MACHINE LEARNING IN THE DIAGNOSIS OF FOLLICULAR LYMPHOMA
To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL). Whole slide images from 10 patients with FH and 10 patients with FL were manually annotated and fragmented into 21,585 patches (FH=13,399 and FL=8,186...
Saved in:
Published in | Oral surgery, oral medicine, oral pathology and oral radiology Vol. 136; no. 1; pp. e28 - e29 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.07.2023
|
Online Access | Get full text |
Cover
Loading…
Abstract | To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL).
Whole slide images from 10 patients with FH and 10 patients with FL were manually annotated and fragmented into 21,585 patches (FH=13,399 and FL=8,186) of 299 × 299 pixels. The convolutional neural network (CNN) VGGNet was re-trained using Python 3.6 and other open-source libraries for machine learning and image processing (TensorFlow, Keras, Scikit-Learn, and OpenCV). The training and validation were carried out for 10 epochs until accuracy stabilized and validation loss reduced its variation.
The total processing time for the CNN training was 753s. Different metrics could be obtained through the confusion matrix, emphasizing a high training accuracy of 98% and F1-score of 82%. Sensitivity and specificity were 74.8% and 91.8%, respectively. The receiver operating characteristic curve of 94% showed the fine class separation ability of the CNN.
The ML model used in this study is feasible to differentiate FH and FL. Additional CNN training and validation in bigger/multicenter datasets may generate AI-assisted tools to aid FL diagnosis. |
---|---|
AbstractList | To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL).
Whole slide images from 10 patients with FH and 10 patients with FL were manually annotated and fragmented into 21,585 patches (FH=13,399 and FL=8,186) of 299 × 299 pixels. The convolutional neural network (CNN) VGGNet was re-trained using Python 3.6 and other open-source libraries for machine learning and image processing (TensorFlow, Keras, Scikit-Learn, and OpenCV). The training and validation were carried out for 10 epochs until accuracy stabilized and validation loss reduced its variation.
The total processing time for the CNN training was 753s. Different metrics could be obtained through the confusion matrix, emphasizing a high training accuracy of 98% and F1-score of 82%. Sensitivity and specificity were 74.8% and 91.8%, respectively. The receiver operating characteristic curve of 94% showed the fine class separation ability of the CNN.
The ML model used in this study is feasible to differentiate FH and FL. Additional CNN training and validation in bigger/multicenter datasets may generate AI-assisted tools to aid FL diagnosis. |
Author | Moraes, Matheus Cardoso Lopes, Marcio Ajudarte Santos-Silva, Alan Roger Vargas, Pablo Agustin ARAUJO, Anna Luiza Damaceno da SILVA, Viviane Mariano de SOUZA, Lucas Lacerda |
Author_xml | – sequence: 1 givenname: Lucas Lacerda surname: de SOUZA fullname: de SOUZA, Lucas Lacerda email: lucaslac@hotmail.com – sequence: 2 givenname: Anna Luiza Damaceno surname: ARAUJO fullname: ARAUJO, Anna Luiza Damaceno email: anna_luizaf5ph@hotmail.com – sequence: 3 givenname: Viviane Mariano surname: da SILVA fullname: da SILVA, Viviane Mariano email: viviane.mariano@unifesp.br – sequence: 4 givenname: Alan Roger surname: Santos-Silva fullname: Santos-Silva, Alan Roger email: alanroger@hotmail.com – sequence: 5 givenname: Marcio Ajudarte surname: Lopes fullname: Lopes, Marcio Ajudarte email: marcioajudartelopes@gmail.com – sequence: 6 givenname: Matheus Cardoso surname: Moraes fullname: Moraes, Matheus Cardoso email: matheus.moraes@unifesp.br – sequence: 7 givenname: Pablo Agustin surname: Vargas fullname: Vargas, Pablo Agustin email: pavargas@unicamp.br |
BookMark | eNp9j81qhDAUhUOZQqfTeYGu8gLa3BijQjdinTEQtczPoqvgmASUVouWQt9-MkzpsocD9we-yz33aDGMg0HoEYgPBPhT749OPiU08IlzyG_QklKgHmMAi7-eBHdoPc89ceIOZHSJ4jLNClHlWObprhLVFosKH4ocv4h0W9V7scf1Bm9qKUV2lOkOy7fytajL9AHd2uZ9NuvfukLHTX7ICk_WW5Gl0muBhdwDTXVoGegkhMha1pyaQJMosAmzzDDCY2YoS9zKjZyFhFMbwUkDBE1DYxusEL3ebadxnidj1efUfTTTjwKiLvFVry7x1SW-Is4hd9DzFTLus-_OTGpuOzO0RneTab-UHrv_8DPYjl5- |
CitedBy_id | crossref_primary_10_1002_cbf_4088 |
ContentType | Journal Article |
Copyright | 2023 |
Copyright_xml | – notice: 2023 |
DBID | AAYXX CITATION |
DOI | 10.1016/j.oooo.2023.03.056 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Dentistry |
EISSN | 2212-4411 |
EndPage | e29 |
ExternalDocumentID | 10_1016_j_oooo_2023_03_056 S2212440323001670 |
GroupedDBID | --K --M .1- .FO .~1 0R~ 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAXUO ABBQC ABJNI ABLJU ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEVXI AFKWA AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AXJTR BKOJK BLXMC BNPGV C45 EBS EFJIC EFLBG EJD FDB FIRID FNPLU FYGXN GBLVA HZ~ K-O KOM LCYCR M41 MO0 O-L O9- OAUVE OBH OF. OQ0 OVD P-8 P-9 PC. Q38 RIG ROL SDF SEL SPCBC SSH SSZ T5K TEORI UV1 Z5R ~G- AAXKI AAYXX AFJKZ AKRWK CITATION |
ID | FETCH-LOGICAL-c1456-1d2d5f41d9517ff4aba3d073f94f4e40684e249d07f4e645062f71bd113aa28f3 |
IEDL.DBID | AIKHN |
ISSN | 2212-4403 |
IngestDate | Thu Sep 26 19:20:16 EDT 2024 Fri Feb 23 02:37:34 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1456-1d2d5f41d9517ff4aba3d073f94f4e40684e249d07f4e645062f71bd113aa28f3 |
ParticipantIDs | crossref_primary_10_1016_j_oooo_2023_03_056 elsevier_sciencedirect_doi_10_1016_j_oooo_2023_03_056 |
PublicationCentury | 2000 |
PublicationDate | July 2023 2023-07-00 |
PublicationDateYYYYMMDD | 2023-07-01 |
PublicationDate_xml | – month: 07 year: 2023 text: July 2023 |
PublicationDecade | 2020 |
PublicationTitle | Oral surgery, oral medicine, oral pathology and oral radiology |
PublicationYear | 2023 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
SSID | ssj0000601642 |
Score | 2.432297 |
Snippet | To implement a machine-learning (ML) model to assist pathologists in the differentiation of follicular hyperplasia (FH) and follicular lymphoma (FL).
Whole... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | e28 |
Title | MACHINE LEARNING IN THE DIAGNOSIS OF FOLLICULAR LYMPHOMA |
URI | https://dx.doi.org/10.1016/j.oooo.2023.03.056 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8NAFB5qe9CLuGJdyhy8Sdosk-0Y0qaJbRLpgvUUJpkZqIe2SL36232TRRTEg2EgzMAL4cvkLcn33kPo3rZsylRLVQpQkAphhaNQKiBUkb-cjMI0OJOJwnFihUvyuDJXLeQ3uTCSVlnr_kqnl9q6XhnUaA526_VgruvSNqkGONGSSw9xewfMke60UceLJmHy9amlLDlSttGRIoqUqdNnKqbXFo6-bCNeljuVrax_M1HfzE5wgo5rfxF71S2dohbfnKHDoeT4yDZt58iJPT-MkhGejrxZEiVjHCV4EY7wMPLGSTqP5jgNcJBC0O4vp94MT1_ipzCNvQu0DEYLP1TqdgiAI5HVApnOTEE0Bk6RLQShOTUYvKHCJYJwMMwO4RBMwRJMLWKqli5sLWeaZlCqO8K4RO3NdsOvEFbdwsi1nLuFygl3mOMykwu4LnULKgqnix4aBLJdVfUia-hgr5nEK5N4ZSoM0-oiswEp-_HsMlDLf8hd_1PuBh3JWUWavUXt_ds7vwPXYJ_30EH_Q-vVG0CeJ7PnySewVrL7 |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT4NAFJ407aFejGus6xy8GSzLsB0JBcGymC5JPZGBmUnqoW1M_f--YTGaGA8SLszkEfIx8xb43nsI3duWTZlqqUoFClIhrHIUSgWEKvKXk1GZBmcyUTjNrGhJnlfmqof8LhdG0ipb3d_o9FpbtyPjFs3xbr0ez3Vd2ibVACdacukhbh-AN-DC7hx48TTKvj611CVH6jY6UkSRMm36TMP02sLxKNuI1-VOZSvr30zUN7MTHqHD1l_EXvNIx6jHNydoOJEcH9mm7RQ5qedHcRbgJPBmWZw94TjDiyjAk9h7yvJ5PMd5iMMcgnZ_mXgznLymL1GeemdoGQYLP1LadgiAI5HVApnOTEE0Bk6RLQShJTUY7FDhEkE4GGaHcAimYAguLWKqli5srWSaZlCqO8I4R_3NdsMvEFbdyii1kruVygl3mOMykwu4L3UrKipnhB46BIpdU_Wi6Ohgb4XEq5B4FSqcpjVCZgdS8ePdFaCW_5C7_KfcHRpGizQpkjibXqEDOdMQaK9Rf__-wW_ATdiXt-0y-ARxpLNM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MACHINE+LEARNING+IN+THE+DIAGNOSIS+OF+FOLLICULAR+LYMPHOMA&rft.jtitle=Oral+surgery%2C+oral+medicine%2C+oral+pathology+and+oral+radiology&rft.au=de+SOUZA%2C+Lucas+Lacerda&rft.au=ARAUJO%2C+Anna+Luiza+Damaceno&rft.au=da+SILVA%2C+Viviane+Mariano&rft.au=Santos-Silva%2C+Alan+Roger&rft.date=2023-07-01&rft.issn=2212-4403&rft.volume=136&rft.issue=1&rft.spage=e28&rft.epage=e29&rft_id=info:doi/10.1016%2Fj.oooo.2023.03.056&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oooo_2023_03_056 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2212-4403&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2212-4403&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2212-4403&client=summon |