Electrochemical Approaches for CO 2 Conversion to Chemicals: A Journey toward Practical Applications
Carbon capture, utilization, and sequestration play an essential role to address CO emissions. Among all carbon utilization technologies, CO electroreduction has gained immense interest due to its potential for directly converting CO to a variety of valuable commodity chemicals using clean, renewabl...
Saved in:
Published in | Accounts of chemical research Vol. 55; no. 5; pp. 638 - 648 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
01.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Carbon capture, utilization, and sequestration play an essential role to address CO
emissions. Among all carbon utilization technologies, CO
electroreduction has gained immense interest due to its potential for directly converting CO
to a variety of valuable commodity chemicals using clean, renewable electricity as the sole energy source. The research community has witnessed rapid advances in CO
electrolysis technology in recent years, including highly selective catalysts, larger-scale reactors, specific process modeling, as well as a mechanistic understanding of the CO
reduction reaction. The rapid advances in the field brings promise to the commercial application of the technology and the rapid rollout of the CO
electroreduction for chemical manufacturing.This Account focuses on our contributions in both fundamental and applied research in the field of electrocatalytic CO
and CO reduction reactions. We first discuss (1) the development of novel electrocatalysts for CO
/CO electroreduction to enhance the product selectivity and lower the energy consumption. Specifically, we synthesized nanoporous Ag and homogeneously mixed Cu-based bimetallic catalysts for the enhanced production of CO from CO
and multicarbon products from CO, respectively. Then, we review our efforts in (2) the field of reactor engineering, including a dissolved CO
H-type cell, vapor-fed CO
three-compartment flow cell, and vapor-fed CO
membrane electrode assembly, for enhancing reaction rates and scalability. Next, we describe (3) the investigation of reaction mechanisms using in situ and operando techniques, such as surface-enhanced vibrational spectroscopies and electrochemical mass spectroscopy. We revealed the participation of bicarbonate in CO
electroreduction on Au using attenuated total-reflectance surface-enhanced infrared absorption spectroscopy, the presence of an "oxygenated" surface of Cu under CO electroreduction conditions using surface-enhanced Raman spectroscopy, and the origin of oxygen in acetaldehyde and other CO electroreduction products on Cu using flow electrolyzer mass spectrometry. Lastly, we examine (4) the commercial potential of the CO
electrolysis technology, such as understanding pollutant effects in CO
electroreduction and developing techno-economic analysis. Specifically, we discuss the effects of SO
and NO
in CO
electroreduction using Cu, Ag, and Sn catalysts. We also identify technical barriers that need to be overcome and offer our perspective on accelerating the commercial deployment of the CO
electrolysis technology. |
---|---|
AbstractList | Carbon capture, utilization, and sequestration play an essential role to address CO
emissions. Among all carbon utilization technologies, CO
electroreduction has gained immense interest due to its potential for directly converting CO
to a variety of valuable commodity chemicals using clean, renewable electricity as the sole energy source. The research community has witnessed rapid advances in CO
electrolysis technology in recent years, including highly selective catalysts, larger-scale reactors, specific process modeling, as well as a mechanistic understanding of the CO
reduction reaction. The rapid advances in the field brings promise to the commercial application of the technology and the rapid rollout of the CO
electroreduction for chemical manufacturing.This Account focuses on our contributions in both fundamental and applied research in the field of electrocatalytic CO
and CO reduction reactions. We first discuss (1) the development of novel electrocatalysts for CO
/CO electroreduction to enhance the product selectivity and lower the energy consumption. Specifically, we synthesized nanoporous Ag and homogeneously mixed Cu-based bimetallic catalysts for the enhanced production of CO from CO
and multicarbon products from CO, respectively. Then, we review our efforts in (2) the field of reactor engineering, including a dissolved CO
H-type cell, vapor-fed CO
three-compartment flow cell, and vapor-fed CO
membrane electrode assembly, for enhancing reaction rates and scalability. Next, we describe (3) the investigation of reaction mechanisms using in situ and operando techniques, such as surface-enhanced vibrational spectroscopies and electrochemical mass spectroscopy. We revealed the participation of bicarbonate in CO
electroreduction on Au using attenuated total-reflectance surface-enhanced infrared absorption spectroscopy, the presence of an "oxygenated" surface of Cu under CO electroreduction conditions using surface-enhanced Raman spectroscopy, and the origin of oxygen in acetaldehyde and other CO electroreduction products on Cu using flow electrolyzer mass spectrometry. Lastly, we examine (4) the commercial potential of the CO
electrolysis technology, such as understanding pollutant effects in CO
electroreduction and developing techno-economic analysis. Specifically, we discuss the effects of SO
and NO
in CO
electroreduction using Cu, Ag, and Sn catalysts. We also identify technical barriers that need to be overcome and offer our perspective on accelerating the commercial deployment of the CO
electrolysis technology. |
Author | Zhao, Yaran Jiao, Feng Ko, Byung Hee Overa, Sean |
Author_xml | – sequence: 1 givenname: Sean surname: Overa fullname: Overa, Sean organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States – sequence: 2 givenname: Byung Hee surname: Ko fullname: Ko, Byung Hee organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States – sequence: 3 givenname: Yaran surname: Zhao fullname: Zhao, Yaran organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States – sequence: 4 givenname: Feng orcidid: 0000-0002-3335-3203 surname: Jiao fullname: Jiao, Feng organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35041403$$D View this record in MEDLINE/PubMed https://www.osti.gov/biblio/1859358$$D View this record in Osti.gov |
BookMark | eNp9kUtPwzAQhC0Eog_4BwhZ3FPs2Enc3qqovFSpHOBsORtHDUrtyHZB_fcY2lw4cPKu9c1IszNB58YajdANJTNKUnqvwM8UgN2b4GcUCMkLfobGNEtJwsVcnKMxIYTGmacjNPH-I64pz4tLNGIZ4ZQTNkb1qtMQnIWt3rWgOrzse2dVXD1urMPlBqe4tOZTO99ag4PF5Qn1C7zEL3bvjD7E_y_lavzqFITBp4tDiCJ_hS6ayOvr0ztF7w-rt_IpWW8en8vlOgHKc5ZkeZMXUIk5ETSnTa05gOaqYkQXdaUES6siowXnBCoGFbBUx5wiy_S8ZoXO2RTdHX2tD6300AYNW7DGxIiSimzOMhGh2yPU76udrmXv2p1yBzncJAKLIwDOeu90I6PRb5DgVNtJSuRPATIWIIcC5KmAKOZ_xIP_v7JvYtOOoQ |
CitedBy_id | crossref_primary_10_1002_cssc_202401728 crossref_primary_10_1021_acsaem_4c02254 crossref_primary_10_1021_acs_inorgchem_4c01696 crossref_primary_10_1002_anie_202411216 crossref_primary_10_1016_j_checat_2023_100565 crossref_primary_10_1039_D3SE00775H crossref_primary_10_1039_D4EE01301H crossref_primary_10_1002_aoc_7910 crossref_primary_10_1039_D4QI02711F crossref_primary_10_1016_j_enchem_2022_100086 crossref_primary_10_1002_cssc_202401173 crossref_primary_10_1016_j_jscs_2024_101926 crossref_primary_10_1021_acs_jpcc_3c02571 crossref_primary_10_1021_acsenergylett_2c02906 crossref_primary_10_1039_D2TA02709G crossref_primary_10_1016_j_cattod_2024_114887 crossref_primary_10_59717_j_xinn_mater_2024_100058 crossref_primary_10_1002_advs_202416597 crossref_primary_10_1021_acs_jpcc_2c08467 crossref_primary_10_1016_j_ijhydene_2023_04_191 crossref_primary_10_1021_acsami_3c10011 crossref_primary_10_1021_acsnano_2c08436 crossref_primary_10_1002_ange_202502420 crossref_primary_10_1007_s12598_024_03057_1 crossref_primary_10_1016_j_electacta_2024_144603 crossref_primary_10_1039_D2CS00214K crossref_primary_10_1016_j_gee_2024_10_002 crossref_primary_10_1016_j_memsci_2024_122882 crossref_primary_10_1039_D2NR03539A crossref_primary_10_1016_j_jcou_2024_102772 crossref_primary_10_1002_aenm_202300628 crossref_primary_10_1016_j_xcrp_2022_100949 crossref_primary_10_1002_aesr_202400033 crossref_primary_10_1021_acsami_3c09913 crossref_primary_10_1016_j_apsusc_2024_159687 crossref_primary_10_1039_D2CS00443G crossref_primary_10_1016_j_clet_2024_100805 crossref_primary_10_1039_D2NR06190B crossref_primary_10_1021_acs_iecr_3c02876 crossref_primary_10_1007_s12274_023_5577_2 crossref_primary_10_1016_j_seppur_2024_129575 crossref_primary_10_1149_1945_7111_ad9060 crossref_primary_10_1002_ange_202412266 crossref_primary_10_1038_s41467_024_52692_w crossref_primary_10_1016_j_jcis_2025_02_017 crossref_primary_10_1002_ange_202411194 crossref_primary_10_1002_adfm_202422348 crossref_primary_10_1002_smll_202410719 crossref_primary_10_1016_j_enconman_2024_118601 crossref_primary_10_1002_cssc_202202251 crossref_primary_10_1016_j_fuel_2023_127873 crossref_primary_10_1021_acs_chemrev_4c00171 crossref_primary_10_1002_cnma_202400070 crossref_primary_10_1007_s12209_024_00390_5 crossref_primary_10_1021_jacsau_3c00129 crossref_primary_10_1007_s11664_024_11323_2 crossref_primary_10_1016_j_tibtech_2024_08_014 crossref_primary_10_1021_acssuschemeng_3c05228 crossref_primary_10_1002_cssc_202401409 crossref_primary_10_1039_D3TA06369K crossref_primary_10_3389_fctls_2022_915971 crossref_primary_10_1007_s12274_023_5910_9 crossref_primary_10_1016_j_ces_2024_120298 crossref_primary_10_1021_acsnano_4c01456 crossref_primary_10_3390_app15020549 crossref_primary_10_1016_j_apcatb_2023_122589 crossref_primary_10_1021_acs_jpcc_3c08356 crossref_primary_10_1016_j_jcou_2025_103019 crossref_primary_10_1021_acsaem_2c01575 crossref_primary_10_1002_nadc_20234138977 crossref_primary_10_1016_j_chemphys_2024_112597 crossref_primary_10_1016_j_rser_2024_114516 crossref_primary_10_1002_adma_202313197 crossref_primary_10_1016_S1872_2067_23_64636_4 crossref_primary_10_1002_cssc_202401082 crossref_primary_10_3390_molecules29153579 crossref_primary_10_1016_j_compchemeng_2023_108408 crossref_primary_10_1016_j_mtener_2024_101634 crossref_primary_10_1016_j_ijggc_2024_104278 crossref_primary_10_1038_s41467_023_37520_x crossref_primary_10_1039_D4QI02713B crossref_primary_10_1002_adfm_202422898 crossref_primary_10_1007_s10853_023_09012_2 crossref_primary_10_1016_j_jcis_2023_12_177 crossref_primary_10_1093_femsre_fuad013 crossref_primary_10_1002_adma_202206002 crossref_primary_10_1016_j_apsusc_2024_161369 crossref_primary_10_1016_j_jallcom_2023_170903 crossref_primary_10_1021_acscatal_4c01290 crossref_primary_10_1016_j_jcis_2024_12_011 crossref_primary_10_1021_acsami_3c08187 crossref_primary_10_1021_acscatal_4c06065 crossref_primary_10_1002_cctc_202401604 crossref_primary_10_1002_smll_202404085 crossref_primary_10_1039_D3CC06336D crossref_primary_10_1016_j_egyai_2024_100361 crossref_primary_10_1002_adma_202303052 crossref_primary_10_1016_j_ceramint_2024_05_233 crossref_primary_10_1021_acscatal_3c00311 crossref_primary_10_1038_s41467_024_54957_w crossref_primary_10_1016_j_jece_2024_114048 crossref_primary_10_1021_acscatal_3c03027 crossref_primary_10_1016_j_coelec_2023_101219 crossref_primary_10_1016_j_matt_2024_06_040 crossref_primary_10_1039_D2CC05753K crossref_primary_10_2139_ssrn_4157592 crossref_primary_10_1016_j_mtener_2024_101652 crossref_primary_10_1039_D3GC04881K crossref_primary_10_1021_accountsmr_2c00216 crossref_primary_10_1002_adma_202312566 crossref_primary_10_1021_acs_energyfuels_3c02152 crossref_primary_10_1021_acs_energyfuels_4c06185 crossref_primary_10_1021_acsenergylett_4c03242 crossref_primary_10_1016_j_joule_2022_12_008 crossref_primary_10_1039_D2CY00220E crossref_primary_10_1021_acscatal_4c00217 crossref_primary_10_1002_anie_202412266 crossref_primary_10_1039_D4CY00639A crossref_primary_10_1016_j_cej_2024_149989 crossref_primary_10_1039_D2GC04659H crossref_primary_10_1007_s13762_024_05908_x crossref_primary_10_20517_energymater_2024_215 crossref_primary_10_1016_j_cej_2024_157133 crossref_primary_10_1016_j_trechm_2022_10_006 crossref_primary_10_1039_D4EY00005F crossref_primary_10_1021_acscatal_3c06112 crossref_primary_10_1016_j_xcrp_2022_101072 crossref_primary_10_1021_acsami_4c06804 crossref_primary_10_1002_smll_202205730 crossref_primary_10_1021_accountsmr_3c00224 crossref_primary_10_1039_D2CS00843B crossref_primary_10_3390_catal14050328 crossref_primary_10_1002_ange_202408756 crossref_primary_10_1039_D4SE00484A crossref_primary_10_5796_electrochemistry_24_00052 crossref_primary_10_1002_anie_202411194 crossref_primary_10_1002_ece2_23 crossref_primary_10_1016_j_checat_2023_100506 crossref_primary_10_1021_acsami_2c23095 crossref_primary_10_1021_acsaem_4c00013 crossref_primary_10_1016_j_apmate_2024_100178 crossref_primary_10_1016_j_jechem_2024_12_022 crossref_primary_10_1021_acscatal_2c05144 crossref_primary_10_1016_j_chempr_2022_09_005 crossref_primary_10_1021_jacs_3c00506 crossref_primary_10_1039_D3IM00011G crossref_primary_10_1016_j_ijhydene_2025_01_245 crossref_primary_10_1002_adfm_202306994 crossref_primary_10_1016_j_apcata_2023_119388 crossref_primary_10_1021_acs_nanolett_3c02279 crossref_primary_10_1063_5_0147195 crossref_primary_10_1002_ange_202411216 crossref_primary_10_26599_NR_2025_94906998 crossref_primary_10_1039_D3EY00227F crossref_primary_10_1016_j_ijhydene_2025_01_488 crossref_primary_10_1002_adfm_202203794 crossref_primary_10_1021_jacs_4c10629 crossref_primary_10_1039_D2EY00081D crossref_primary_10_1016_j_matre_2023_100199 crossref_primary_10_3390_ijms24129952 crossref_primary_10_1021_acssuschemeng_3c05194 crossref_primary_10_1039_D4TA07268E crossref_primary_10_1002_asia_202300955 crossref_primary_10_1007_s40242_024_4022_8 crossref_primary_10_1016_j_surfin_2025_105990 crossref_primary_10_1007_s10008_025_06266_5 crossref_primary_10_1039_D4MA00750F crossref_primary_10_1039_D4SE00244J crossref_primary_10_1038_s41893_022_01034_z crossref_primary_10_1002_anie_202502420 crossref_primary_10_1021_acscatal_2c03348 crossref_primary_10_1021_acsenergylett_2c01454 crossref_primary_10_1021_acs_inorgchem_3c00470 crossref_primary_10_1038_s44286_024_00076_8 crossref_primary_10_1021_acs_iecr_4c03279 crossref_primary_10_1039_D3EE02767H crossref_primary_10_2174_1385272827666230714145953 crossref_primary_10_1002_anie_202408756 crossref_primary_10_1021_acs_energyfuels_4c04058 crossref_primary_10_1039_D3QI01769A crossref_primary_10_1016_j_scib_2023_05_009 crossref_primary_10_1002_smtd_202201013 crossref_primary_10_1002_adma_202415799 crossref_primary_10_1016_j_electacta_2023_143291 crossref_primary_10_1016_j_matre_2023_100177 crossref_primary_10_1021_acsenergylett_4c01488 crossref_primary_10_1016_j_jcou_2024_102690 crossref_primary_10_1002_cssc_202400150 crossref_primary_10_1016_j_isci_2024_109060 crossref_primary_10_1016_j_joule_2023_05_002 crossref_primary_10_1016_j_nanoen_2024_110134 crossref_primary_10_1016_j_fuel_2025_134576 crossref_primary_10_1021_acs_accounts_4c00418 crossref_primary_10_1002_advs_202402964 crossref_primary_10_1021_acs_inorgchem_4c00461 crossref_primary_10_1016_j_apcatb_2023_123017 crossref_primary_10_1016_j_erss_2025_103942 crossref_primary_10_1016_j_seppur_2024_127197 crossref_primary_10_1002_pol_20240528 crossref_primary_10_3390_polym16040541 crossref_primary_10_1016_j_apcatb_2023_123250 crossref_primary_10_1002_anie_202306822 crossref_primary_10_1002_smll_202308522 crossref_primary_10_1016_j_joule_2022_08_012 crossref_primary_10_1039_D4CS00480A crossref_primary_10_1016_j_chemosphere_2024_143312 crossref_primary_10_3390_molecules29184348 crossref_primary_10_1021_acscatal_4c01579 crossref_primary_10_1002_smll_202303185 crossref_primary_10_1016_j_cej_2024_151698 crossref_primary_10_1016_j_eti_2024_103645 crossref_primary_10_1016_j_jece_2023_110467 crossref_primary_10_1021_acsaem_3c01605 crossref_primary_10_1002_aenm_202302382 crossref_primary_10_1021_acs_energyfuels_3c01581 crossref_primary_10_1039_D3TA01912H crossref_primary_10_1002_ange_202306822 crossref_primary_10_1016_j_scib_2025_01_033 |
Cites_doi | 10.1038/ncomms4242 10.1016/j.supflu.2017.07.029 10.1021/acs.jpclett.5b01559 10.1021/jacs.9b03215 10.1021/acs.iecr.7b03514 10.1021/acs.jpcc.6b07128 10.1002/smll.202006590 10.1038/s41929-020-0450-0 10.1038/s41929-018-0133-2 10.1149/1.3456590 10.1038/ncomms12123 10.1016/j.joule.2020.12.004 10.1016/j.jcou.2020.101349 10.1021/acs.chemrev.8b00705 10.2172/1019211 10.1039/C9EE01204D 10.1126/science.abg6582 10.1126/science.aay4217 10.1038/s41929-019-0383-7 10.1021/acsenergylett.0c02633 10.1021/acs.chemrev.6b00211 10.1021/jacs.8b04058 10.1038/ncomms15438 10.1038/s41929-017-0005-1 10.1021/acsenergylett.7b01017 10.1021/acscatal.5b00922 10.1021/acssuschemeng.8b04969 10.1021/acsenergylett.1c01122 10.1016/j.matt.2021.04.014 10.1016/j.joule.2019.05.021 10.1021/acs.jpcc.0c05964 10.1016/j.jpowsour.2010.07.072 10.1016/j.joule.2017.09.003 10.1021/acsenergylett.9b01142 10.1038/s41467-019-10819-4 10.1038/s41893-021-00739-x 10.1002/anie.201805871 10.1149/2.0501815jes 10.1038/nature13249 10.1039/c2cs35296f 10.1038/s41929-019-0269-8 10.1021/jacs.6b13287 10.1021/acsenergylett.7b01096 10.1021/jp310509z 10.1126/science.aas9100 10.1002/anie.202013713 10.1016/0013-4686(94)85172-7 10.1149/07801.2879ecst 10.1021/acs.jpcc.7b03910 10.1002/anie.201602888 10.1038/s41467-020-19731-8 10.1016/j.ijhydene.2012.07.076 10.1021/acs.jpclett.6b02273 10.1038/s41557-019-0312-z 10.1016/j.jcou.2019.10.016 10.1002/adma.201803111 10.1038/s41467-018-03712-z 10.1126/sciadv.aaz6844 10.1016/j.apenergy.2019.03.145 10.1021/acscatal.5b00462 10.1002/adma.201003695 10.1002/cctc.201402669 10.1016/j.jpowsour.2006.09.088 10.1038/s41467-020-20397-5 10.1021/jacs.0c02354 10.1016/j.jechem.2017.04.004 10.1039/D0RE00261E 10.1016/j.isci.2021.102813 10.1016/j.jclepro.2019.03.086 10.1038/s41586-020-2242-8 10.1039/D0CS00230E 10.1016/j.joule.2021.01.007 10.1021/acs.jpcc.8b09598 10.1016/j.memsci.2018.03.051 10.1038/s41557-020-00602-0 10.1016/j.jpowsour.2018.02.025 10.1016/j.jcou.2017.04.011 10.1016/j.isci.2020.101776 10.1038/s41467-020-19135-8 10.1016/j.joule.2018.10.007 10.1002/cssc.201903427 10.1021/acscatal.8b01552 10.1021/acscatal.6b02382 10.1016/j.electacta.2018.04.072 10.1126/sciadv.abd2569 10.1002/anie.202104114 10.1016/j.nantod.2016.05.007 10.1038/s41929-019-0388-2 10.1021/acsenergylett.6b00557 10.1021/acsenergylett.1c02263 10.1039/D0EE01690J |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM OTOTI |
DOI | 10.1021/acs.accounts.1c00674 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed OSTI.GOV |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1520-4898 |
EndPage | 648 |
ExternalDocumentID | 1859358 35041403 10_1021_acs_accounts_1c00674 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Review |
GroupedDBID | --- -DZ -~X 23M 4.4 53G 55A 5GY 5VS 5ZA 6J9 6P2 7~N 85S AABXI AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFO ACGFS ACJ ACNCT ACS ADHLV AEESW AENEX AFEFF AFXLT AGXLV AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ BAANH CITATION CS3 CUPRZ D0L EBS ED~ F5P GGK GNL IH2 IH9 JG~ LG6 P2P RNS ROL TWZ UI2 UPT VF5 VG9 W1F WH7 XSW YZZ ZCA ~02 CGR CUY CVF ECM EIF NPM ABFRP ABPTK OTOTI |
ID | FETCH-LOGICAL-c1463-56f67cb8908161fde4cce4ab30e7dba832b7517440cb3cbc32e898855e9d37e63 |
IEDL.DBID | ACS |
ISSN | 0001-4842 |
IngestDate | Fri May 19 00:39:40 EDT 2023 Mon Jul 21 05:33:58 EDT 2025 Tue Jul 01 03:16:07 EDT 2025 Thu Apr 24 23:01:55 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1463-56f67cb8908161fde4cce4ab30e7dba832b7517440cb3cbc32e898855e9d37e63 |
Notes | USDOE Office of Fossil Energy (FE) FE0031910 |
ORCID | 0000-0002-3335-3203 0000000233353203 |
PMID | 35041403 |
PageCount | 11 |
ParticipantIDs | osti_scitechconnect_1859358 pubmed_primary_35041403 crossref_citationtrail_10_1021_acs_accounts_1c00674 crossref_primary_10_1021_acs_accounts_1c00674 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Accounts of chemical research |
PublicationTitleAlternate | Acc Chem Res |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 ref3/cit3 ref27/cit27 ref81/cit81 ref63/cit63 ref56/cit56 ref16/cit16 ref92/cit92 ref52/cit52 ref23/cit23 ref8/cit8 ref31/cit31 ref59/cit59 ref85/cit85 ref2/cit2 ref77/cit77 ref34/cit34 ref71/cit71 ref37/cit37 ref20/cit20 ref48/cit48 ref60/cit60 ref74/cit74 ref88/cit88 ref17/cit17 ref82/cit82 ref10/cit10 ref35/cit35 ref89/cit89 ref53/cit53 ref19/cit19 ref93/cit93 ref21/cit21 Mittal C. (ref67/cit67) 2017; 52 ref42/cit42 ref46/cit46 ref49/cit49 ref13/cit13 ref61/cit61 ref75/cit75 ref24/cit24 ref38/cit38 IPCC (ref5/cit5) ref90/cit90 ref50/cit50 ref64/cit64 ref78/cit78 ref54/cit54 ref6/cit6 ref36/cit36 ref18/cit18 ref83/cit83 ref65/cit65 ref79/cit79 ref11/cit11 ref25/cit25 ref29/cit29 ref72/cit72 Last G. V. (ref84/cit84) 2011 ref76/cit76 ref86/cit86 ref32/cit32 ref39/cit39 ref14/cit14 ref57/cit57 ref51/cit51 ref43/cit43 ref80/cit80 ref28/cit28 ref40/cit40 ref68/cit68 ref91/cit91 ref26/cit26 ref55/cit55 ref73/cit73 ref69/cit69 ref12/cit12 ref15/cit15 ref62/cit62 ref66/cit66 ref41/cit41 ref58/cit58 ref22/cit22 ref33/cit33 ref87/cit87 ref4/cit4 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref70/cit70 ref7/cit7 |
References_xml | – ident: ref33/cit33 doi: 10.1038/ncomms4242 – ident: ref83/cit83 doi: 10.1016/j.supflu.2017.07.029 – ident: ref30/cit30 doi: 10.1021/acs.jpclett.5b01559 – ident: ref2/cit2 doi: 10.1021/jacs.9b03215 – ident: ref7/cit7 doi: 10.1021/acs.iecr.7b03514 – ident: ref79/cit79 doi: 10.1021/acs.jpcc.6b07128 – ident: ref14/cit14 doi: 10.1002/smll.202006590 – ident: ref19/cit19 doi: 10.1038/s41929-020-0450-0 – ident: ref1/cit1 doi: 10.1038/s41929-018-0133-2 – ident: ref49/cit49 doi: 10.1149/1.3456590 – ident: ref31/cit31 doi: 10.1038/ncomms12123 – ident: ref6/cit6 doi: 10.1016/j.joule.2020.12.004 – ident: ref21/cit21 doi: 10.1016/j.jcou.2020.101349 – ident: ref36/cit36 doi: 10.1021/acs.chemrev.8b00705 – volume-title: Identification and Selection of Major Carbon Dioxide Stream Compositions year: 2011 ident: ref84/cit84 doi: 10.2172/1019211 – ident: ref57/cit57 doi: 10.1039/C9EE01204D – ident: ref12/cit12 doi: 10.1126/science.abg6582 – ident: ref20/cit20 doi: 10.1126/science.aay4217 – ident: ref25/cit25 doi: 10.1038/s41929-019-0383-7 – ident: ref88/cit88 doi: 10.1021/acsenergylett.0c02633 – ident: ref47/cit47 doi: 10.1021/acs.chemrev.6b00211 – ident: ref82/cit82 doi: 10.1021/jacs.8b04058 – ident: ref44/cit44 doi: 10.1038/ncomms15438 – ident: ref91/cit91 doi: 10.1038/s41929-017-0005-1 – ident: ref63/cit63 doi: 10.1021/acsenergylett.7b01017 – ident: ref34/cit34 doi: 10.1021/acscatal.5b00922 – ident: ref89/cit89 doi: 10.1021/acssuschemeng.8b04969 – ident: ref66/cit66 doi: 10.1021/acsenergylett.1c01122 – ident: ref48/cit48 doi: 10.1016/j.matt.2021.04.014 – ident: ref75/cit75 doi: 10.1016/j.joule.2019.05.021 – ident: ref35/cit35 doi: 10.1021/acs.jpcc.0c05964 – ident: ref59/cit59 doi: 10.1016/j.jpowsour.2010.07.072 – ident: ref24/cit24 doi: 10.1016/j.joule.2017.09.003 – ident: ref37/cit37 doi: 10.1021/acsenergylett.9b01142 – ident: ref16/cit16 doi: 10.1038/s41467-019-10819-4 – ident: ref4/cit4 doi: 10.1038/s41893-021-00739-x – ident: ref17/cit17 doi: 10.1002/anie.201805871 – ident: ref23/cit23 doi: 10.1149/2.0501815jes – ident: ref50/cit50 doi: 10.1038/nature13249 – ident: ref45/cit45 doi: 10.1039/c2cs35296f – ident: ref52/cit52 doi: 10.1038/s41929-019-0269-8 – ident: ref74/cit74 doi: 10.1021/jacs.6b13287 – ident: ref11/cit11 doi: 10.1021/acsenergylett.7b01096 – ident: ref40/cit40 doi: 10.1021/jp310509z – ident: ref26/cit26 doi: 10.1126/science.aas9100 – ident: ref51/cit51 doi: 10.1002/anie.202013713 – ident: ref39/cit39 doi: 10.1016/0013-4686(94)85172-7 – ident: ref69/cit69 doi: 10.1149/07801.2879ecst – ident: ref70/cit70 doi: 10.1021/acs.jpcc.7b03910 – ident: ref18/cit18 doi: 10.1002/anie.201602888 – ident: ref53/cit53 doi: 10.1038/s41467-020-19731-8 – ident: ref61/cit61 doi: 10.1016/j.ijhydene.2012.07.076 – ident: ref80/cit80 doi: 10.1021/acs.jpclett.6b02273 – ident: ref93/cit93 doi: 10.1038/s41557-019-0312-z – ident: ref90/cit90 doi: 10.1016/j.jcou.2019.10.016 – ident: ref10/cit10 doi: 10.1002/adma.201803111 – ident: ref15/cit15 doi: 10.1038/s41467-018-03712-z – ident: ref42/cit42 doi: 10.1126/sciadv.aaz6844 – volume: 52 start-page: 44 year: 2017 ident: ref67/cit67 publication-title: Chem. Eng. World – ident: ref92/cit92 doi: 10.1016/j.apenergy.2019.03.145 – ident: ref41/cit41 doi: 10.1021/acscatal.5b00462 – ident: ref46/cit46 doi: 10.1002/adma.201003695 – ident: ref29/cit29 doi: 10.1002/cctc.201402669 – ident: ref60/cit60 doi: 10.1016/j.jpowsour.2006.09.088 – ident: ref55/cit55 doi: 10.1038/s41467-020-20397-5 – ident: ref3/cit3 doi: 10.1021/jacs.0c02354 – ident: ref68/cit68 doi: 10.1016/j.jechem.2017.04.004 – ident: ref38/cit38 doi: 10.1039/D0RE00261E – ident: ref87/cit87 doi: 10.1016/j.isci.2021.102813 – ident: ref85/cit85 doi: 10.1016/j.jclepro.2019.03.086 – volume-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change ident: ref5/cit5 – ident: ref43/cit43 doi: 10.1038/s41586-020-2242-8 – ident: ref56/cit56 doi: 10.1039/D0CS00230E – ident: ref28/cit28 doi: 10.1016/j.joule.2021.01.007 – ident: ref78/cit78 doi: 10.1021/acs.jpcc.8b09598 – ident: ref9/cit9 doi: 10.1016/j.memsci.2018.03.051 – ident: ref65/cit65 doi: 10.1038/s41557-020-00602-0 – ident: ref8/cit8 doi: 10.1016/j.jpowsour.2018.02.025 – ident: ref27/cit27 doi: 10.1016/j.jcou.2017.04.011 – ident: ref73/cit73 doi: 10.1016/j.isci.2020.101776 – ident: ref62/cit62 doi: 10.1038/s41467-020-19135-8 – ident: ref58/cit58 doi: 10.1016/j.joule.2018.10.007 – ident: ref13/cit13 doi: 10.1002/cssc.201903427 – ident: ref71/cit71 doi: 10.1021/acscatal.8b01552 – ident: ref76/cit76 doi: 10.1021/acscatal.6b02382 – ident: ref22/cit22 doi: 10.1016/j.electacta.2018.04.072 – ident: ref72/cit72 doi: 10.1126/sciadv.abd2569 – ident: ref81/cit81 doi: 10.1002/anie.202104114 – ident: ref32/cit32 doi: 10.1016/j.nantod.2016.05.007 – ident: ref54/cit54 doi: 10.1038/s41929-019-0388-2 – ident: ref64/cit64 doi: 10.1021/acsenergylett.6b00557 – ident: ref86/cit86 doi: 10.1021/acsenergylett.1c02263 – ident: ref77/cit77 doi: 10.1039/D0EE01690J |
SSID | ssj0002467 |
Score | 2.3839698 |
SecondaryResourceType | review_article |
Snippet | Carbon capture, utilization, and sequestration play an essential role to address CO
emissions. Among all carbon utilization technologies, CO
electroreduction... |
SourceID | osti pubmed crossref |
SourceType | Open Access Repository Index Database Enrichment Source |
StartPage | 638 |
SubjectTerms | Carbon Dioxide - chemistry Catalysis Electrochemical Techniques - methods Electrodes Oxidation-Reduction |
Title | Electrochemical Approaches for CO 2 Conversion to Chemicals: A Journey toward Practical Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35041403 https://www.osti.gov/biblio/1859358 |
Volume | 55 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAt1AUW3o9SQB5YU-JX4rBFUSuEBB2gUrcofmQBtYimA_x6fHESRBEC1ig5Rz77fLbvvkPoMraCcq2Um9_GBFwwFUgrVGCcb0_KkhREwTnk3X10M-W3MzH73Ciu3-BTclXopRNdV06AMCEwrzX-M-aAyk-zh87wUh55RKbbIXPJaZsp94OQLytRb-Fm1JprWS8x4x00aRN1fGTJ03BVqaF-_85t_OPf76LtxtvEqR8ee2jDzvfRZtYWeTtAZuTL4OiGG4DThjFul9i5szibYIoziEyvj9VwtcAtYmB5jVPsWUhv7jlE32JPP2rkdMeBh2g6Hj1mN0FTeCHQznCyQERlFGslE6jKQUpjudaWF4qFNjaqcEZAxUC45qFWTCvNqJWJlELYxLDYRuwI9eaLuT1BmHOTiLAsLAONMKsKagkxslQ6lkqHfcRaJeS6oZJDcYznvL4dpyR3PZi3PZg3PdhHQffVi6dy_PL-APSbO68C0LgaYoh0lROAvQnZR8de7Z0sJkIOIMPTf7YzQFsU0iPqGLUz1KteV_bcOS2VuqiH6gcNxOsW |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Approaches+for+CO+2+Conversion+to+Chemicals%3A+A+Journey+toward+Practical+Applications&rft.jtitle=Accounts+of+chemical+research&rft.au=Overa%2C+Sean&rft.au=Ko%2C+Byung+Hee&rft.au=Zhao%2C+Yaran&rft.au=Jiao%2C+Feng&rft.date=2022-03-01&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=55&rft.issue=5&rft_id=info:doi/10.1021%2Facs.accounts.1c00674&rft.externalDocID=1859358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon |