The Interneurons of the Abdominal Positioning System of the Crayfish

Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal...

Full description

Saved in:
Bibliographic Details
Published inBrain, behavior and evolution Vol. 55; no. 5; pp. 241 - 247
Main Author Larimer, James L.
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.05.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal segments each controlled by a set of flexor and extensor tonic muscles. Each segment has a dozen tonic motor neurons controlled in turn by a large number of interneurons. A similar set of phasic muscles, motor neurons and interneurons control a fast system. The fast components underlie such behaviors as escape and swimming. Lucifier-filled microelectrodes were used to stimulate, record and dye-fill the motor neurons and interneurons of the tonic systems. It was soon apparent that all of these neurons are identifiable. These data allowed us to determine how many interneurons served in a circuit generating a behavior, while the use of pairs of electrodes permitted the study of synaptic interactions between interneurons. Interneurons involved in abdominal positioning produced either flexion (flexion producing interneurons or FPI), extension (EPI) or inhibition (I). Significantly, FPIs tended to synaptically excite other FPIs and inhibit EPIs. In turn EPIs excited other EPIs and inhibited FPIs. As a result, impaling and stimulating an FPI, for example, tended to recruit others and their combined activity evoked a natural-looking behavior. The inhibition between FPI and EPI and vice versa tended to account for the reciprocity seen between the two behaviors in all experiments. Finally the synaptic connections between EPI–EPI on FPI–FPI were found to be essentially invariable. Thus repeated stimulation of an FPI or the stimulation of this same FPI in another preparation, at another time, gave essentially the same overall behavior such that the stimulation of one FPI or EPI could evoke a wide spread output resembling a normal behavior.
AbstractList Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these behaviors in lobsters and crayfish using standard intracellular and dye-filling techniques. Typically crayfish and lobsters have six abdominal segments each controlled by a set of flexor and extensor tonic muscles. Each segment has a dozen tonic motor neurons controlled in turn by a large number of interneurons. A similar set of phasic muscles, motor neurons and interneurons control a fast system. The fast components underlie such behaviors as escape and swimming. Lucifier-filled microelectrodes were used to stimulate, record and dye-fill the motor neurons and interneurons of the tonic systems. It was soon apparent that all of these neurons are identifiable. These data allowed us to determine how many interneurons served in a circuit generating a behavior, while the use of pairs of electrodes permitted the study of synaptic interactions between interneurons. Interneurons involved in abdominal positioning produced either flexion (flexion producing interneurons or FPI), extension (EPI) or inhibition (I). Significantly, FPIs tended to synaptically excite other FPIs and inhibit EPIs. In turn EPIs excited other EPIs and inhibited FPIs. As a result, impaling and stimulating an FPI, for example, tended to recruit others and their combined activity evoked a natural-looking behavior. The inhibition between FPI and EPI and vice versa tended to account for the reciprocity seen between the two behaviors in all experiments. Finally the synaptic connections between EPI–EPI on FPI–FPI were found to be essentially invariable. Thus repeated stimulation of an FPI or the stimulation of this same FPI in another preparation, at another time, gave essentially the same overall behavior such that the stimulation of one FPI or EPI could evoke a wide spread output resembling a normal behavior.
Author Larimer, James L.
Author_xml – sequence: 1
  givenname: James L.
  surname: Larimer
  fullname: Larimer, James L.
BookMark eNptkE1PwzAMhgMMsQ924MqpcONQiOskbY7bGDBpEkjsXqVdsnVszUi6w_49rQo74Yv1-n1s2e6TTmlLTcgN0EcALp9oE0Lw5IwMZZwgQlJrZOKc9IBFEMqY4UXrJZTzGBiTHdJrusJExnGX9L3f1JJFDK5IF6iMgQLtkefFWgezstKu1AdnSx9YE1R1bZQt7a4o1Tb4sL6oClsW5Sr4PPpK7_6YiVNHU_j1Nbk0auv18DcPyOJlupi8hfP319lkNA9zYEKGmChJhaJU5oazKMNECI25AkSOGiHnqDJqJAeMa8GXUSYShgZyI6RZ4oDct2P3zn4ftK_SjT24ekWfRhiBYPXVNfTQQrmz3jtt0r0rdsodU6Bp88309M2avW3ZL-VW2p3IX_PuX3M8njZ-ul8a_AH7-HPK
CODEN BRBEBE
CitedBy_id crossref_primary_10_1016_S0301_0082_00_00046_0
crossref_primary_10_1016_j_brainresrev_2006_12_007
crossref_primary_10_1159_000006659
crossref_primary_10_1002_syn_20425
crossref_primary_10_1016_j_asd_2004_06_001
crossref_primary_10_3390_sym10090389
crossref_primary_10_1159_000006656
crossref_primary_10_1159_000006657
crossref_primary_10_1002_jemt_10273
crossref_primary_10_1098_rsta_2006_1910
crossref_primary_10_1016_S0959_4388_01_00267_7
crossref_primary_10_1002_syn_20540
crossref_primary_10_1016_j_cbpc_2005_10_006
crossref_primary_10_1017_S1464793103006183
Cites_doi 10.1016/0006-8993(76)90058-5
10.1016/0092-8674(78)90256-8
10.1016/0010-406X(62)90041-5
10.1016/0006-8993(93)90425-M
10.1146/annurev.neuro.11.1.423
10.1002/(SICI)1097-010X(19970615)278:3<119::AID-JEZ1>3.3.CO;2-E
10.1007/s003590050198
10.1016/0010-406X(64)90153-7
ContentType Journal Article
Copyright 2000 S. Karger AG, Basel
Copyright S. Karger AG May 2000
Copyright_xml – notice: 2000 S. Karger AG, Basel
– notice: Copyright S. Karger AG May 2000
DBID AAYXX
CITATION
3V.
7QG
7TK
7X2
7X7
7XB
88E
88G
88I
8AF
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0K
M0S
M1P
M2M
M2P
M7P
P64
PATMY
PQEST
PQQKQ
PQUKI
PSYQQ
PYCSY
Q9U
RC3
S0X
DOI 10.1159/000006658
DatabaseName CrossRef
ProQuest Central (Corporate)
Animal Behavior Abstracts
Neurosciences Abstracts
Agricultural Science Collection
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Psychology Database (Alumni)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Agriculture Science Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Psychology Database
ProQuest Science Journals
Biological Science Database
Biotechnology and BioEngineering Abstracts
Environmental Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest One Psychology
Environmental Science Collection
ProQuest Central Basic
Genetics Abstracts
SIRS Editorial
DatabaseTitle CrossRef
Agricultural Science Database
ProQuest One Psychology
ProQuest Central Student
Technology Research Database
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Psychology Journals (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Environmental Science Collection
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest Psychology Journals
ProQuest One Academic UKI Edition
Animal Behavior Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISBN 9783318006346
3318006343
EISSN 1421-9743
EndPage 247
ExternalDocumentID 61916307
10_1159_000006658
6658
GroupedDBID ---
--Z
-~X
.GJ
0R~
0~5
0~B
23N
30W
325
36B
3O.
3V.
4.4
53G
5GY
5RE
6J9
7X2
7X7
7XC
88E
88I
8AF
8AO
8CJ
8FE
8FH
8FI
8FJ
8UI
AAYIC
ABIVO
ABJNI
ABPAZ
ABTAH
ABUWG
ACCUC
ACGFO
ACGFS
ACGOD
ACKIV
ACNCT
ACPRK
ACPSR
ADAGL
ADBBV
ADGES
AENEX
AETEA
AEYAO
AFJJK
AFKRA
AFRAH
AHMBA
AI.
ALDHI
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ATCPS
AZPMC
AZQEC
BBNVY
BCR
BCU
BEC
BENPR
BHPHI
BLC
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CYUIP
D1J
D1K
DU5
DWQXO
E0A
EBS
EJD
EMB
EMOBN
F5P
FB.
FYUFA
GNUQQ
HCIFZ
HMCUK
HZ~
IY7
K6-
KUZGX
L7B
LK5
LK8
M0K
M1P
M2M
M2P
M7P
M7R
O1H
O9-
OHT
P2P
PATMY
PEA
PQQKQ
PROAC
PSQYO
PSYQQ
PYCSY
RIG
RKO
RXVBD
S0X
SJFOW
SV3
TN5
UJ6
UKHRP
UQL
VH1
VQA
XJT
XOL
ZGI
ZXP
ZY4
~02
AAYXX
CITATION
7QG
7TK
7XB
8FD
8FK
FR3
K9.
P64
PQEST
PQUKI
Q9U
RC3
ID FETCH-LOGICAL-c1469-38a906a009cf542b3866e3ca13353e31c53ab0f951371c55d2b6843f1cf69fd3
IEDL.DBID 7X7
ISBN 9783805571449
3805571445
ISSN 0006-8977
IngestDate Thu Oct 10 20:52:34 EDT 2024
Thu Sep 26 17:34:32 EDT 2024
Thu Sep 05 17:58:15 EDT 2024
Thu Aug 29 12:04:33 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Extension
Command elements, recruiting functional groups
Flexion
Lobster
Crayfish
Abdominal positioning
Language English
License Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1469-38a906a009cf542b3866e3ca13353e31c53ab0f951371c55d2b6843f1cf69fd3
PMID 10971010
PQID 232164449
PQPubID 35174
PageCount 7
ParticipantIDs proquest_journals_232164449
crossref_primary_10_1159_000006658
karger_primary_6658
PublicationCentury 2000
PublicationDate 20000501
PublicationDateYYYYMMDD 2000-05-01
PublicationDate_xml – month: 05
  year: 2000
  text: 20000501
  day: 01
PublicationDecade 2000
PublicationPlace Basel, Switzerland
PublicationPlace_xml – name: Basel, Switzerland
– name: Basel
PublicationTitle Brain, behavior and evolution
PublicationTitleAlternate Brain Behav Evol
PublicationYear 2000
Publisher S. Karger AG
Publisher_xml – name: S. Karger AG
References Larimer, J.L. (1966) A functional caudal photoreceptor in blind cavernicolous crayfish. Nature, 210: 204-205.
Larimer, J.L., and C.M. Pease (1990) Unexpected divergence among identified interneurons in different abdominal segments of the crayfish, Procambarus clarkii. J. Exp. Zool., 253: 20-29.2313239
Birse, S.C., and G.D. Bittner (1976) Regeneration of giant axons in earthworms. Brain Res., 113: 575-581.95375310.1016/0006-8993(76)90058-5
Wiersma, C.A.G., and K. Ikeda (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol., 12: 509-525.10.1016/0010-406X(64)90153-7</pub-id><pub-id pub-id-type="pmid">14206963
Larimer, J.L., and J. Jellies (1983) The organization of flexion evoking interneurons in the abdominal nerve cord of the crayfish, Procambarus clarkii. J. Exp. Zoo1., 226: 341-351.
Larimer, J.L. (1990) Numerical and serial aspects of the interneurons controlling abdominal positioning in crustaceans. In Frontiers in Crustacean Neurobiology (ed. by K. Wiese, W.D. Krenz, J. Tautz, H. Reichert, and B. Mulloney), Birkhäuser Verlag, Basel, pp. 295-300.
Atwood, H., and C.A.G. Wiersma (1967) Command interneurons in the crayfish central nervous system. J. Exp. Biol., 46: 249-261.6033993
Moehlenbruck, J.W., J.A. Cummings, and G.D. Bittner (1994) Long-term survival followed by degradation of neurofilament proteins in severed Mauthner axons of goldfish. J. Neurobiol., 25: 1637-1651.7861125
Wilkens, L.A., and J.L. Larimer (1972) The CNS photoreceptor of crayfish: morphology and synaptic activity. J. Comp. Physiol., 80: 389- 407.
Jones, K.A., and C.H. Page (1986a) Postural interneurons in the abdominal nervous system of loster. I. Organization, morphlogies and motor programs for flexion, extension and inhibition. J. Comp. Physiol., 158: 259-271.
Miall, R.C., and J.L. Larimer (1982) Interneurons involved in abdominal postures in crayfish: structure, function and command fiber responses. J. Comp. Physiol. A, 148: 159-173.
Takahata, M., and M. Hisada (1985) Interactions between the motor systems controlling uropod steering and abdominal posture in crayfish. J. Comp. Physiol. A, 157: 547-554.
Nagayama, T., Y. Isogai, M. Sato, and M. Hisada (1993). Intersegmental ascending interneurons controlling uropod movements of the crayfish Procambarus clarkii. J. Comp Neurol., 332: 155-174.8331210
Simon, T.W., and D.H. Edwards (1990) Light-evoked walking in crayfish: behavioral and neuronal responses triggered by the caudal photoreceptor. J. Comp. Physiol. A, 166: 745-755.
Wiersma, C.A.G, and P.J. Mill (1965) 'Descending' neuronal units in the commisure of the crayfish central nervous system, and their integration of visual, tactile and proprioceptive stimuli. J. Comp. Neur., 125: 67-94.5866594
Bruno, M.S., and D. Kennedy (1962) Spectral sensitivity of photoreceptor neurons in the sixth ganglion of the crayfish. Comp. Biochem. Physiol., 6: 41-46.10.1016/0010-406X(62)90041-5
Kennedy, D., and K. Takeda (1965) The reflex control of abdominal flexor muscles in the crayfish. II. The tonic system. J. Exp. Biol., 43: 229-246.
Davis, W.J., and D. Kennedy (1972a) Command interneurons controlling swimmeret movements in the lobster. I. Types of effects on motor neurons. J. Neurophysiol., 35: 1-12.5008721
Van Harreveld, A. (1936) A physiological solution for fresh water crustaceans. Proc. Soc. Exp. Biol. Med., 34: 428-432.
Evoy, W.H., and D. Kennedy (1967) Central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers. J. Exp. Zool., 165: 223-238.
Bittner, G.D., M.L. Ballinger, and J.L. Larimer (1974) Crayfish CNS: minimal degenerative-regenerative changes after lesioning. J. Exp. Zool., 189: 13-36.4837872
Kruszewska, B, and J.L. Larimer (1993) Specific second messengers activate the caudal photoreceptor of crayfish. Brain Res., 618: 32-40.840217610.1016/0006-8993(93)90425-M
Brewer, L.D., C.M. Pease, and J.L. Larimer (1998) Consistency of interneuronal group formation in responses to stimulation of identified cells. J. Comp. Physiol. A, 182: 509-519.953083910.1007/s003590050198
Hughes, G.M., and C.A.G. Wiersma (1960) The co ordination of swimmert movements in the crayfish, Procambarus clarkii (Girard). J. Exp. Biol., 37: 657-670.
Bowerman, R.F., and J.L. Larimer (1974a) Command fibers in the circumesophageal connectives of crayfish. I. Tonic fibers. J. Exp. Biol., 60: 95-117.
Wiersma, C.A.G., S.H. Ripley, and E. Christensen (1955) The central representation of sensory stimulation in the crayfish. J. Cell. Comp. Physiol., 46: 307-326.
Larimer, J.L., and D. Moore (1984) Abdominal positioning interneurons in crayfish: projections to and synaptic activation by higher CNS centers. J. Exp. Zool., 247: 1-10.
Wiersma, C.A.G. (1958) On the functional connections of single units in the central nervous system of the crayfish, Procambarus clarkii (Girard). J. Comp. Neurol., 110: 421-472.
Burdohan, J.A., and J.L. Larimer (1995) Interneurons involved in the control of multiple motor centers in crayfish. J. Exp. Zool., 213: 204-215.
Wilkens, L.A., and J.L. Larimer (1976) Photosensitivity in the sixth abdominal ganglion of decapod crustaceans: a comparative study. J. Comp. Physiol., 106: 69-75.
Williams, R.W., and K. Herrup (1998) The control of neuron number. Ann. Rev. Neurosci., 11: 423-453.10.1146/annurev.neuro.11.1.423
Murchison, D., and J.L. Larimer (1992) Synaptic interactions among neurons that coordinate swimmeret and abdominal movements in the craysfish. J. Comp. Physiol. A, 170: 739-747.1432852
Barthe, J.Y., D. Cattacert, and F. Clarac (1988) An interneuron can make both rhythmical and postural motor programmes in the abdomen of Homarus gammarus. J. Physiol. Lond., 406: 77P.
Murchison, D., and J.L. Larimer (1990) Dual motor output interneurons in the abdominal ganglia of the craysfish Procambarus clarkii: synaptic activation of motor outputs in both the swimmeret and abdominal positioning systems by single interneurons. J. Exp. Biol., 150: 269- 293.
Kupfermann, I., and K.R. Weiss (1978) The command neuron concept. Behav. Brain Sci., 1: 3-39.
Larimer, J.L. (1988) The command hypothesis is a new view using an old example. TINS, 11: 506-510.
Larimer, J.L., and C.M. Pease (1988) A quantitative study of command elements for abdominal positioning behavior in the crayfish, Procambarus clarkii. J. Exp. Zool., 247: 45-55.3183583
Jones, K.A., and C.H. Page (1986b) Postural interneurons in the abdominal nervous system of lobster. II. Evidence for neurons having both command and driver roles inhibition. J. Comp. Physiol., 158: 273-280.
Kondoh, Y., and M. Hisada (1986) Neuroanatomy of the terminal (sixth abdomina) ganglion of the crayfish, Procamarus clarkii (Girard). Cell Tissue Res., 243: 273-288.
Davis, W.J., and D. Kennedy (1972c) Command interneurons controlling swimmeret movements in the lobster. III. Temporal relationships among bursts in different motor neurons. J. Neurophysiol., 35: 20-29.5008722
Davis, W.J., and D. Kennedy (1972b) Command interneurons controlling swimmeret movements in the lobster. II. Interaction of effects of motor neurons. J. Neurophysiol., 35: 13-19.5008720
Wine, J.J. (1984) The structural basis of an innate behavioral pattern. J. Exp. Biol., 112: 283-319.
Bowerman, R.F., and J.L. Larimer (1974b) Command fibers in the circumesophageal connectives of crayfish. II. Phasic fibers. J. Exp. Biol., 60: 119-134.
Kennedy, D., W.H. Evoy, and J.T. Hanawalt (1966) Release of co-ordinated behavior in crayfish by single central neurons. Science, 154: 917-919.4304560
Hulsebosch, C.E., and G.D. Bittner (1981) Regeneration of axons and nerve cell bodies in the CNS of annelids. J. Comp. Neurol., 198: 77-88.7229143
Jellies, J., and J.L. Larimer (1985) Synaptic interactions between neurons involved in the production of abdominal posture in the crayfish. J. Comp. Physiol. A, 156: 861-873.
Stewart, W.W. (1978) Functional connections between cells as revealed by dye-coupling with a highly fluorescent naphthalimide tracer. Cell, 14: 741-759.68839210.1016/0092-8674(78)90256-8
Brewer, L.D., and J. Larimer (1997) Estimation of the size and directional output of functional groups of interneurons underlying abdominal positioning behaviors in crayfish. J. Exp. Zool., 278: 119-132.918169210.1002/(SICI)1097-010X(19970615)278:3<119::AID-JEZ1>3.3.CO;2-E
ref8
ref7
ref4
ref3
ref6
ref5
ref2
ref1
References_xml – ident: ref1
  doi: 10.1016/0006-8993(76)90058-5
– ident: ref6
  doi: 10.1016/0092-8674(78)90256-8
– ident: ref4
  doi: 10.1016/0010-406X(62)90041-5
– ident: ref5
  doi: 10.1016/0006-8993(93)90425-M
– ident: ref8
  doi: 10.1146/annurev.neuro.11.1.423
– ident: ref2
  doi: 10.1002/(SICI)1097-010X(19970615)278:3<119::AID-JEZ1>3.3.CO;2-E
– ident: ref3
  doi: 10.1007/s003590050198
– ident: ref7
  doi: 10.1016/0010-406X(64)90153-7
SSID ssj0004241
Score 1.574593
Snippet Arthropods with segmented abdomens show similar abdominal positioning behaviors. It has been possible to gain some understanding of the neural basis of these...
SourceID proquest
crossref
karger
SourceType Aggregation Database
Enrichment Source
Publisher
StartPage 241
Title The Interneurons of the Abdominal Positioning System of the Crayfish
URI https://karger.com/doi/10.1159/000006658
https://www.proquest.com/docview/232164449
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF60VfAiWhXbagnidTHJPpI9idWWIlhEKhQvYR9ZLEJSm3rw3zubR0UFr_u4zLAz38x8O4PQpUyV9qlR2DAWYaqNwCpSFAdKkJSTKBDKVXQfpnzyTO_nbF5zc4qaVtnYxNJQm1y7HPkVeH5A9pSK6-U7dkOjXHG1nqCxjdpB6HPH6Irm0fe3yJDWA_M4jgHn1I2FwIGXPRtd0SH-4Y523hz7evXHLJe-ZnyA9muQ6N1UWj1EW2nWQbsveZkCP0J3oFtvUabyXGuNrPBy6wGQ86QyeTmky2u4WOCYvKpZc3NGr-SnXRSvx2g2Hs1uJ7iehoA1WDOBSSyFzyVgIm0ZDRWJOU-JlhBkMpfJ1IxI5VtATCBhzZgJFY8psYG2XFhDTlAry7P0FHlaErglQqMEhFdGgUEUwhIJT98YHtEuumhkkiyrnhdJGSswkWwE10WdSlqbI9Vq79fqcDhyG8nS2C7qN3JN6pdSJBu99v7d7aO96hO8oxqeodZ69ZGeAxxYq0Gp9AFqD0fTx6cvIOiz2w
link.rule.ids 315,783,787,12068,21400,27936,27937,31731,33756,43322,43817,74073,74630
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTwIxEG4UNHoxihoBHxvjtRG2D7YnIwpBBWIMJsTLpo9tJCYsAh789053uxg18dp2LzPbmW8e_QahC5ko3aBGYcNYC1NtBFYtRXFTCZJw0moK5Sq6gyHvPdP7MRv73pyFb6ssbGJmqE2qXY78Ejw_IHtKxdXsHbuhUa646idorKOyY6qC2Kvc7gwfn74fRobUj8zjOAKk46mFwIVnrI2u7BD9cEgbb67_ev7HMGfepruLdjxMDK5zve6htWRaQZsvaZYE30e3oN1gkiXzHLnGdBGkNgAoF0hl0mxMV1B0Y4FrCnK65uKMnstPO1m8HqBRtzO66WE_DwFrsGcCk0iKBpeAirRlNFQk4jwhWkKYyVwuUzMiVcMCZgIZa8ZMqHhEiW1qy4U15BCVpuk0OUKBlgS-EqFRAgIso8AkCmGJhMtvDG_RKjovZBLPctaLOIsWmIhXgquiSi6t1ZF8tfZrtd3uuI14ZmwV1Qu5xv6uLOKVZmv_7p6hrd5o0I_7d8OHOtrOn8S7xsNjVFrOP5ITAAdLdep_gS8yQbaX
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZSwMxEB60HvginljrsYivwbY5dvMkVlvqVUQUxJclxwaL0K2tPvjvnexmKyr4mmRfZjbffHNkBuBYZdo0mdXEch4TZqwkOtaMtLSkmaBxS2qf0b0diP4ju3riT6Gl0DSUVVaYWAC1zY2PkZ-g5Udmz5g8caEq4u6idzp-I36AlE-0hmka87AQM0GbNVjodAd399-PJNssjM8TJEHWE9oMoTkvOjj6FETywzgtvvpa7MkfkC4sT28NVgNljM5KHa_DXDbagKXnvAiIb8IFajoaFoE932hjNI1yFyGti5S2eTGyK6oqs9BMRWXr5uqMmahPN5y-bMFDr_tw3idhNgIxiG2S0ETJplDIkIzjrK1pIkRGjUKXk_u4puFU6aZD_oTyNpzbthYJo65lnJDO0m2ojfJRtgORURS_km2rJTpbViM8SumoQiCwVsSsDkeVTNJx2QEjLTwHLtOZ4OqwUUprdqRc3f212ul0_UY6tq4OjUquabg303Sm5d1_dw9hGbWf3lwOrhuwUr6O9zWIe1B7n3xk-8gT3vVB-AO-AJ2zusU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Interneurons+of+the+Abdominal+Positioning+System+of+the+Crayfish&rft.jtitle=Brain%2C+behavior+and+evolution&rft.au=Larimer%2C+James+L.&rft.date=2000-05-01&rft.issn=0006-8977&rft.eissn=1421-9743&rft.volume=55&rft.issue=5&rft.spage=241&rft.epage=247&rft_id=info:doi/10.1159%2F000006658&rft.externalDBID=n%2Fa&rft.externalDocID=10_1159_000006658
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8977&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8977&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8977&client=summon