P‐6: Redefining Pixel Circuit Analysis: Causal Discovery and Probabilistic Modeling

When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes a...

Full description

Saved in:
Bibliographic Details
Published inSID International Symposium Digest of technical papers Vol. 55; no. 1; pp. 1383 - 1387
Main Authors Park, Kyongtae, Park, Cheondeck, Kim, Dongso, Kim, Jaewoong
Format Journal Article
LanguageEnglish
Published Campbell Wiley Subscription Services, Inc 01.06.2024
Subjects
Online AccessGet full text
ISSN0097-966X
2168-0159
DOI10.1002/sdtp.17805

Cover

Abstract When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes are influenced by sequential effects. This paper presents an advanced methodology for analyzing pixel circuit design and its driving conditions, a domain characterized by complex interactions and multiple variables. Traditional machine learning methods, when applied in isolation, have shown limitations in unraveling the intricate causal relationships inherent in such systems. To address this challenge, we integrated Explainable AI (XAI) techniques, particularly SHAP (SHapley Additive exPlanations) values, into our analysis. In collaboration with domain experts, we constructed a Directed Acyclic Graph (DAG) that effectively reduced the complexity of interconnections and ensured consistency with empirical data. This approach facilitated a more accurate identification of the impact of each parameter and its causal influence. By decomposing the joint distribution of the variables into conditional distributions, taking into account their parental relationships, we gained a deeper understanding of the changes in causal mechanisms. Our methodology significantly enhanced the accuracy of causal analysis under realistic pixel driving conditions. The findings not only offer novel insights into pixel circuitry but also demonstrate the efficacy of combining machine learning with XAI in complex systems analysis, gaining wide acceptability among relevant experts.
AbstractList When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes are influenced by sequential effects. This paper presents an advanced methodology for analyzing pixel circuit design and its driving conditions, a domain characterized by complex interactions and multiple variables. Traditional machine learning methods, when applied in isolation, have shown limitations in unraveling the intricate causal relationships inherent in such systems. To address this challenge, we integrated Explainable AI (XAI) techniques, particularly SHAP (SHapley Additive exPlanations) values, into our analysis. In collaboration with domain experts, we constructed a Directed Acyclic Graph (DAG) that effectively reduced the complexity of interconnections and ensured consistency with empirical data. This approach facilitated a more accurate identification of the impact of each parameter and its causal influence. By decomposing the joint distribution of the variables into conditional distributions, taking into account their parental relationships, we gained a deeper understanding of the changes in causal mechanisms. Our methodology significantly enhanced the accuracy of causal analysis under realistic pixel driving conditions. The findings not only offer novel insights into pixel circuitry but also demonstrate the efficacy of combining machine learning with XAI in complex systems analysis, gaining wide acceptability among relevant experts.
Author Park, Kyongtae
Park, Cheondeck
Kim, Dongso
Kim, Jaewoong
Author_xml – sequence: 1
  givenname: Kyongtae
  surname: Park
  fullname: Park, Kyongtae
  email: ktman.park@samsung.com
  organization: AI TF of Mobile Business Samsung Display Co., Ltd
– sequence: 2
  givenname: Cheondeck
  surname: Park
  fullname: Park, Cheondeck
  organization: Process Development of Mobile Business Samsung Display Co., Ltd
– sequence: 3
  givenname: Dongso
  surname: Kim
  fullname: Kim, Dongso
  organization: AI TF of Mobile Business Samsung Display Co., Ltd
– sequence: 4
  givenname: Jaewoong
  surname: Kim
  fullname: Kim, Jaewoong
  organization: AI TF of Mobile Business Samsung Display Co., Ltd
BookMark eNp9kE9LwzAYxoNMcJte_AQBb0Jn0jZNs9vo_AcTh27gLaRJKhm1mUmr9uZH8DP6SeysJxFP7-X3_J6XZwQGla00AMcYTTBC4ZlX9XaCaYrIHhiGOEkDhAkbgCFCjAYsSR4OwMj7DUJRFMdsCNbLz_ePZArvtNKFqUz1CJfmTZcwM042poazSpStN34KM9F4UcK58dK-aNdCUSm4dDYXuSmNr42EN1bpsnMcgv1ClF4f_dwxWF-cr7KrYHF7eZ3NFoHEcUKCItUkKhRL8iiUuY5jwYiUjCCNaMpyJUjMYhESGklKlKRxGHZlLKeK4lSnRTQGJ7136-xzo33NN7Zx3ceeRyglLIlSzDrqtKeks947XfCtM0_CtRwjvpuN72bj37N1MPoFS1OL2tiqdsKUf0dwH3k1pW7_kfP7-WrZZ74A9jqDIg
CitedBy_id crossref_primary_10_3390_electronics14020272
Cites_doi 10.1016/j.future.2021.08.022
10.1214/09-SS057
10.1142/6157
10.7551/mitpress/1754.001.0001
10.1002/sdtp.15791
ContentType Journal Article
Copyright 2024 The Society for Information Display
Copyright_xml – notice: 2024 The Society for Information Display
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/sdtp.17805
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2168-0159
EndPage 1387
ExternalDocumentID 10_1002_sdtp_17805
SDTP17805
Genre article
GroupedDBID .4S
05W
0R~
1OC
31~
33P
3SF
50Y
52U
8-1
A00
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABDPE
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
ADXAS
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
DCZOG
DPXWK
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HSZ
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
P2W
R.K
ROL
SUPJJ
TUS
WBKPD
WIH
WIK
WLBEL
WOHZO
WXSBR
WYISQ
WYJ
ZZTAW
AAYXX
ADMLS
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
7SC
7SP
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c1465-f8e53fd96b32cbe44a95cc950e0789bda5494a2573c75dc7422bab9b7d718e8f3
ISSN 0097-966X
IngestDate Fri Jul 25 11:44:26 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 02:09:09 EDT 2025
Wed Jan 22 17:17:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1465-f8e53fd96b32cbe44a95cc950e0789bda5494a2573c75dc7422bab9b7d718e8f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3085963819
PQPubID 2034401
PageCount 5
ParticipantIDs proquest_journals_3085963819
crossref_primary_10_1002_sdtp_17805
crossref_citationtrail_10_1002_sdtp_17805
wiley_primary_10_1002_sdtp_17805_SDTP17805
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Campbell
PublicationPlace_xml – name: Campbell
PublicationTitle SID International Symposium Digest of technical papers
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2009
2006; 7
2007
2018
2017
2009; 3
2023
2022
2000
2021
2022; 127
Chickering David Maxwell (e_1_2_1_9_1)
Lundberg Scott (e_1_2_1_13_1) 2017
Lundberg Scott (e_1_2_1_4_1) 2021
Eulig Elias (e_1_2_1_14_1) 2023
Shimizu S (e_1_2_1_10_1) 2006; 7
e_1_2_1_8_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
Morgan Stephen (e_1_2_1_3_1) 2007
Budhathoki Kailash (e_1_2_1_15_1) 2021
Park Kyong-Tae (e_1_2_1_7_1) 2009
References_xml – volume: 7
  year: 2006
  article-title: "A Linear Non-Gaussian Acyclic Model for Causal Discovery"
  publication-title: Journal of Machine Learning Research
– year: 2023
– year: 2000
– year: 2009
– year: 2007
  article-title: Counterfactuals and Causal inference
  publication-title: Cambridge University Press
– start-page: 1445
  year: 2022
  end-page: 1457
– volume: 3
  start-page: 96
  year: 2009
  end-page: 146
  article-title: Causal inference in statistics: An overview
  publication-title: Statistics Surveys
– year: 2017
– start-page: 197
  year: 2007
– year: 2018
– volume: 127
  start-page: 109
  year: 2022
  end-page: 125
  publication-title: Automated evolutionary approach for the design of composite machine learning pipelines,Future Generation Computer Systems
– year: 2021
– volume-title: SHAP: A Unified Approach to Interpreting Model Predictions
  year: 2017
  ident: e_1_2_1_13_1
– ident: e_1_2_1_6_1
– volume-title: Be Careful When Interpreting Predictive Models in Search of Causal Insights
  year: 2021
  ident: e_1_2_1_4_1
– ident: e_1_2_1_12_1
  doi: 10.1016/j.future.2021.08.022
– volume-title: Toward Falsifying Causal Graphs Using a Permutation-Based Test
  year: 2023
  ident: e_1_2_1_14_1
– ident: e_1_2_1_2_1
  doi: 10.1214/09-SS057
– ident: e_1_2_1_16_1
  doi: 10.1142/6157
– year: 2007
  ident: e_1_2_1_3_1
  article-title: Counterfactuals and Causal inference
  publication-title: Cambridge University Press
– ident: e_1_2_1_11_1
– ident: e_1_2_1_8_1
  doi: 10.7551/mitpress/1754.001.0001
– ident: e_1_2_1_5_1
  doi: 10.1002/sdtp.15791
– volume: 7
  year: 2006
  ident: e_1_2_1_10_1
  article-title: "A Linear Non-Gaussian Acyclic Model for Causal Discovery"
  publication-title: Journal of Machine Learning Research
– volume-title: Optimal Structure Identification With Greedy Search
  ident: e_1_2_1_9_1
– volume-title: Why did the distribution change?
  year: 2021
  ident: e_1_2_1_15_1
– volume-title: Display device and driving method thereof
  year: 2009
  ident: e_1_2_1_7_1
SSID ssj0033449
Score 2.3256962
Snippet When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1383
SubjectTerms Circuit design
Complex systems
Complex variables
Complexity
Driving conditions
Explainable artificial intelligence
Graphical causal model-based inference
Machine learning
Parameter identification
Pixel Circuit design
Pixels
Probabilistic models
Systems analysis
Title P‐6: Redefining Pixel Circuit Analysis: Causal Discovery and Probabilistic Modeling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsdtp.17805
https://www.proquest.com/docview/3085963819
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdgMLxFOEFjQSbKByicfv7qoEVApFlpJI2VmehyFSake1rRJWfAK_wK_xJdx52E5ChAobyx6Nx4nv8X3M3DkXoZd2yjObi9QiNMgs8P-pBWGzbRFhCzvI-ICkMlC8-OSfTd3zmTfr9X6uZS3VFT1m33buK_kfqUIbyFXukv0HybaDQgOcg3zhCBKG441kHLepCr5ObOMiUwUfjuL5V7E4Gs6vWD2vWuYR2WmY1qVSdSWT2ZurZrsAVVS7krVZ1UdbNCbNOK7j96Ot2cPx6lJmfNWXZpFKZRsoRlgp9mW6FN1CUWwysj-sivxzlYrt9uEXUeRcsHbbkCnyPILuZbHVeJ6K66IwP89MWBC3S6xqlHAUSFLQmTZBqo3YvsypM-TgRjFr_t4NAGotazu6-I2x2HAZ7LQGml225NXy2Ja1Gzqb16zzb5nCNkFRkzmTRN6bqHtvoX0SBDITYP90dPFx3Jh7x3FNjGX-VcuBS950T970erpQZj0gUh7N5B66a0IRfKpxdR_1RP4A3VkjqHyIpvGv7z_8E9whCytkYYMs3CDrBGtc4RZXGHCFN3CFG1w9QtN3byfDM8sU4rAYGFLPykLhORmPfOoQRoXrppHHWOQNhCxWQHnquZGbgvJ3WOBxFriEwOARDTh4PiLMnMdoLy9y8QThIKI-44SGg5C5mQ8qBEI8O-TgdtKIZFEfvWpeVMIMS70slrJI_hRJH71o-y41N8vOXofN-07Mt1smjuT18-VsRR-9VjL4ywjJeDSJ1dnTGz3xAN3ucH-I9qqrWjwD17Wizw14fgPdNpvK
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%E2%80%906%3A+Redefining+Pixel+Circuit+Analysis%3A+Causal+Discovery+and+Probabilistic+Modeling&rft.jtitle=SID+International+Symposium+Digest+of+technical+papers&rft.au=Park%2C+Kyongtae&rft.au=Park%2C+Cheondeck&rft.au=Kim%2C+Dongso&rft.au=Kim%2C+Jaewoong&rft.date=2024-06-01&rft.issn=0097-966X&rft.eissn=2168-0159&rft.volume=55&rft.issue=1&rft.spage=1383&rft.epage=1387&rft_id=info:doi/10.1002%2Fsdtp.17805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sdtp_17805
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-966X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-966X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-966X&client=summon