MACHINE LEARNING IN THE DIAGNOSIS OF FOLLICULAR LYMPHOMA

To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL). Whole slide images from 10 patients with FH and 10 patients with FL were manually annotated and fragmented into 21,585 patches (FH=13,399 and FL=8,186...

Full description

Saved in:
Bibliographic Details
Published inOral surgery, oral medicine, oral pathology and oral radiology Vol. 136; no. 1; pp. e28 - e29
Main Authors de SOUZA, Lucas Lacerda, ARAUJO, Anna Luiza Damaceno, da SILVA, Viviane Mariano, Santos-Silva, Alan Roger, Lopes, Marcio Ajudarte, Moraes, Matheus Cardoso, Vargas, Pablo Agustin
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.07.2023
Online AccessGet full text

Cover

Loading…
Abstract To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL). Whole slide images from 10 patients with FH and 10 patients with FL were manually annotated and fragmented into 21,585 patches (FH=13,399 and FL=8,186) of 299 × 299 pixels. The convolutional neural network (CNN) VGGNet was re-trained using Python 3.6 and other open-source libraries for machine learning and image processing (TensorFlow, Keras, Scikit-Learn, and OpenCV). The training and validation were carried out for 10 epochs until accuracy stabilized and validation loss reduced its variation. The total processing time for the CNN training was 753s. Different metrics could be obtained through the confusion matrix, emphasizing a high training accuracy of 98% and F1-score of 82%. Sensitivity and specificity were 74.8% and 91.8%, respectively. The receiver operating characteristic curve of 94% showed the fine class separation ability of the CNN. The ML model used in this study is feasible to differentiate FH and FL. Additional CNN training and validation in bigger/multicenter datasets may generate AI-assisted tools to aid FL diagnosis.
AbstractList To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL). Whole slide images from 10 patients with FH and 10 patients with FL were manually annotated and fragmented into 21,585 patches (FH=13,399 and FL=8,186) of 299 × 299 pixels. The convolutional neural network (CNN) VGGNet was re-trained using Python 3.6 and other open-source libraries for machine learning and image processing (TensorFlow, Keras, Scikit-Learn, and OpenCV). The training and validation were carried out for 10 epochs until accuracy stabilized and validation loss reduced its variation. The total processing time for the CNN training was 753s. Different metrics could be obtained through the confusion matrix, emphasizing a high training accuracy of 98% and F1-score of 82%. Sensitivity and specificity were 74.8% and 91.8%, respectively. The receiver operating characteristic curve of 94% showed the fine class separation ability of the CNN. The ML model used in this study is feasible to differentiate FH and FL. Additional CNN training and validation in bigger/multicenter datasets may generate AI-assisted tools to aid FL diagnosis.
Author Moraes, Matheus Cardoso
Lopes, Marcio Ajudarte
Santos-Silva, Alan Roger
Vargas, Pablo Agustin
ARAUJO, Anna Luiza Damaceno
da SILVA, Viviane Mariano
de SOUZA, Lucas Lacerda
Author_xml – sequence: 1
  givenname: Lucas Lacerda
  surname: de SOUZA
  fullname: de SOUZA, Lucas Lacerda
  email: lucaslac@hotmail.com
– sequence: 2
  givenname: Anna Luiza Damaceno
  surname: ARAUJO
  fullname: ARAUJO, Anna Luiza Damaceno
  email: anna_luizaf5ph@hotmail.com
– sequence: 3
  givenname: Viviane Mariano
  surname: da SILVA
  fullname: da SILVA, Viviane Mariano
  email: viviane.mariano@unifesp.br
– sequence: 4
  givenname: Alan Roger
  surname: Santos-Silva
  fullname: Santos-Silva, Alan Roger
  email: alanroger@hotmail.com
– sequence: 5
  givenname: Marcio Ajudarte
  surname: Lopes
  fullname: Lopes, Marcio Ajudarte
  email: marcioajudartelopes@gmail.com
– sequence: 6
  givenname: Matheus Cardoso
  surname: Moraes
  fullname: Moraes, Matheus Cardoso
  email: matheus.moraes@unifesp.br
– sequence: 7
  givenname: Pablo Agustin
  surname: Vargas
  fullname: Vargas, Pablo Agustin
  email: pavargas@unicamp.br
BookMark eNp9j81qhDAUhUOZQqfTeYGu8gLa3BijQjdinTEQtczPoqvgmASUVouWQt9-MkzpsocD9we-yz33aDGMg0HoEYgPBPhT749OPiU08IlzyG_QklKgHmMAi7-eBHdoPc89ceIOZHSJ4jLNClHlWObprhLVFosKH4ocv4h0W9V7scf1Bm9qKUV2lOkOy7fytajL9AHd2uZ9NuvfukLHTX7ICk_WW5Gl0muBhdwDTXVoGegkhMha1pyaQJMosAmzzDDCY2YoS9zKjZyFhFMbwUkDBE1DYxusEL3ebadxnidj1efUfTTTjwKiLvFVry7x1SW-Is4hd9DzFTLus-_OTGpuOzO0RneTab-UHrv_8DPYjl5-
CitedBy_id crossref_primary_10_1002_cbf_4088
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.oooo.2023.03.056
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Dentistry
EISSN 2212-4411
EndPage e29
ExternalDocumentID 10_1016_j_oooo_2023_03_056
S2212440323001670
GroupedDBID --K
--M
.1-
.FO
.~1
0R~
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAXUO
ABBQC
ABJNI
ABLJU
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEVXI
AFKWA
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AXJTR
BKOJK
BLXMC
BNPGV
C45
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FNPLU
FYGXN
GBLVA
HZ~
K-O
KOM
LCYCR
M41
MO0
O-L
O9-
OAUVE
OBH
OF.
OQ0
OVD
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SEL
SPCBC
SSH
SSZ
T5K
TEORI
UV1
Z5R
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c1456-1d2d5f41d9517ff4aba3d073f94f4e40684e249d07f4e645062f71bd113aa28f3
IEDL.DBID AIKHN
ISSN 2212-4403
IngestDate Thu Sep 26 19:20:16 EDT 2024
Fri Feb 23 02:37:34 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1456-1d2d5f41d9517ff4aba3d073f94f4e40684e249d07f4e645062f71bd113aa28f3
ParticipantIDs crossref_primary_10_1016_j_oooo_2023_03_056
elsevier_sciencedirect_doi_10_1016_j_oooo_2023_03_056
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Oral surgery, oral medicine, oral pathology and oral radiology
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
SSID ssj0000601642
Score 2.432297
Snippet To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL). Whole...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage e28
Title MACHINE LEARNING IN THE DIAGNOSIS OF FOLLICULAR LYMPHOMA
URI https://dx.doi.org/10.1016/j.oooo.2023.03.056
Volume 136
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5qe9CLuGJdyhy8Sdosk-0Y0qaJbRLpgvUUJpkZqIe2SL36232TRRTEg2EgzMAL4cvkLcn33kPo3rZsylRLVQpQkAphhaNQKiBUkb-cjMI0OJOJwnFihUvyuDJXLeQ3uTCSVlnr_kqnl9q6XhnUaA526_VgruvSNqkGONGSSw9xewfMke60UceLJmHy9amlLDlSttGRIoqUqdNnKqbXFo6-bCNeljuVrax_M1HfzE5wgo5rfxF71S2dohbfnKHDoeT4yDZt58iJPT-MkhGejrxZEiVjHCV4EY7wMPLGSTqP5jgNcJBC0O4vp94MT1_ipzCNvQu0DEYLP1TqdgiAI5HVApnOTEE0Bk6RLQShOTUYvKHCJYJwMMwO4RBMwRJMLWKqli5sLWeaZlCqO8K4RO3NdsOvEFbdwsi1nLuFygl3mOMykwu4LnULKgqnix4aBLJdVfUia-hgr5nEK5N4ZSoM0-oiswEp-_HsMlDLf8hd_1PuBh3JWUWavUXt_ds7vwPXYJ_30EH_Q-vVG0CeJ7PnySewVrL7
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT4NAFJ407aFejGus6xy8GSzLsB0JBcGymC5JPZGBmUnqoW1M_f--YTGaGA8SLszkEfIx8xb43nsI3duWTZlqqUoFClIhrHIUSgWEKvKXk1GZBmcyUTjNrGhJnlfmqof8LhdG0ipb3d_o9FpbtyPjFs3xbr0ez3Vd2ibVACdacukhbh-AN-DC7hx48TTKvj611CVH6jY6UkSRMm36TMP02sLxKNuI1-VOZSvr30zUN7MTHqHD1l_EXvNIx6jHNydoOJEcH9mm7RQ5qedHcRbgJPBmWZw94TjDiyjAk9h7yvJ5PMd5iMMcgnZ_mXgznLymL1GeemdoGQYLP1LadgiAI5HVApnOTEE0Bk6RLQShJTUY7FDhEkE4GGaHcAimYAguLWKqli5srWSaZlCqO8I4R_3NdsMvEFbdyii1kruVygl3mOMykwu4L3UrKipnhB46BIpdU_Wi6Ohgb4XEq5B4FSqcpjVCZgdS8ePdFaCW_5C7_KfcHRpGizQpkjibXqEDOdMQaK9Rf__-wW_ATdiXt-0y-ARxpLNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MACHINE+LEARNING+IN+THE+DIAGNOSIS+OF+FOLLICULAR+LYMPHOMA&rft.jtitle=Oral+surgery%2C+oral+medicine%2C+oral+pathology+and+oral+radiology&rft.au=de+SOUZA%2C+Lucas+Lacerda&rft.au=ARAUJO%2C+Anna+Luiza+Damaceno&rft.au=da+SILVA%2C+Viviane+Mariano&rft.au=Santos-Silva%2C+Alan+Roger&rft.date=2023-07-01&rft.issn=2212-4403&rft.volume=136&rft.issue=1&rft.spage=e28&rft.epage=e29&rft_id=info:doi/10.1016%2Fj.oooo.2023.03.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oooo_2023_03_056
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4403&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4403&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4403&client=summon