Meromorphic functions sharing the zeros of lower degree symmetric polynomials in weighted wider sense

In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of index $s$ and reverse index $\hat{s}$ of a polynomial. Further, building on these concepts, we introduce the orde...

Full description

Saved in:
Bibliographic Details
Published inMatematychni studii Vol. 63; no. 1; pp. 48 - 61
Main Authors Banerjee, J., Banerjee, A.
Format Journal Article
LanguageEnglish
German
Published Ivan Franko National University of Lviv 26.03.2025
Subjects
Online AccessGet full text
ISSN1027-4634
2411-0620
DOI10.30970/ms.63.1.48-61

Cover

Abstract In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of index $s$ and reverse index $\hat{s}$ of a polynomial. Further, building on these concepts, we introduce the order of a polynomial $P(z)$ as $(s,\hat{s})$. If $P_{*}(z)$ is another polynomial of order $(\hat{s},s)$, then the pair $P(z)$ and $P_{*}(z)$ are referred to as symmetric polynomials. The concept of symmetric polynomials is central in this work, as we investigate the effects of weighted sharing in the wider sense (see Adv. Stud: Euro-Tbilisi Math. J., 16(4)(2023), 175-189) on the zeros of symmetric polynomials along with the sharing of poles. Our study focuses on symmetric polynomials of degree 3, analyzing their intrinsic properties. Sharing of zeros of polynomials of lower degree are critical in nature and at the same time it exhibits sophisticated structural characteristics, making them an ideal subject for such analysis. Our exploration of the sharing of zeros of symmetric polynomials establishes connections between two non-constant meromorphic functions. The article includes examples of both a general nature and specific, partial cases that serve to illustrate and validate our theoretical results.
AbstractList In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of index $s$ and reverse index $\hat{s}$ of a polynomial. Further, building on these concepts, we introduce the order of a polynomial $P(z)$ as $(s,\hat{s})$. If $P_{*}(z)$ is another polynomial of order $(\hat{s},s)$, then the pair $P(z)$ and $P_{*}(z)$ are referred to as symmetric polynomials. The concept of symmetric polynomials is central in this work, as we investigate the effects of weighted sharing in the wider sense (see Adv. Stud: Euro-Tbilisi Math. J., 16(4)(2023), 175-189) on the zeros of symmetric polynomials along with the sharing of poles. Our study focuses on symmetric polynomials of degree 3, analyzing their intrinsic properties. Sharing of zeros of polynomials of lower degree are critical in nature and at the same time it exhibits sophisticated structural characteristics, making them an ideal subject for such analysis. Our exploration of the sharing of zeros of symmetric polynomials establishes connections between two non-constant meromorphic functions. The article includes examples of both a general nature and specific, partial cases that serve to illustrate and validate our theoretical results.
Author Banerjee, J.
Banerjee, A.
Author_xml – sequence: 1
  givenname: J.
  surname: Banerjee
  fullname: Banerjee, J.
– sequence: 2
  givenname: A.
  surname: Banerjee
  fullname: Banerjee, A.
BookMark eNo9kE1LJDEQhsOisOPH1XP-QLdVSTqdPorsquCyl_Uc0kllJjLdGZKWYfz1Nip7Kqh63gfqvWBnc56JsRuEVsLQw-1UWy1bbJVpNP5gG6EQG9ACztgGQfSN0lL9ZNe1vgIASiWwlxtGf6jkKZfDLnke32a_pDxXXneupHnLlx3x95WoPEe-z0cqPNC2EPF6miZaypo65P1pzlNy-8rTzI-UtruFAj-msOKV5kpX7DyuZ7r-npfs5fevf_ePzfPfh6f7u-fGo-qwIYgRegDR9XpUYQzGyUGEIEx0UkeEMA6mH0lrp-MwkJFOdFJ3QXjvDAR5yZ6-vCG7V3soaXLlZLNL9nORy9a6siS_J-tFREJBsY9RdX40biBnCBQGEKbrVlf75fLr-7VQ_O9DsJ-d26laLS1aZaxG-QHpp3jD
Cites_doi 10.1515/anly-2012-1208
10.32513/asetmj/193220082340
10.1007/BFb0096825
10.30970/ms.52.1.38-47
10.1016/j.jmaa.2006.04.078
10.30970/ms.55.1.57-63
10.1017/S0027763000027215
10.1080/17476930108815411
10.1353/ajm.2000.0045
10.2996/kmj/1138044046
10.1155/S0161171201011036
10.5486/PMD.2010.4516
10.30970/ms.60.1.40-54
10.1515/GMJ.2008.21
10.1007/s40315-016-0174-y
10.1017/S0004972700016737
10.1017/S0027763000008527
10.1515/ms-2017-0127
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.30970/ms.63.1.48-61
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2411-0620
EndPage 61
ExternalDocumentID oai_doaj_org_article_c2f1e12ef7ff45cb8a9ea8e041d02855
10_30970_ms_63_1_48_61
GroupedDBID 5VS
AAYXX
ALMA_UNASSIGNED_HOLDINGS
AMVHM
CITATION
KQ8
OK1
P2P
RNS
GROUPED_DOAJ
ID FETCH-LOGICAL-c1451-e0ff07002576b4dbd8a392dd28fa36f10db987be66a6f99e83a25365d2cca80d3
IEDL.DBID DOA
ISSN 1027-4634
IngestDate Wed Aug 27 01:12:37 EDT 2025
Sun Jul 06 05:02:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
German
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1451-e0ff07002576b4dbd8a392dd28fa36f10db987be66a6f99e83a25365d2cca80d3
OpenAccessLink https://doaj.org/article/c2f1e12ef7ff45cb8a9ea8e041d02855
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_c2f1e12ef7ff45cb8a9ea8e041d02855
crossref_primary_10_30970_ms_63_1_48_61
PublicationCentury 2000
PublicationDate 2025-03-26
PublicationDateYYYYMMDD 2025-03-26
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-26
  day: 26
PublicationDecade 2020
PublicationTitle Matematychni studii
PublicationYear 2025
Publisher Ivan Franko National University of Lviv
Publisher_xml – name: Ivan Franko National University of Lviv
References 8453
8464
8454
8465
8451
8462
8452
8463
8457
8468
8469
8455
8466
8456
8467
8460
8450
8461
8448
cr-split#-8458.1
8459
8449
cr-split#-8458.2
References_xml – ident: 8455
  doi: 10.1515/anly-2012-1208
– ident: 8453
  doi: 10.32513/asetmj/193220082340
– ident: 8449
– ident: 8450
– ident: #cr-split#-8458.1
  doi: 10.1007/BFb0096825
– ident: 8454
  doi: 10.30970/ms.52.1.38-47
– ident: 8463
  doi: 10.1016/j.jmaa.2006.04.078
– ident: #cr-split#-8458.2
– ident: 8456
  doi: 10.30970/ms.55.1.57-63
– ident: 8452
  doi: 10.1017/S0027763000027215
– ident: 8465
  doi: 10.1080/17476930108815411
– ident: 8467
  doi: 10.1353/ajm.2000.0045
– ident: 8466
  doi: 10.2996/kmj/1138044046
– ident: 8464
  doi: 10.1155/S0161171201011036
– ident: 8462
  doi: 10.5486/PMD.2010.4516
– ident: 8457
  doi: 10.30970/ms.60.1.40-54
– ident: 8461
– ident: 8448
  doi: 10.1515/GMJ.2008.21
– ident: 8459
– ident: 8451
  doi: 10.1007/s40315-016-0174-y
– ident: 8468
  doi: 10.1017/S0004972700016737
– ident: 8469
  doi: 10.1017/S0027763000008527
– ident: 8460
  doi: 10.1515/ms-2017-0127
SSID ssj0001342173
Score 2.2870617
Snippet In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 48
SubjectTerms generating polynomial
meromorphic functions
shared sets
weighted sharing
wider sense
Title Meromorphic functions sharing the zeros of lower degree symmetric polynomials in weighted wider sense
URI https://doaj.org/article/c2f1e12ef7ff45cb8a9ea8e041d02855
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOQiesiZNmiZHFRdRVhAUvIWkmeDCPsQqor_eSbvKevLipYcylPDNDPNo5htCjpM22gbhGSRlmdKBs8xzwyQkG8vgdZJ5OHl4q68e1PVj-biw6ivfCevogTvgTusiCRAFpColVdbBeAveAFciYmgsW_ZSbvlCMdV2V6Qqut_LGEArPINUHWOj5Lbip5Omr2Vf9JVhWvyKSAvE_W2EGayTtXlqSM-6I22QpQibZHX4w6vabBEYQr4-h9iMappDUms1tHnyuT1HUZJ-okRDZ4mO8_4zGgELaqDNx2SSd2fV9Hk2_sijyGh2dDSl721rFCJ9z_N4tMGqFrbJw-Dy_uKKzRclsDov2mXAU0LX5bl4CCqGaDymPTEWJnmpk-AxWFMF0BqxtxaM9EUpdRkL1J_hUe6Q5elsCruEokeKGp00s75j6VX5uhLeesF5zXX0qUdOvsFyzx0fhsM6ooXVTRqnpRNOGadFj5xnLH-kMo91-wK16-badX9pd-8_PrJPVoq8tZdLVugDsvz68gaHmEq8hqPWavB5c2e-AD8YyIY
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meromorphic+functions+sharing+the+zeros+of+lower+degree+symmetric+polynomials+in+weighted+wider+sense&rft.jtitle=Matematychni+studii&rft.au=J.+Banerjee&rft.au=A.+Banerjee&rft.date=2025-03-26&rft.pub=Ivan+Franko+National+University+of+Lviv&rft.issn=1027-4634&rft.eissn=2411-0620&rft.volume=63&rft.issue=1&rft.spage=48&rft.epage=61&rft_id=info:doi/10.30970%2Fms.63.1.48-61&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c2f1e12ef7ff45cb8a9ea8e041d02855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-4634&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-4634&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-4634&client=summon