA9zYEKGmChJhaJU5oazKMNECI25AkSOGiHnqDJqJAeMa8GXUSYShgZyI6RZ4oDct2P3zn4ftK_SjT24ekWfRhiBYPXVNfTQQrmz3jtt0r0rdsodU6Bp88309M2avW3ZL-VW2p3IX_PuX3M8njZ-ul8a_AH7-HPK |
CODEN | BRBEBE |
CitedBy_id | crossref_primary_10_1016_S0301_0082_00_00046_0 crossref_primary_10_1016_j_brainresrev_2006_12_007 crossref_primary_10_1159_000006659 crossref_primary_10_1002_syn_20425 crossref_primary_10_1016_j_asd_2004_06_001 crossref_primary_10_3390_sym10090389 crossref_primary_10_1159_000006656 crossref_primary_10_1159_000006657 crossref_primary_10_1002_jemt_10273 crossref_primary_10_1098_rsta_2006_1910 crossref_primary_10_1016_S0959_4388_01_00267_7 crossref_primary_10_1002_syn_20540 crossref_primary_10_1016_j_cbpc_2005_10_006 crossref_primary_10_1017_S1464793103006183 |
Cites_doi | 10.1016/0006-8993(76)90058-5 10.1016/0092-8674(78)90256-8 10.1016/0010-406X(62)90041-5 10.1016/0006-8993(93)90425-M 10.1146/annurev.neuro.11.1.423 10.1002/(SICI)1097-010X(19970615)278:3<119::AID-JEZ1>3.3.CO;2-E 10.1007/s003590050198 10.1016/0010-406X(64)90153-7 |
ContentType | Journal Article |
Copyright | 2000 S. Karger AG, Basel Copyright S. Karger AG May 2000 |
Copyright_xml | – notice: 2000 S. Karger AG, Basel – notice: Copyright S. Karger AG May 2000 |
DBID | AAYXX CITATION 3V. 7QG 7TK 7X2 7X7 7XB 88E 88G 88I 8AF 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA ATCPS AZQEC BBNVY BEC BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0K M0S M1P M2M M2P M7P P64 PATMY PQEST PQQKQ PQUKI PSYQQ PYCSY Q9U RC3 S0X |
DOI | 10.1159/000006658 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Neurosciences Abstracts Agricultural Science Collection Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Agriculture Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database ProQuest Science Journals Biological Science Database Biotechnology and BioEngineering Abstracts Environmental Science Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Environmental Science Collection ProQuest Central Basic Genetics Abstracts SIRS Editorial |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology ProQuest Central Student Technology Research Database ProQuest Central Essentials SIRS Editorial elibrary ProQuest Health & Medical Complete (Alumni) ProQuest AP Science ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Psychology Journals (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection ProQuest Health & Medical Complete ProQuest Medical Library ProQuest Psychology Journals ProQuest One Academic UKI Edition Animal Behavior Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISBN | 9783318006346 3318006343 |
EISSN | 1421-9743 |
EndPage | 247 |
ExternalDocumentID | 61916307 10_1159_000006658 6658 |
GroupedDBID | --- --Z -~X .GJ 0R~ 0~5 0~B 23N 30W 325 36B 3O. 3V. 4.4 53G 5GY 5RE 6J9 7X2 7X7 7XC 88E 88I 8AF 8AO 8CJ 8FE 8FH 8FI 8FJ 8UI AAYIC ABIVO ABJNI ABPAZ ABTAH ABUWG ACCUC ACGFO ACGFS ACGOD ACKIV ACNCT ACPRK ACPSR ADAGL ADBBV ADGES AENEX AETEA AEYAO AFJJK AFKRA AFRAH AHMBA AI. ALDHI ALIPV ALMA_UNASSIGNED_HOLDINGS ATCPS AZPMC AZQEC BBNVY BCR BCU BEC BENPR BHPHI BLC BPHCQ BVXVI CAG CCPQU COF CS3 CYUIP D1J D1K DU5 DWQXO E0A EBS EJD EMB EMOBN F5P FB. FYUFA GNUQQ HCIFZ HMCUK HZ~ IY7 K6- KUZGX L7B LK5 LK8 M0K M1P M2M M2P M7P M7R O1H O9- OHT P2P PATMY PEA PQQKQ PROAC PSQYO PSYQQ PYCSY RIG RKO RXVBD S0X SJFOW SV3 TN5 UJ6 UKHRP UQL VH1 VQA XJT XOL ZGI ZXP ZY4 ~02 AAYXX CITATION 7QG 7TK 7XB 8FD 8FK FR3 K9. P64 PQEST PQUKI Q9U RC3 |
ID | FETCH-LOGICAL-c1469-38a906a009cf542b3866e3ca13353e31c53ab0f951371c55d2b6843f1cf69fd3 |
IEDL.DBID | 7X7 |
ISBN | 9783805571449 3805571445 |
ISSN | 0006-8977 |
IngestDate | Thu Oct 10 20:52:34 EDT 2024 Thu Sep 26 17:34:32 EDT 2024 Thu Sep 05 17:58:15 EDT 2024 Thu Aug 29 12:04:33 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Extension Command elements, recruiting functional groups Flexion Lobster Crayfish Abdominal positioning |
Language | English |
License | Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1469-38a906a009cf542b3866e3ca13353e31c53ab0f951371c55d2b6843f1cf69fd3 |
PMID | 10971010 |
PQID | 232164449 |
PQPubID | 35174 |
PageCount | 7 |
ParticipantIDs | proquest_journals_232164449 crossref_primary_10_1159_000006658 karger_primary_6658 |
PublicationCentury | 2000 |
PublicationDate | 20000501 |
PublicationDateYYYYMMDD | 2000-05-01 |
PublicationDate_xml | – month: 05 year: 2000 text: 20000501 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Basel, Switzerland |
PublicationPlace_xml | – name: Basel, Switzerland – name: Basel |
PublicationTitle | Brain, behavior and evolution |
PublicationTitleAlternate | Brain Behav Evol |
PublicationYear | 2000 |
Publisher | S. Karger AG |
Publisher_xml | – name: S. Karger AG |
References | Larimer, J.L. (1966) A functional caudal photoreceptor in blind cavernicolous crayfish. Nature, 210: 204-205. Larimer, J.L., and C.M. Pease (1990) Unexpected divergence among identified interneurons in different abdominal segments of the crayfish, Procambarus clarkii. J. Exp. Zool., 253: 20-29.2313239 Birse, S.C., and G.D. Bittner (1976) Regeneration of giant axons in earthworms. Brain Res., 113: 575-581.95375310.1016/0006-8993(76)90058-5 Wiersma, C.A.G., and K. Ikeda (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol., 12: 509-525.10.1016/0010-406X(64)90153-7</pub-id><pub-id pub-id-type="pmid">14206963 Larimer, J.L., and J. Jellies (1983) The organization of flexion evoking interneurons in the abdominal nerve cord of the crayfish, Procambarus clarkii. J. Exp. Zoo1., 226: 341-351. Larimer, J.L. (1990) Numerical and serial aspects of the interneurons controlling abdominal positioning in crustaceans. In Frontiers in Crustacean Neurobiology (ed. by K. Wiese, W.D. Krenz, J. Tautz, H. Reichert, and B. Mulloney), Birkhäuser Verlag, Basel, pp. 295-300. Atwood, H., and C.A.G. Wiersma (1967) Command interneurons in the crayfish central nervous system. J. Exp. Biol., 46: 249-261.6033993 Moehlenbruck, J.W., J.A. Cummings, and G.D. Bittner (1994) Long-term survival followed by degradation of neurofilament proteins in severed Mauthner axons of goldfish. J. Neurobiol., 25: 1637-1651.7861125 Wilkens, L.A., and J.L. Larimer (1972) The CNS photoreceptor of crayfish: morphology and synaptic activity. J. Comp. Physiol., 80: 389- 407. Jones, K.A., and C.H. Page (1986a) Postural interneurons in the abdominal nervous system of loster. I. Organization, morphlogies and motor programs for flexion, extension and inhibition. J. Comp. Physiol., 158: 259-271. Miall, R.C., and J.L. Larimer (1982) Interneurons involved in abdominal postures in crayfish: structure, function and command fiber responses. J. Comp. Physiol. A, 148: 159-173. Takahata, M., and M. Hisada (1985) Interactions between the motor systems controlling uropod steering and abdominal posture in crayfish. J. Comp. Physiol. A, 157: 547-554. Nagayama, T., Y. Isogai, M. Sato, and M. Hisada (1993). Intersegmental ascending interneurons controlling uropod movements of the crayfish Procambarus clarkii. J. Comp Neurol., 332: 155-174.8331210 Simon, T.W., and D.H. Edwards (1990) Light-evoked walking in crayfish: behavioral and neuronal responses triggered by the caudal photoreceptor. J. Comp. Physiol. A, 166: 745-755. Wiersma, C.A.G, and P.J. Mill (1965) 'Descending' neuronal units in the commisure of the crayfish central nervous system, and their integration of visual, tactile and proprioceptive stimuli. J. Comp. Neur., 125: 67-94.5866594 Bruno, M.S., and D. Kennedy (1962) Spectral sensitivity of photoreceptor neurons in the sixth ganglion of the crayfish. Comp. Biochem. Physiol., 6: 41-46.10.1016/0010-406X(62)90041-5 Kennedy, D., and K. Takeda (1965) The reflex control of abdominal flexor muscles in the crayfish. II. The tonic system. J. Exp. Biol., 43: 229-246. Davis, W.J., and D. Kennedy (1972a) Command interneurons controlling swimmeret movements in the lobster. I. Types of effects on motor neurons. J. Neurophysiol., 35: 1-12.5008721 Van Harreveld, A. (1936) A physiological solution for fresh water crustaceans. Proc. Soc. Exp. Biol. Med., 34: 428-432. Evoy, W.H., and D. Kennedy (1967) Central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers. J. Exp. Zool., 165: 223-238. Bittner, G.D., M.L. Ballinger, and J.L. Larimer (1974) Crayfish CNS: minimal degenerative-regenerative changes after lesioning. J. Exp. Zool., 189: 13-36.4837872 Kruszewska, B, and J.L. Larimer (1993) Specific second messengers activate the caudal photoreceptor of crayfish. Brain Res., 618: 32-40.840217610.1016/0006-8993(93)90425-M Brewer, L.D., C.M. Pease, and J.L. Larimer (1998) Consistency of interneuronal group formation in responses to stimulation of identified cells. J. Comp. Physiol. A, 182: 509-519.953083910.1007/s003590050198 Hughes, G.M., and C.A.G. Wiersma (1960) The co ordination of swimmert movements in the crayfish, Procambarus clarkii (Girard). J. Exp. Biol., 37: 657-670. Bowerman, R.F., and J.L. Larimer (1974a) Command fibers in the circumesophageal connectives of crayfish. I. Tonic fibers. J. Exp. Biol., 60: 95-117. Wiersma, C.A.G., S.H. Ripley, and E. Christensen (1955) The central representation of sensory stimulation in the crayfish. J. Cell. Comp. Physiol., 46: 307-326. Larimer, J.L., and D. Moore (1984) Abdominal positioning interneurons in crayfish: projections to and synaptic activation by higher CNS centers. J. Exp. Zool., 247: 1-10. Wiersma, C.A.G. (1958) On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii (Girard). J. Comp. Neurol., 110: 421-472. Burdohan, J.A., and J.L. Larimer (1995) Interneurons involved in the control of multiple motor centers in crayfish. J. Exp. Zool., 213: 204-215. Wilkens, L.A., and J.L. Larimer (1976) Photosensitivity in the sixth abdominal ganglion of decapod crustaceans: a comparative study. J. Comp. Physiol., 106: 69-75. Williams, R.W., and K. Herrup (1998) The control of neuron number. Ann. Rev. Neurosci., 11: 423-453.10.1146/annurev.neuro.11.1.423 Murchison, D., and J.L. Larimer (1992) Synaptic interactions among neurons that coordinate swimmeret and abdominal movements in the craysfish. J. Comp. Physiol. A, 170: 739-747.1432852 Barthe, J.Y., D. Cattacert, and F. Clarac (1988) An interneuron can make both rhythmical and postural motor programmes in the abdomen of Homarus gammarus. J. Physiol. Lond., 406: 77P. Murchison, D., and J.L. Larimer (1990) Dual motor output interneurons in the abdominal ganglia of the craysfish Procambarus clarkii: synaptic activation of motor outputs in both the swimmeret and abdominal positioning systems by single interneurons. J. Exp. Biol., 150: 269- 293. Kupfermann, I., and K.R. Weiss (1978) The command neuron concept. Behav. Brain Sci., 1: 3-39. Larimer, J.L. (1988) The command hypothesis is a new view using an old example. TINS, 11: 506-510. Larimer, J.L., and C.M. Pease (1988) A quantitative study of command elements for abdominal positioning behavior in the crayfish, Procambarus clarkii. J. Exp. Zool., 247: 45-55.3183583 Jones, K.A., and C.H. Page (1986b) Postural interneurons in the abdominal nervous system of lobster. II. Evidence for neurons having both command and driver roles inhibition. J. Comp. Physiol., 158: 273-280. Kondoh, Y., and M. Hisada (1986) Neuroanatomy of the terminal (sixth abdomina) ganglion of the crayfish, Procamarus clarkii (Girard). Cell Tissue Res., 243: 273-288. Davis, W.J., and D. Kennedy (1972c) Command interneurons controlling swimmeret movements in the lobster. III. Temporal relationships among bursts in different motor neurons. J. Neurophysiol., 35: 20-29.5008722 Davis, W.J., and D. Kennedy (1972b) Command interneurons controlling swimmeret movements in the lobster. II. Interaction of effects of motor neurons. J. Neurophysiol., 35: 13-19.5008720 Wine, J.J. (1984) The structural basis of an innate behavioral pattern. J. Exp. Biol., 112: 283-319. Bowerman, R.F., and J.L. Larimer (1974b) Command fibers in the circumesophageal connectives of crayfish. II. Phasic fibers. J. Exp. Biol., 60: 119-134. Kennedy, D., W.H. Evoy, and J.T. Hanawalt (1966) Release of co-ordinated behavior in crayfish by single central neurons. Science, 154: 917-919.4304560 Hulsebosch, C.E., and G.D. Bittner (1981) Regeneration of axons and nerve cell bodies in the CNS of annelids. J. Comp. Neurol., 198: 77-88.7229143 Jellies, J., and J.L. Larimer (1985) Synaptic interactions between neurons involved in the production of abdominal posture in the crayfish. J. Comp. Physiol. A, 156: 861-873. Stewart, W.W. (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell, 14: 741-759.68839210.1016/0092-8674(78)90256-8 Brewer, L.D., and J. Larimer (1997) Estimation of the size and directional output of functional groups of interneurons underlying abdominal positioning behaviors in crayfish. J. Exp. Zool., 278: 119-132.918169210.1002/(SICI)1097-010X(19970615)278:3<119::AID-JEZ1>3.3.CO;2-E ref8 ref7 ref4 ref3 ref6 ref5 ref2 ref1 |
References_xml | – ident: ref1 doi: 10.1016/0006-8993(76)90058-5 – ident: ref6 doi: 10.1016/0092-8674(78)90256-8 – ident: ref4 doi: 10.1016/0010-406X(62)90041-5 – ident: ref5 doi: 10.1016/0006-8993(93)90425-M – ident: ref8 doi: 10.1146/annurev.neuro.11.1.423 – ident: ref2 doi: 10.1002/(SICI)1097-010X(19970615)278:3<119::AID-JEZ1>3.3.CO;2-E – ident: ref3 doi: 10.1007/s003590050198 – ident: ref7 doi: 10.1016/0010-406X(64)90153-7 |
SSID | ssj0004241 |
Score | 1.574593 |
Snippet | Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these... |
SourceID | proquest crossref karger |
SourceType | Aggregation Database Enrichment Source Publisher |
StartPage | 241 |
Title | The Interneurons of the Abdominal Positioning System of the Crayfish |
URI | https://karger.com/doi/10.1159/000006658 https://www.proquest.com/docview/232164449 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60VfAiWhXbagnidTHJPpI9idWWIlhEKhQvYR9ZLEJSm3rw3zubR0UFr_u4zLAz38x8O4PQpUyV9qlR2DAWYaqNwCpSFAdKkJSTKBDKVXQfpnzyTO_nbF5zc4qaVtnYxNJQm1y7HPkVeH5A9pSK6-U7dkOjXHG1nqCxjdpB6HPH6Irm0fe3yJDWA_M4jgHn1I2FwIGXPRtd0SH-4Y523hz7evXHLJe-ZnyA9muQ6N1UWj1EW2nWQbsveZkCP0J3oFtvUabyXGuNrPBy6wGQ86QyeTmky2u4WOCYvKpZc3NGr-SnXRSvx2g2Hs1uJ7iehoA1WDOBSSyFzyVgIm0ZDRWJOU-JlhBkMpfJ1IxI5VtATCBhzZgJFY8psYG2XFhDTlAry7P0FHlaErglQqMEhFdGgUEUwhIJT98YHtEuumhkkiyrnhdJGSswkWwE10WdSlqbI9Vq79fqcDhyG8nS2C7qN3JN6pdSJBu99v7d7aO96hO8oxqeodZ69ZGeAxxYq0Gp9AFqD0fTx6cvIOiz2w |
link.rule.ids | 315,783,787,12068,21400,27936,27937,31731,33756,43322,43817,74073,74630 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UNHoxihoBHxvjtRG2D7YnIwpBBWIMJsTLpo9tJCYsAh789053uxg18dp2LzPbmW8e_QahC5ko3aBGYcNYC1NtBFYtRXFTCZJw0moK5Sq6gyHvPdP7MRv73pyFb6ssbGJmqE2qXY78Ejw_IHtKxdXsHbuhUa646idorKOyY6qC2Kvc7gwfn74fRobUj8zjOAKk46mFwIVnrI2u7BD9cEgbb67_ev7HMGfepruLdjxMDK5zve6htWRaQZsvaZYE30e3oN1gkiXzHLnGdBGkNgAoF0hl0mxMV1B0Y4FrCnK65uKMnstPO1m8HqBRtzO66WE_DwFrsGcCk0iKBpeAirRlNFQk4jwhWkKYyVwuUzMiVcMCZgIZa8ZMqHhEiW1qy4U15BCVpuk0OUKBlgS-EqFRAgIso8AkCmGJhMtvDG_RKjovZBLPctaLOIsWmIhXgquiSi6t1ZF8tfZrtd3uuI14ZmwV1Qu5xv6uLOKVZmv_7p6hrd5o0I_7d8OHOtrOn8S7xsNjVFrOP5ITAAdLdep_gS8yQbaX |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSwMxEB60HvginljrsYivwbY5dvMkVlvqVUQUxJclxwaL0K2tPvjvnexmKyr4mmRfZjbffHNkBuBYZdo0mdXEch4TZqwkOtaMtLSkmaBxS2qf0b0diP4ju3riT6Gl0DSUVVaYWAC1zY2PkZ-g5Udmz5g8caEq4u6idzp-I36AlE-0hmka87AQM0GbNVjodAd399-PJNssjM8TJEHWE9oMoTkvOjj6FETywzgtvvpa7MkfkC4sT28NVgNljM5KHa_DXDbagKXnvAiIb8IFajoaFoE932hjNI1yFyGti5S2eTGyK6oqs9BMRWXr5uqMmahPN5y-bMFDr_tw3idhNgIxiG2S0ETJplDIkIzjrK1pIkRGjUKXk_u4puFU6aZD_oTyNpzbthYJo65lnJDO0m2ojfJRtgORURS_km2rJTpbViM8SumoQiCwVsSsDkeVTNJx2QEjLTwHLtOZ4OqwUUprdqRc3f212ul0_UY6tq4OjUquabg303Sm5d1_dw9hGbWf3lwOrhuwUr6O9zWIe1B7n3xk-8gT3vVB-AO-AJ2zusU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interneurons+of+the+Abdominal+Positioning+System+of+the+Crayfish&rft.jtitle=Brain%2C+behavior+and+evolution&rft.au=Larimer%2C+James+L.&rft.date=2000-05-01&rft.issn=0006-8977&rft.eissn=1421-9743&rft.volume=55&rft.issue=5&rft.spage=241&rft.epage=247&rft_id=info:doi/10.1159%2F000006658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000006658 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8977&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8977&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8977&client=summon |