P‐6: Redefining Pixel Circuit Analysis: Causal Discovery and Probabilistic Modeling
When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes a...
Saved in:
Published in | SID International Symposium Digest of technical papers Vol. 55; no. 1; pp. 1383 - 1387 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Campbell
Wiley Subscription Services, Inc
01.06.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0097-966X 2168-0159 |
DOI | 10.1002/sdtp.17805 |
Cover
Abstract | When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes are influenced by sequential effects. This paper presents an advanced methodology for analyzing pixel circuit design and its driving conditions, a domain characterized by complex interactions and multiple variables. Traditional machine learning methods, when applied in isolation, have shown limitations in unraveling the intricate causal relationships inherent in such systems. To address this challenge, we integrated Explainable AI (XAI) techniques, particularly SHAP (SHapley Additive exPlanations) values, into our analysis. In collaboration with domain experts, we constructed a Directed Acyclic Graph (DAG) that effectively reduced the complexity of interconnections and ensured consistency with empirical data. This approach facilitated a more accurate identification of the impact of each parameter and its causal influence. By decomposing the joint distribution of the variables into conditional distributions, taking into account their parental relationships, we gained a deeper understanding of the changes in causal mechanisms. Our methodology significantly enhanced the accuracy of causal analysis under realistic pixel driving conditions. The findings not only offer novel insights into pixel circuitry but also demonstrate the efficacy of combining machine learning with XAI in complex systems analysis, gaining wide acceptability among relevant experts. |
---|---|
AbstractList | When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the misinterpretation of correlations as causal relationships. These limitations are more pronounced in complex scenarios or in situations where outcomes are influenced by sequential effects. This paper presents an advanced methodology for analyzing pixel circuit design and its driving conditions, a domain characterized by complex interactions and multiple variables. Traditional machine learning methods, when applied in isolation, have shown limitations in unraveling the intricate causal relationships inherent in such systems. To address this challenge, we integrated Explainable AI (XAI) techniques, particularly SHAP (SHapley Additive exPlanations) values, into our analysis. In collaboration with domain experts, we constructed a Directed Acyclic Graph (DAG) that effectively reduced the complexity of interconnections and ensured consistency with empirical data. This approach facilitated a more accurate identification of the impact of each parameter and its causal influence. By decomposing the joint distribution of the variables into conditional distributions, taking into account their parental relationships, we gained a deeper understanding of the changes in causal mechanisms. Our methodology significantly enhanced the accuracy of causal analysis under realistic pixel driving conditions. The findings not only offer novel insights into pixel circuitry but also demonstrate the efficacy of combining machine learning with XAI in complex systems analysis, gaining wide acceptability among relevant experts. |
Author | Park, Kyongtae Park, Cheondeck Kim, Dongso Kim, Jaewoong |
Author_xml | – sequence: 1 givenname: Kyongtae surname: Park fullname: Park, Kyongtae email: ktman.park@samsung.com organization: AI TF of Mobile Business Samsung Display Co., Ltd – sequence: 2 givenname: Cheondeck surname: Park fullname: Park, Cheondeck organization: Process Development of Mobile Business Samsung Display Co., Ltd – sequence: 3 givenname: Dongso surname: Kim fullname: Kim, Dongso organization: AI TF of Mobile Business Samsung Display Co., Ltd – sequence: 4 givenname: Jaewoong surname: Kim fullname: Kim, Jaewoong organization: AI TF of Mobile Business Samsung Display Co., Ltd |
BookMark | eNp9kE9LwzAYxoNMcJte_AQBb0Jn0jZNs9vo_AcTh27gLaRJKhm1mUmr9uZH8DP6SeysJxFP7-X3_J6XZwQGla00AMcYTTBC4ZlX9XaCaYrIHhiGOEkDhAkbgCFCjAYsSR4OwMj7DUJRFMdsCNbLz_ePZArvtNKFqUz1CJfmTZcwM042poazSpStN34KM9F4UcK58dK-aNdCUSm4dDYXuSmNr42EN1bpsnMcgv1ClF4f_dwxWF-cr7KrYHF7eZ3NFoHEcUKCItUkKhRL8iiUuY5jwYiUjCCNaMpyJUjMYhESGklKlKRxGHZlLKeK4lSnRTQGJ7136-xzo33NN7Zx3ceeRyglLIlSzDrqtKeks947XfCtM0_CtRwjvpuN72bj37N1MPoFS1OL2tiqdsKUf0dwH3k1pW7_kfP7-WrZZ74A9jqDIg |
CitedBy_id | crossref_primary_10_3390_electronics14020272 |
Cites_doi | 10.1016/j.future.2021.08.022 10.1214/09-SS057 10.1142/6157 10.7551/mitpress/1754.001.0001 10.1002/sdtp.15791 |
ContentType | Journal Article |
Copyright | 2024 The Society for Information Display |
Copyright_xml | – notice: 2024 The Society for Information Display |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
DOI | 10.1002/sdtp.17805 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2168-0159 |
EndPage | 1387 |
ExternalDocumentID | 10_1002_sdtp_17805 SDTP17805 |
Genre | article |
GroupedDBID | .4S 05W 0R~ 1OC 31~ 33P 3SF 50Y 52U 8-1 A00 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABDPE ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADOZA ADXAS AEEZP AEIGN AEIMD AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI DCZOG DPXWK DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HSZ HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- P2W R.K ROL SUPJJ TUS WBKPD WIH WIK WLBEL WOHZO WXSBR WYISQ WYJ ZZTAW AAYXX ADMLS AEYWJ AGHNM AGQPQ AGYGG CITATION 7SC 7SP 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c1465-f8e53fd96b32cbe44a95cc950e0789bda5494a2573c75dc7422bab9b7d718e8f3 |
ISSN | 0097-966X |
IngestDate | Fri Jul 25 11:44:26 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 02:09:09 EDT 2025 Wed Jan 22 17:17:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1465-f8e53fd96b32cbe44a95cc950e0789bda5494a2573c75dc7422bab9b7d718e8f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3085963819 |
PQPubID | 2034401 |
PageCount | 5 |
ParticipantIDs | proquest_journals_3085963819 crossref_primary_10_1002_sdtp_17805 crossref_citationtrail_10_1002_sdtp_17805 wiley_primary_10_1002_sdtp_17805_SDTP17805 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 20240601 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Campbell |
PublicationPlace_xml | – name: Campbell |
PublicationTitle | SID International Symposium Digest of technical papers |
PublicationYear | 2024 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2009 2006; 7 2007 2018 2017 2009; 3 2023 2022 2000 2021 2022; 127 Chickering David Maxwell (e_1_2_1_9_1) Lundberg Scott (e_1_2_1_13_1) 2017 Lundberg Scott (e_1_2_1_4_1) 2021 Eulig Elias (e_1_2_1_14_1) 2023 Shimizu S (e_1_2_1_10_1) 2006; 7 e_1_2_1_8_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 Morgan Stephen (e_1_2_1_3_1) 2007 Budhathoki Kailash (e_1_2_1_15_1) 2021 Park Kyong-Tae (e_1_2_1_7_1) 2009 |
References_xml | – volume: 7 year: 2006 article-title: "A Linear Non-Gaussian Acyclic Model for Causal Discovery" publication-title: Journal of Machine Learning Research – year: 2023 – year: 2000 – year: 2009 – year: 2007 article-title: Counterfactuals and Causal inference publication-title: Cambridge University Press – start-page: 1445 year: 2022 end-page: 1457 – volume: 3 start-page: 96 year: 2009 end-page: 146 article-title: Causal inference in statistics: An overview publication-title: Statistics Surveys – year: 2017 – start-page: 197 year: 2007 – year: 2018 – volume: 127 start-page: 109 year: 2022 end-page: 125 publication-title: Automated evolutionary approach for the design of composite machine learning pipelines,Future Generation Computer Systems – year: 2021 – volume-title: SHAP: A Unified Approach to Interpreting Model Predictions year: 2017 ident: e_1_2_1_13_1 – ident: e_1_2_1_6_1 – volume-title: Be Careful When Interpreting Predictive Models in Search of Causal Insights year: 2021 ident: e_1_2_1_4_1 – ident: e_1_2_1_12_1 doi: 10.1016/j.future.2021.08.022 – volume-title: Toward Falsifying Causal Graphs Using a Permutation-Based Test year: 2023 ident: e_1_2_1_14_1 – ident: e_1_2_1_2_1 doi: 10.1214/09-SS057 – ident: e_1_2_1_16_1 doi: 10.1142/6157 – year: 2007 ident: e_1_2_1_3_1 article-title: Counterfactuals and Causal inference publication-title: Cambridge University Press – ident: e_1_2_1_11_1 – ident: e_1_2_1_8_1 doi: 10.7551/mitpress/1754.001.0001 – ident: e_1_2_1_5_1 doi: 10.1002/sdtp.15791 – volume: 7 year: 2006 ident: e_1_2_1_10_1 article-title: "A Linear Non-Gaussian Acyclic Model for Causal Discovery" publication-title: Journal of Machine Learning Research – volume-title: Optimal Structure Identification With Greedy Search ident: e_1_2_1_9_1 – volume-title: Why did the distribution change? year: 2021 ident: e_1_2_1_15_1 – volume-title: Display device and driving method thereof year: 2009 ident: e_1_2_1_7_1 |
SSID | ssj0033449 |
Score | 2.3256962 |
Snippet | When analyzing data using existing machine learning models without explicit causal information, several limitations often arise, particularly in the... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1383 |
SubjectTerms | Circuit design Complex systems Complex variables Complexity Driving conditions Explainable artificial intelligence Graphical causal model-based inference Machine learning Parameter identification Pixel Circuit design Pixels Probabilistic models Systems analysis |
Title | P‐6: Redefining Pixel Circuit Analysis: Causal Discovery and Probabilistic Modeling |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsdtp.17805 https://www.proquest.com/docview/3085963819 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB2FdgMLxFOEFjQSbKByicfv7qoEVApFlpJI2VmehyFSake1rRJWfAK_wK_xJdx52E5ChAobyx6Nx4nv8X3M3DkXoZd2yjObi9QiNMgs8P-pBWGzbRFhCzvI-ICkMlC8-OSfTd3zmTfr9X6uZS3VFT1m33buK_kfqUIbyFXukv0HybaDQgOcg3zhCBKG441kHLepCr5ObOMiUwUfjuL5V7E4Gs6vWD2vWuYR2WmY1qVSdSWT2ZurZrsAVVS7krVZ1UdbNCbNOK7j96Ot2cPx6lJmfNWXZpFKZRsoRlgp9mW6FN1CUWwysj-sivxzlYrt9uEXUeRcsHbbkCnyPILuZbHVeJ6K66IwP89MWBC3S6xqlHAUSFLQmTZBqo3YvsypM-TgRjFr_t4NAGotazu6-I2x2HAZ7LQGml225NXy2Ja1Gzqb16zzb5nCNkFRkzmTRN6bqHtvoX0SBDITYP90dPFx3Jh7x3FNjGX-VcuBS950T970erpQZj0gUh7N5B66a0IRfKpxdR_1RP4A3VkjqHyIpvGv7z_8E9whCytkYYMs3CDrBGtc4RZXGHCFN3CFG1w9QtN3byfDM8sU4rAYGFLPykLhORmPfOoQRoXrppHHWOQNhCxWQHnquZGbgvJ3WOBxFriEwOARDTh4PiLMnMdoLy9y8QThIKI-44SGg5C5mQ8qBEI8O-TgdtKIZFEfvWpeVMIMS70slrJI_hRJH71o-y41N8vOXofN-07Mt1smjuT18-VsRR-9VjL4ywjJeDSJ1dnTGz3xAN3ucH-I9qqrWjwD17Wizw14fgPdNpvK |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P%E2%80%906%3A+Redefining+Pixel+Circuit+Analysis%3A+Causal+Discovery+and+Probabilistic+Modeling&rft.jtitle=SID+International+Symposium+Digest+of+technical+papers&rft.au=Park%2C+Kyongtae&rft.au=Park%2C+Cheondeck&rft.au=Kim%2C+Dongso&rft.au=Kim%2C+Jaewoong&rft.date=2024-06-01&rft.issn=0097-966X&rft.eissn=2168-0159&rft.volume=55&rft.issue=1&rft.spage=1383&rft.epage=1387&rft_id=info:doi/10.1002%2Fsdtp.17805&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sdtp_17805 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0097-966X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0097-966X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0097-966X&client=summon |