Electrochemical Approaches for CO 2 Conversion to Chemicals: A Journey toward Practical Applications

Carbon capture, utilization, and sequestration play an essential role to address CO emissions. Among all carbon utilization technologies, CO electroreduction has gained immense interest due to its potential for directly converting CO to a variety of valuable commodity chemicals using clean, renewabl...

Full description

Saved in:
Bibliographic Details
Published inAccounts of chemical research Vol. 55; no. 5; pp. 638 - 648
Main Authors Overa, Sean, Ko, Byung Hee, Zhao, Yaran, Jiao, Feng
Format Journal Article
LanguageEnglish
Published United States American Chemical Society 01.03.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Carbon capture, utilization, and sequestration play an essential role to address CO emissions. Among all carbon utilization technologies, CO electroreduction has gained immense interest due to its potential for directly converting CO to a variety of valuable commodity chemicals using clean, renewable electricity as the sole energy source. The research community has witnessed rapid advances in CO electrolysis technology in recent years, including highly selective catalysts, larger-scale reactors, specific process modeling, as well as a mechanistic understanding of the CO reduction reaction. The rapid advances in the field brings promise to the commercial application of the technology and the rapid rollout of the CO electroreduction for chemical manufacturing.This Account focuses on our contributions in both fundamental and applied research in the field of electrocatalytic CO and CO reduction reactions. We first discuss (1) the development of novel electrocatalysts for CO /CO electroreduction to enhance the product selectivity and lower the energy consumption. Specifically, we synthesized nanoporous Ag and homogeneously mixed Cu-based bimetallic catalysts for the enhanced production of CO from CO and multicarbon products from CO, respectively. Then, we review our efforts in (2) the field of reactor engineering, including a dissolved CO H-type cell, vapor-fed CO three-compartment flow cell, and vapor-fed CO membrane electrode assembly, for enhancing reaction rates and scalability. Next, we describe (3) the investigation of reaction mechanisms using in situ and operando techniques, such as surface-enhanced vibrational spectroscopies and electrochemical mass spectroscopy. We revealed the participation of bicarbonate in CO electroreduction on Au using attenuated total-reflectance surface-enhanced infrared absorption spectroscopy, the presence of an "oxygenated" surface of Cu under CO electroreduction conditions using surface-enhanced Raman spectroscopy, and the origin of oxygen in acetaldehyde and other CO electroreduction products on Cu using flow electrolyzer mass spectrometry. Lastly, we examine (4) the commercial potential of the CO electrolysis technology, such as understanding pollutant effects in CO electroreduction and developing techno-economic analysis. Specifically, we discuss the effects of SO and NO in CO electroreduction using Cu, Ag, and Sn catalysts. We also identify technical barriers that need to be overcome and offer our perspective on accelerating the commercial deployment of the CO electrolysis technology.
AbstractList Carbon capture, utilization, and sequestration play an essential role to address CO emissions. Among all carbon utilization technologies, CO electroreduction has gained immense interest due to its potential for directly converting CO to a variety of valuable commodity chemicals using clean, renewable electricity as the sole energy source. The research community has witnessed rapid advances in CO electrolysis technology in recent years, including highly selective catalysts, larger-scale reactors, specific process modeling, as well as a mechanistic understanding of the CO reduction reaction. The rapid advances in the field brings promise to the commercial application of the technology and the rapid rollout of the CO electroreduction for chemical manufacturing.This Account focuses on our contributions in both fundamental and applied research in the field of electrocatalytic CO and CO reduction reactions. We first discuss (1) the development of novel electrocatalysts for CO /CO electroreduction to enhance the product selectivity and lower the energy consumption. Specifically, we synthesized nanoporous Ag and homogeneously mixed Cu-based bimetallic catalysts for the enhanced production of CO from CO and multicarbon products from CO, respectively. Then, we review our efforts in (2) the field of reactor engineering, including a dissolved CO H-type cell, vapor-fed CO three-compartment flow cell, and vapor-fed CO membrane electrode assembly, for enhancing reaction rates and scalability. Next, we describe (3) the investigation of reaction mechanisms using in situ and operando techniques, such as surface-enhanced vibrational spectroscopies and electrochemical mass spectroscopy. We revealed the participation of bicarbonate in CO electroreduction on Au using attenuated total-reflectance surface-enhanced infrared absorption spectroscopy, the presence of an "oxygenated" surface of Cu under CO electroreduction conditions using surface-enhanced Raman spectroscopy, and the origin of oxygen in acetaldehyde and other CO electroreduction products on Cu using flow electrolyzer mass spectrometry. Lastly, we examine (4) the commercial potential of the CO electrolysis technology, such as understanding pollutant effects in CO electroreduction and developing techno-economic analysis. Specifically, we discuss the effects of SO and NO in CO electroreduction using Cu, Ag, and Sn catalysts. We also identify technical barriers that need to be overcome and offer our perspective on accelerating the commercial deployment of the CO electrolysis technology.
Author Zhao, Yaran
Jiao, Feng
Ko, Byung Hee
Overa, Sean
Author_xml – sequence: 1
  givenname: Sean
  surname: Overa
  fullname: Overa, Sean
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
– sequence: 2
  givenname: Byung Hee
  surname: Ko
  fullname: Ko, Byung Hee
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
– sequence: 3
  givenname: Yaran
  surname: Zhao
  fullname: Zhao, Yaran
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
– sequence: 4
  givenname: Feng
  orcidid: 0000-0002-3335-3203
  surname: Jiao
  fullname: Jiao, Feng
  organization: Center for Catalytic Science and Technology, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35041403$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1859358$$D View this record in Osti.gov
BookMark eNp9kUtPwzAQhC0Eog_4BwhZ3FPs2Enc3qqovFSpHOBsORtHDUrtyHZB_fcY2lw4cPKu9c1IszNB58YajdANJTNKUnqvwM8UgN2b4GcUCMkLfobGNEtJwsVcnKMxIYTGmacjNPH-I64pz4tLNGIZ4ZQTNkb1qtMQnIWt3rWgOrzse2dVXD1urMPlBqe4tOZTO99ag4PF5Qn1C7zEL3bvjD7E_y_lavzqFITBp4tDiCJ_hS6ayOvr0ztF7w-rt_IpWW8en8vlOgHKc5ZkeZMXUIk5ETSnTa05gOaqYkQXdaUES6siowXnBCoGFbBUx5wiy_S8ZoXO2RTdHX2tD6300AYNW7DGxIiSimzOMhGh2yPU76udrmXv2p1yBzncJAKLIwDOeu90I6PRb5DgVNtJSuRPATIWIIcC5KmAKOZ_xIP_v7JvYtOOoQ
CitedBy_id crossref_primary_10_1002_cssc_202401728
crossref_primary_10_1021_acsaem_4c02254
crossref_primary_10_1021_acs_inorgchem_4c01696
crossref_primary_10_1002_anie_202411216
crossref_primary_10_1016_j_checat_2023_100565
crossref_primary_10_1039_D3SE00775H
crossref_primary_10_1039_D4EE01301H
crossref_primary_10_1002_aoc_7910
crossref_primary_10_1039_D4QI02711F
crossref_primary_10_1016_j_enchem_2022_100086
crossref_primary_10_1002_cssc_202401173
crossref_primary_10_1016_j_jscs_2024_101926
crossref_primary_10_1021_acs_jpcc_3c02571
crossref_primary_10_1021_acsenergylett_2c02906
crossref_primary_10_1039_D2TA02709G
crossref_primary_10_1016_j_cattod_2024_114887
crossref_primary_10_59717_j_xinn_mater_2024_100058
crossref_primary_10_1002_advs_202416597
crossref_primary_10_1021_acs_jpcc_2c08467
crossref_primary_10_1016_j_ijhydene_2023_04_191
crossref_primary_10_1021_acsami_3c10011
crossref_primary_10_1021_acsnano_2c08436
crossref_primary_10_1002_ange_202502420
crossref_primary_10_1007_s12598_024_03057_1
crossref_primary_10_1016_j_electacta_2024_144603
crossref_primary_10_1039_D2CS00214K
crossref_primary_10_1016_j_gee_2024_10_002
crossref_primary_10_1016_j_memsci_2024_122882
crossref_primary_10_1039_D2NR03539A
crossref_primary_10_1016_j_jcou_2024_102772
crossref_primary_10_1002_aenm_202300628
crossref_primary_10_1016_j_xcrp_2022_100949
crossref_primary_10_1002_aesr_202400033
crossref_primary_10_1021_acsami_3c09913
crossref_primary_10_1016_j_apsusc_2024_159687
crossref_primary_10_1039_D2CS00443G
crossref_primary_10_1016_j_clet_2024_100805
crossref_primary_10_1039_D2NR06190B
crossref_primary_10_1021_acs_iecr_3c02876
crossref_primary_10_1007_s12274_023_5577_2
crossref_primary_10_1016_j_seppur_2024_129575
crossref_primary_10_1149_1945_7111_ad9060
crossref_primary_10_1002_ange_202412266
crossref_primary_10_1038_s41467_024_52692_w
crossref_primary_10_1016_j_jcis_2025_02_017
crossref_primary_10_1002_ange_202411194
crossref_primary_10_1002_adfm_202422348
crossref_primary_10_1002_smll_202410719
crossref_primary_10_1016_j_enconman_2024_118601
crossref_primary_10_1002_cssc_202202251
crossref_primary_10_1016_j_fuel_2023_127873
crossref_primary_10_1021_acs_chemrev_4c00171
crossref_primary_10_1002_cnma_202400070
crossref_primary_10_1007_s12209_024_00390_5
crossref_primary_10_1021_jacsau_3c00129
crossref_primary_10_1007_s11664_024_11323_2
crossref_primary_10_1016_j_tibtech_2024_08_014
crossref_primary_10_1021_acssuschemeng_3c05228
crossref_primary_10_1002_cssc_202401409
crossref_primary_10_1039_D3TA06369K
crossref_primary_10_3389_fctls_2022_915971
crossref_primary_10_1007_s12274_023_5910_9
crossref_primary_10_1016_j_ces_2024_120298
crossref_primary_10_1021_acsnano_4c01456
crossref_primary_10_3390_app15020549
crossref_primary_10_1016_j_apcatb_2023_122589
crossref_primary_10_1021_acs_jpcc_3c08356
crossref_primary_10_1016_j_jcou_2025_103019
crossref_primary_10_1021_acsaem_2c01575
crossref_primary_10_1002_nadc_20234138977
crossref_primary_10_1016_j_chemphys_2024_112597
crossref_primary_10_1016_j_rser_2024_114516
crossref_primary_10_1002_adma_202313197
crossref_primary_10_1016_S1872_2067_23_64636_4
crossref_primary_10_1002_cssc_202401082
crossref_primary_10_3390_molecules29153579
crossref_primary_10_1016_j_compchemeng_2023_108408
crossref_primary_10_1016_j_mtener_2024_101634
crossref_primary_10_1016_j_ijggc_2024_104278
crossref_primary_10_1038_s41467_023_37520_x
crossref_primary_10_1039_D4QI02713B
crossref_primary_10_1002_adfm_202422898
crossref_primary_10_1007_s10853_023_09012_2
crossref_primary_10_1016_j_jcis_2023_12_177
crossref_primary_10_1093_femsre_fuad013
crossref_primary_10_1002_adma_202206002
crossref_primary_10_1016_j_apsusc_2024_161369
crossref_primary_10_1016_j_jallcom_2023_170903
crossref_primary_10_1021_acscatal_4c01290
crossref_primary_10_1016_j_jcis_2024_12_011
crossref_primary_10_1021_acsami_3c08187
crossref_primary_10_1021_acscatal_4c06065
crossref_primary_10_1002_cctc_202401604
crossref_primary_10_1002_smll_202404085
crossref_primary_10_1039_D3CC06336D
crossref_primary_10_1016_j_egyai_2024_100361
crossref_primary_10_1002_adma_202303052
crossref_primary_10_1016_j_ceramint_2024_05_233
crossref_primary_10_1021_acscatal_3c00311
crossref_primary_10_1038_s41467_024_54957_w
crossref_primary_10_1016_j_jece_2024_114048
crossref_primary_10_1021_acscatal_3c03027
crossref_primary_10_1016_j_coelec_2023_101219
crossref_primary_10_1016_j_matt_2024_06_040
crossref_primary_10_1039_D2CC05753K
crossref_primary_10_2139_ssrn_4157592
crossref_primary_10_1016_j_mtener_2024_101652
crossref_primary_10_1039_D3GC04881K
crossref_primary_10_1021_accountsmr_2c00216
crossref_primary_10_1002_adma_202312566
crossref_primary_10_1021_acs_energyfuels_3c02152
crossref_primary_10_1021_acs_energyfuels_4c06185
crossref_primary_10_1021_acsenergylett_4c03242
crossref_primary_10_1016_j_joule_2022_12_008
crossref_primary_10_1039_D2CY00220E
crossref_primary_10_1021_acscatal_4c00217
crossref_primary_10_1002_anie_202412266
crossref_primary_10_1039_D4CY00639A
crossref_primary_10_1016_j_cej_2024_149989
crossref_primary_10_1039_D2GC04659H
crossref_primary_10_1007_s13762_024_05908_x
crossref_primary_10_20517_energymater_2024_215
crossref_primary_10_1016_j_cej_2024_157133
crossref_primary_10_1016_j_trechm_2022_10_006
crossref_primary_10_1039_D4EY00005F
crossref_primary_10_1021_acscatal_3c06112
crossref_primary_10_1016_j_xcrp_2022_101072
crossref_primary_10_1021_acsami_4c06804
crossref_primary_10_1002_smll_202205730
crossref_primary_10_1021_accountsmr_3c00224
crossref_primary_10_1039_D2CS00843B
crossref_primary_10_3390_catal14050328
crossref_primary_10_1002_ange_202408756
crossref_primary_10_1039_D4SE00484A
crossref_primary_10_5796_electrochemistry_24_00052
crossref_primary_10_1002_anie_202411194
crossref_primary_10_1002_ece2_23
crossref_primary_10_1016_j_checat_2023_100506
crossref_primary_10_1021_acsami_2c23095
crossref_primary_10_1021_acsaem_4c00013
crossref_primary_10_1016_j_apmate_2024_100178
crossref_primary_10_1016_j_jechem_2024_12_022
crossref_primary_10_1021_acscatal_2c05144
crossref_primary_10_1016_j_chempr_2022_09_005
crossref_primary_10_1021_jacs_3c00506
crossref_primary_10_1039_D3IM00011G
crossref_primary_10_1016_j_ijhydene_2025_01_245
crossref_primary_10_1002_adfm_202306994
crossref_primary_10_1016_j_apcata_2023_119388
crossref_primary_10_1021_acs_nanolett_3c02279
crossref_primary_10_1063_5_0147195
crossref_primary_10_1002_ange_202411216
crossref_primary_10_26599_NR_2025_94906998
crossref_primary_10_1039_D3EY00227F
crossref_primary_10_1016_j_ijhydene_2025_01_488
crossref_primary_10_1002_adfm_202203794
crossref_primary_10_1021_jacs_4c10629
crossref_primary_10_1039_D2EY00081D
crossref_primary_10_1016_j_matre_2023_100199
crossref_primary_10_3390_ijms24129952
crossref_primary_10_1021_acssuschemeng_3c05194
crossref_primary_10_1039_D4TA07268E
crossref_primary_10_1002_asia_202300955
crossref_primary_10_1007_s40242_024_4022_8
crossref_primary_10_1016_j_surfin_2025_105990
crossref_primary_10_1007_s10008_025_06266_5
crossref_primary_10_1039_D4MA00750F
crossref_primary_10_1039_D4SE00244J
crossref_primary_10_1038_s41893_022_01034_z
crossref_primary_10_1002_anie_202502420
crossref_primary_10_1021_acscatal_2c03348
crossref_primary_10_1021_acsenergylett_2c01454
crossref_primary_10_1021_acs_inorgchem_3c00470
crossref_primary_10_1038_s44286_024_00076_8
crossref_primary_10_1021_acs_iecr_4c03279
crossref_primary_10_1039_D3EE02767H
crossref_primary_10_2174_1385272827666230714145953
crossref_primary_10_1002_anie_202408756
crossref_primary_10_1021_acs_energyfuels_4c04058
crossref_primary_10_1039_D3QI01769A
crossref_primary_10_1016_j_scib_2023_05_009
crossref_primary_10_1002_smtd_202201013
crossref_primary_10_1002_adma_202415799
crossref_primary_10_1016_j_electacta_2023_143291
crossref_primary_10_1016_j_matre_2023_100177
crossref_primary_10_1021_acsenergylett_4c01488
crossref_primary_10_1016_j_jcou_2024_102690
crossref_primary_10_1002_cssc_202400150
crossref_primary_10_1016_j_isci_2024_109060
crossref_primary_10_1016_j_joule_2023_05_002
crossref_primary_10_1016_j_nanoen_2024_110134
crossref_primary_10_1016_j_fuel_2025_134576
crossref_primary_10_1021_acs_accounts_4c00418
crossref_primary_10_1002_advs_202402964
crossref_primary_10_1021_acs_inorgchem_4c00461
crossref_primary_10_1016_j_apcatb_2023_123017
crossref_primary_10_1016_j_erss_2025_103942
crossref_primary_10_1016_j_seppur_2024_127197
crossref_primary_10_1002_pol_20240528
crossref_primary_10_3390_polym16040541
crossref_primary_10_1016_j_apcatb_2023_123250
crossref_primary_10_1002_anie_202306822
crossref_primary_10_1002_smll_202308522
crossref_primary_10_1016_j_joule_2022_08_012
crossref_primary_10_1039_D4CS00480A
crossref_primary_10_1016_j_chemosphere_2024_143312
crossref_primary_10_3390_molecules29184348
crossref_primary_10_1021_acscatal_4c01579
crossref_primary_10_1002_smll_202303185
crossref_primary_10_1016_j_cej_2024_151698
crossref_primary_10_1016_j_eti_2024_103645
crossref_primary_10_1016_j_jece_2023_110467
crossref_primary_10_1021_acsaem_3c01605
crossref_primary_10_1002_aenm_202302382
crossref_primary_10_1021_acs_energyfuels_3c01581
crossref_primary_10_1039_D3TA01912H
crossref_primary_10_1002_ange_202306822
crossref_primary_10_1016_j_scib_2025_01_033
Cites_doi 10.1038/ncomms4242
10.1016/j.supflu.2017.07.029
10.1021/acs.jpclett.5b01559
10.1021/jacs.9b03215
10.1021/acs.iecr.7b03514
10.1021/acs.jpcc.6b07128
10.1002/smll.202006590
10.1038/s41929-020-0450-0
10.1038/s41929-018-0133-2
10.1149/1.3456590
10.1038/ncomms12123
10.1016/j.joule.2020.12.004
10.1016/j.jcou.2020.101349
10.1021/acs.chemrev.8b00705
10.2172/1019211
10.1039/C9EE01204D
10.1126/science.abg6582
10.1126/science.aay4217
10.1038/s41929-019-0383-7
10.1021/acsenergylett.0c02633
10.1021/acs.chemrev.6b00211
10.1021/jacs.8b04058
10.1038/ncomms15438
10.1038/s41929-017-0005-1
10.1021/acsenergylett.7b01017
10.1021/acscatal.5b00922
10.1021/acssuschemeng.8b04969
10.1021/acsenergylett.1c01122
10.1016/j.matt.2021.04.014
10.1016/j.joule.2019.05.021
10.1021/acs.jpcc.0c05964
10.1016/j.jpowsour.2010.07.072
10.1016/j.joule.2017.09.003
10.1021/acsenergylett.9b01142
10.1038/s41467-019-10819-4
10.1038/s41893-021-00739-x
10.1002/anie.201805871
10.1149/2.0501815jes
10.1038/nature13249
10.1039/c2cs35296f
10.1038/s41929-019-0269-8
10.1021/jacs.6b13287
10.1021/acsenergylett.7b01096
10.1021/jp310509z
10.1126/science.aas9100
10.1002/anie.202013713
10.1016/0013-4686(94)85172-7
10.1149/07801.2879ecst
10.1021/acs.jpcc.7b03910
10.1002/anie.201602888
10.1038/s41467-020-19731-8
10.1016/j.ijhydene.2012.07.076
10.1021/acs.jpclett.6b02273
10.1038/s41557-019-0312-z
10.1016/j.jcou.2019.10.016
10.1002/adma.201803111
10.1038/s41467-018-03712-z
10.1126/sciadv.aaz6844
10.1016/j.apenergy.2019.03.145
10.1021/acscatal.5b00462
10.1002/adma.201003695
10.1002/cctc.201402669
10.1016/j.jpowsour.2006.09.088
10.1038/s41467-020-20397-5
10.1021/jacs.0c02354
10.1016/j.jechem.2017.04.004
10.1039/D0RE00261E
10.1016/j.isci.2021.102813
10.1016/j.jclepro.2019.03.086
10.1038/s41586-020-2242-8
10.1039/D0CS00230E
10.1016/j.joule.2021.01.007
10.1021/acs.jpcc.8b09598
10.1016/j.memsci.2018.03.051
10.1038/s41557-020-00602-0
10.1016/j.jpowsour.2018.02.025
10.1016/j.jcou.2017.04.011
10.1016/j.isci.2020.101776
10.1038/s41467-020-19135-8
10.1016/j.joule.2018.10.007
10.1002/cssc.201903427
10.1021/acscatal.8b01552
10.1021/acscatal.6b02382
10.1016/j.electacta.2018.04.072
10.1126/sciadv.abd2569
10.1002/anie.202104114
10.1016/j.nantod.2016.05.007
10.1038/s41929-019-0388-2
10.1021/acsenergylett.6b00557
10.1021/acsenergylett.1c02263
10.1039/D0EE01690J
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
OTOTI
DOI 10.1021/acs.accounts.1c00674
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
OSTI.GOV
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1520-4898
EndPage 648
ExternalDocumentID 1859358
35041403
10_1021_acs_accounts_1c00674
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Review
GroupedDBID ---
-DZ
-~X
23M
4.4
53G
55A
5GY
5VS
5ZA
6J9
6P2
7~N
85S
AABXI
AAYXX
ABBLG
ABJNI
ABLBI
ABMVS
ABQRX
ABUCX
ACGFO
ACGFS
ACJ
ACNCT
ACS
ADHLV
AEESW
AENEX
AFEFF
AFXLT
AGXLV
AHGAQ
ALMA_UNASSIGNED_HOLDINGS
AQSVZ
BAANH
CITATION
CS3
CUPRZ
D0L
EBS
ED~
F5P
GGK
GNL
IH2
IH9
JG~
LG6
P2P
RNS
ROL
TWZ
UI2
UPT
VF5
VG9
W1F
WH7
XSW
YZZ
ZCA
~02
CGR
CUY
CVF
ECM
EIF
NPM
ABFRP
ABPTK
OTOTI
ID FETCH-LOGICAL-c1463-56f67cb8908161fde4cce4ab30e7dba832b7517440cb3cbc32e898855e9d37e63
IEDL.DBID ACS
ISSN 0001-4842
IngestDate Fri May 19 00:39:40 EDT 2023
Mon Jul 21 05:33:58 EDT 2025
Tue Jul 01 03:16:07 EDT 2025
Thu Apr 24 23:01:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
https://doi.org/10.15223/policy-045
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1463-56f67cb8908161fde4cce4ab30e7dba832b7517440cb3cbc32e898855e9d37e63
Notes USDOE Office of Fossil Energy (FE)
FE0031910
ORCID 0000-0002-3335-3203
0000000233353203
PMID 35041403
PageCount 11
ParticipantIDs osti_scitechconnect_1859358
pubmed_primary_35041403
crossref_citationtrail_10_1021_acs_accounts_1c00674
crossref_primary_10_1021_acs_accounts_1c00674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Accounts of chemical research
PublicationTitleAlternate Acc Chem Res
PublicationYear 2022
Publisher American Chemical Society
Publisher_xml – name: American Chemical Society
References ref9/cit9
ref45/cit45
ref3/cit3
ref27/cit27
ref81/cit81
ref63/cit63
ref56/cit56
ref16/cit16
ref92/cit92
ref52/cit52
ref23/cit23
ref8/cit8
ref31/cit31
ref59/cit59
ref85/cit85
ref2/cit2
ref77/cit77
ref34/cit34
ref71/cit71
ref37/cit37
ref20/cit20
ref48/cit48
ref60/cit60
ref74/cit74
ref88/cit88
ref17/cit17
ref82/cit82
ref10/cit10
ref35/cit35
ref89/cit89
ref53/cit53
ref19/cit19
ref93/cit93
ref21/cit21
Mittal C. (ref67/cit67) 2017; 52
ref42/cit42
ref46/cit46
ref49/cit49
ref13/cit13
ref61/cit61
ref75/cit75
ref24/cit24
ref38/cit38
IPCC (ref5/cit5)
ref90/cit90
ref50/cit50
ref64/cit64
ref78/cit78
ref54/cit54
ref6/cit6
ref36/cit36
ref18/cit18
ref83/cit83
ref65/cit65
ref79/cit79
ref11/cit11
ref25/cit25
ref29/cit29
ref72/cit72
Last G. V. (ref84/cit84) 2011
ref76/cit76
ref86/cit86
ref32/cit32
ref39/cit39
ref14/cit14
ref57/cit57
ref51/cit51
ref43/cit43
ref80/cit80
ref28/cit28
ref40/cit40
ref68/cit68
ref91/cit91
ref26/cit26
ref55/cit55
ref73/cit73
ref69/cit69
ref12/cit12
ref15/cit15
ref62/cit62
ref66/cit66
ref41/cit41
ref58/cit58
ref22/cit22
ref33/cit33
ref87/cit87
ref4/cit4
ref30/cit30
ref47/cit47
ref1/cit1
ref44/cit44
ref70/cit70
ref7/cit7
References_xml – ident: ref33/cit33
  doi: 10.1038/ncomms4242
– ident: ref83/cit83
  doi: 10.1016/j.supflu.2017.07.029
– ident: ref30/cit30
  doi: 10.1021/acs.jpclett.5b01559
– ident: ref2/cit2
  doi: 10.1021/jacs.9b03215
– ident: ref7/cit7
  doi: 10.1021/acs.iecr.7b03514
– ident: ref79/cit79
  doi: 10.1021/acs.jpcc.6b07128
– ident: ref14/cit14
  doi: 10.1002/smll.202006590
– ident: ref19/cit19
  doi: 10.1038/s41929-020-0450-0
– ident: ref1/cit1
  doi: 10.1038/s41929-018-0133-2
– ident: ref49/cit49
  doi: 10.1149/1.3456590
– ident: ref31/cit31
  doi: 10.1038/ncomms12123
– ident: ref6/cit6
  doi: 10.1016/j.joule.2020.12.004
– ident: ref21/cit21
  doi: 10.1016/j.jcou.2020.101349
– ident: ref36/cit36
  doi: 10.1021/acs.chemrev.8b00705
– volume-title: Identification and Selection of Major Carbon Dioxide Stream Compositions
  year: 2011
  ident: ref84/cit84
  doi: 10.2172/1019211
– ident: ref57/cit57
  doi: 10.1039/C9EE01204D
– ident: ref12/cit12
  doi: 10.1126/science.abg6582
– ident: ref20/cit20
  doi: 10.1126/science.aay4217
– ident: ref25/cit25
  doi: 10.1038/s41929-019-0383-7
– ident: ref88/cit88
  doi: 10.1021/acsenergylett.0c02633
– ident: ref47/cit47
  doi: 10.1021/acs.chemrev.6b00211
– ident: ref82/cit82
  doi: 10.1021/jacs.8b04058
– ident: ref44/cit44
  doi: 10.1038/ncomms15438
– ident: ref91/cit91
  doi: 10.1038/s41929-017-0005-1
– ident: ref63/cit63
  doi: 10.1021/acsenergylett.7b01017
– ident: ref34/cit34
  doi: 10.1021/acscatal.5b00922
– ident: ref89/cit89
  doi: 10.1021/acssuschemeng.8b04969
– ident: ref66/cit66
  doi: 10.1021/acsenergylett.1c01122
– ident: ref48/cit48
  doi: 10.1016/j.matt.2021.04.014
– ident: ref75/cit75
  doi: 10.1016/j.joule.2019.05.021
– ident: ref35/cit35
  doi: 10.1021/acs.jpcc.0c05964
– ident: ref59/cit59
  doi: 10.1016/j.jpowsour.2010.07.072
– ident: ref24/cit24
  doi: 10.1016/j.joule.2017.09.003
– ident: ref37/cit37
  doi: 10.1021/acsenergylett.9b01142
– ident: ref16/cit16
  doi: 10.1038/s41467-019-10819-4
– ident: ref4/cit4
  doi: 10.1038/s41893-021-00739-x
– ident: ref17/cit17
  doi: 10.1002/anie.201805871
– ident: ref23/cit23
  doi: 10.1149/2.0501815jes
– ident: ref50/cit50
  doi: 10.1038/nature13249
– ident: ref45/cit45
  doi: 10.1039/c2cs35296f
– ident: ref52/cit52
  doi: 10.1038/s41929-019-0269-8
– ident: ref74/cit74
  doi: 10.1021/jacs.6b13287
– ident: ref11/cit11
  doi: 10.1021/acsenergylett.7b01096
– ident: ref40/cit40
  doi: 10.1021/jp310509z
– ident: ref26/cit26
  doi: 10.1126/science.aas9100
– ident: ref51/cit51
  doi: 10.1002/anie.202013713
– ident: ref39/cit39
  doi: 10.1016/0013-4686(94)85172-7
– ident: ref69/cit69
  doi: 10.1149/07801.2879ecst
– ident: ref70/cit70
  doi: 10.1021/acs.jpcc.7b03910
– ident: ref18/cit18
  doi: 10.1002/anie.201602888
– ident: ref53/cit53
  doi: 10.1038/s41467-020-19731-8
– ident: ref61/cit61
  doi: 10.1016/j.ijhydene.2012.07.076
– ident: ref80/cit80
  doi: 10.1021/acs.jpclett.6b02273
– ident: ref93/cit93
  doi: 10.1038/s41557-019-0312-z
– ident: ref90/cit90
  doi: 10.1016/j.jcou.2019.10.016
– ident: ref10/cit10
  doi: 10.1002/adma.201803111
– ident: ref15/cit15
  doi: 10.1038/s41467-018-03712-z
– ident: ref42/cit42
  doi: 10.1126/sciadv.aaz6844
– volume: 52
  start-page: 44
  year: 2017
  ident: ref67/cit67
  publication-title: Chem. Eng. World
– ident: ref92/cit92
  doi: 10.1016/j.apenergy.2019.03.145
– ident: ref41/cit41
  doi: 10.1021/acscatal.5b00462
– ident: ref46/cit46
  doi: 10.1002/adma.201003695
– ident: ref29/cit29
  doi: 10.1002/cctc.201402669
– ident: ref60/cit60
  doi: 10.1016/j.jpowsour.2006.09.088
– ident: ref55/cit55
  doi: 10.1038/s41467-020-20397-5
– ident: ref3/cit3
  doi: 10.1021/jacs.0c02354
– ident: ref68/cit68
  doi: 10.1016/j.jechem.2017.04.004
– ident: ref38/cit38
  doi: 10.1039/D0RE00261E
– ident: ref87/cit87
  doi: 10.1016/j.isci.2021.102813
– ident: ref85/cit85
  doi: 10.1016/j.jclepro.2019.03.086
– volume-title: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change
  ident: ref5/cit5
– ident: ref43/cit43
  doi: 10.1038/s41586-020-2242-8
– ident: ref56/cit56
  doi: 10.1039/D0CS00230E
– ident: ref28/cit28
  doi: 10.1016/j.joule.2021.01.007
– ident: ref78/cit78
  doi: 10.1021/acs.jpcc.8b09598
– ident: ref9/cit9
  doi: 10.1016/j.memsci.2018.03.051
– ident: ref65/cit65
  doi: 10.1038/s41557-020-00602-0
– ident: ref8/cit8
  doi: 10.1016/j.jpowsour.2018.02.025
– ident: ref27/cit27
  doi: 10.1016/j.jcou.2017.04.011
– ident: ref73/cit73
  doi: 10.1016/j.isci.2020.101776
– ident: ref62/cit62
  doi: 10.1038/s41467-020-19135-8
– ident: ref58/cit58
  doi: 10.1016/j.joule.2018.10.007
– ident: ref13/cit13
  doi: 10.1002/cssc.201903427
– ident: ref71/cit71
  doi: 10.1021/acscatal.8b01552
– ident: ref76/cit76
  doi: 10.1021/acscatal.6b02382
– ident: ref22/cit22
  doi: 10.1016/j.electacta.2018.04.072
– ident: ref72/cit72
  doi: 10.1126/sciadv.abd2569
– ident: ref81/cit81
  doi: 10.1002/anie.202104114
– ident: ref32/cit32
  doi: 10.1016/j.nantod.2016.05.007
– ident: ref54/cit54
  doi: 10.1038/s41929-019-0388-2
– ident: ref64/cit64
  doi: 10.1021/acsenergylett.6b00557
– ident: ref86/cit86
  doi: 10.1021/acsenergylett.1c02263
– ident: ref77/cit77
  doi: 10.1039/D0EE01690J
SSID ssj0002467
Score 2.3839698
SecondaryResourceType review_article
Snippet Carbon capture, utilization, and sequestration play an essential role to address CO emissions. Among all carbon utilization technologies, CO electroreduction...
SourceID osti
pubmed
crossref
SourceType Open Access Repository
Index Database
Enrichment Source
StartPage 638
SubjectTerms Carbon Dioxide - chemistry
Catalysis
Electrochemical Techniques - methods
Electrodes
Oxidation-Reduction
Title Electrochemical Approaches for CO 2 Conversion to Chemicals: A Journey toward Practical Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/35041403
https://www.osti.gov/biblio/1859358
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIAt1AUW3o9SQB5YU-JX4rBFUSuEBB2gUrcofmQBtYimA_x6fHESRBEC1ig5Rz77fLbvvkPoMraCcq2Um9_GBFwwFUgrVGCcb0_KkhREwTnk3X10M-W3MzH73Ciu3-BTclXopRNdV06AMCEwrzX-M-aAyk-zh87wUh55RKbbIXPJaZsp94OQLytRb-Fm1JprWS8x4x00aRN1fGTJ03BVqaF-_85t_OPf76LtxtvEqR8ee2jDzvfRZtYWeTtAZuTL4OiGG4DThjFul9i5szibYIoziEyvj9VwtcAtYmB5jVPsWUhv7jlE32JPP2rkdMeBh2g6Hj1mN0FTeCHQznCyQERlFGslE6jKQUpjudaWF4qFNjaqcEZAxUC45qFWTCvNqJWJlELYxLDYRuwI9eaLuT1BmHOTiLAsLAONMKsKagkxslQ6lkqHfcRaJeS6oZJDcYznvL4dpyR3PZi3PZg3PdhHQffVi6dy_PL-APSbO68C0LgaYoh0lROAvQnZR8de7Z0sJkIOIMPTf7YzQFsU0iPqGLUz1KteV_bcOS2VuqiH6gcNxOsW
linkProvider American Chemical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+Approaches+for+CO+2+Conversion+to+Chemicals%3A+A+Journey+toward+Practical+Applications&rft.jtitle=Accounts+of+chemical+research&rft.au=Overa%2C+Sean&rft.au=Ko%2C+Byung+Hee&rft.au=Zhao%2C+Yaran&rft.au=Jiao%2C+Feng&rft.date=2022-03-01&rft.pub=American+Chemical+Society&rft.issn=0001-4842&rft.eissn=1520-4898&rft.volume=55&rft.issue=5&rft_id=info:doi/10.1021%2Facs.accounts.1c00674&rft.externalDocID=1859358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4842&client=summon