Meromorphic functions sharing the zeros of lower degree symmetric polynomials in weighted wider sense
In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of index $s$ and reverse index $\hat{s}$ of a polynomial. Further, building on these concepts, we introduce the orde...
Saved in:
Published in | Matematychni studii Vol. 63; no. 1; pp. 48 - 61 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English German |
Published |
Ivan Franko National University of Lviv
26.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1027-4634 2411-0620 |
DOI | 10.30970/ms.63.1.48-61 |
Cover
Abstract | In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of index $s$ and reverse index $\hat{s}$ of a polynomial. Further, building on these concepts, we introduce the order of a polynomial $P(z)$ as $(s,\hat{s})$. If $P_{*}(z)$ is another polynomial of order $(\hat{s},s)$, then the pair $P(z)$ and $P_{*}(z)$ are referred to as symmetric polynomials. The concept of symmetric polynomials is central in this work, as we investigate the effects of weighted sharing in the wider sense (see Adv. Stud: Euro-Tbilisi Math. J., 16(4)(2023), 175-189) on the zeros of symmetric polynomials along with the sharing of poles. Our study focuses on symmetric polynomials of degree 3, analyzing their intrinsic properties. Sharing of zeros of polynomials of lower degree are critical in nature and at the same time it exhibits sophisticated structural characteristics, making them an ideal subject for such analysis. Our exploration of the sharing of zeros of symmetric polynomials establishes connections between two non-constant meromorphic functions. The article includes examples of both a general nature and specific, partial cases that serve to illustrate and validate our theoretical results. |
---|---|
AbstractList | In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules lead to the definitions of index $s$ and reverse index $\hat{s}$ of a polynomial. Further, building on these concepts, we introduce the order of a polynomial $P(z)$ as $(s,\hat{s})$. If $P_{*}(z)$ is another polynomial of order $(\hat{s},s)$, then the pair $P(z)$ and $P_{*}(z)$ are referred to as symmetric polynomials. The concept of symmetric polynomials is central in this work, as we investigate the effects of weighted sharing in the wider sense (see Adv. Stud: Euro-Tbilisi Math. J., 16(4)(2023), 175-189) on the zeros of symmetric polynomials along with the sharing of poles. Our study focuses on symmetric polynomials of degree 3, analyzing their intrinsic properties. Sharing of zeros of polynomials of lower degree are critical in nature and at the same time it exhibits sophisticated structural characteristics, making them an ideal subject for such analysis. Our exploration of the sharing of zeros of symmetric polynomials establishes connections between two non-constant meromorphic functions. The article includes examples of both a general nature and specific, partial cases that serve to illustrate and validate our theoretical results. |
Author | Banerjee, J. Banerjee, A. |
Author_xml | – sequence: 1 givenname: J. surname: Banerjee fullname: Banerjee, J. – sequence: 2 givenname: A. surname: Banerjee fullname: Banerjee, A. |
BookMark | eNo9kE1LJDEQhsOisOPH1XP-QLdVSTqdPorsquCyl_Uc0kllJjLdGZKWYfz1Nip7Kqh63gfqvWBnc56JsRuEVsLQw-1UWy1bbJVpNP5gG6EQG9ACztgGQfSN0lL9ZNe1vgIASiWwlxtGf6jkKZfDLnke32a_pDxXXneupHnLlx3x95WoPEe-z0cqPNC2EPF6miZaypo65P1pzlNy-8rTzI-UtruFAj-msOKV5kpX7DyuZ7r-npfs5fevf_ePzfPfh6f7u-fGo-qwIYgRegDR9XpUYQzGyUGEIEx0UkeEMA6mH0lrp-MwkJFOdFJ3QXjvDAR5yZ6-vCG7V3soaXLlZLNL9nORy9a6siS_J-tFREJBsY9RdX40biBnCBQGEKbrVlf75fLr-7VQ_O9DsJ-d26laLS1aZaxG-QHpp3jD |
Cites_doi | 10.1515/anly-2012-1208 10.32513/asetmj/193220082340 10.1007/BFb0096825 10.30970/ms.52.1.38-47 10.1016/j.jmaa.2006.04.078 10.30970/ms.55.1.57-63 10.1017/S0027763000027215 10.1080/17476930108815411 10.1353/ajm.2000.0045 10.2996/kmj/1138044046 10.1155/S0161171201011036 10.5486/PMD.2010.4516 10.30970/ms.60.1.40-54 10.1515/GMJ.2008.21 10.1007/s40315-016-0174-y 10.1017/S0004972700016737 10.1017/S0027763000008527 10.1515/ms-2017-0127 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.30970/ms.63.1.48-61 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2411-0620 |
EndPage | 61 |
ExternalDocumentID | oai_doaj_org_article_c2f1e12ef7ff45cb8a9ea8e041d02855 10_30970_ms_63_1_48_61 |
GroupedDBID | 5VS AAYXX ALMA_UNASSIGNED_HOLDINGS AMVHM CITATION KQ8 OK1 P2P RNS GROUPED_DOAJ |
ID | FETCH-LOGICAL-c1451-e0ff07002576b4dbd8a392dd28fa36f10db987be66a6f99e83a25365d2cca80d3 |
IEDL.DBID | DOA |
ISSN | 1027-4634 |
IngestDate | Wed Aug 27 01:12:37 EDT 2025 Sun Jul 06 05:02:48 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English German |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1451-e0ff07002576b4dbd8a392dd28fa36f10db987be66a6f99e83a25365d2cca80d3 |
OpenAccessLink | https://doaj.org/article/c2f1e12ef7ff45cb8a9ea8e041d02855 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c2f1e12ef7ff45cb8a9ea8e041d02855 crossref_primary_10_30970_ms_63_1_48_61 |
PublicationCentury | 2000 |
PublicationDate | 2025-03-26 |
PublicationDateYYYYMMDD | 2025-03-26 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | Matematychni studii |
PublicationYear | 2025 |
Publisher | Ivan Franko National University of Lviv |
Publisher_xml | – name: Ivan Franko National University of Lviv |
References | 8453 8464 8454 8465 8451 8462 8452 8463 8457 8468 8469 8455 8466 8456 8467 8460 8450 8461 8448 cr-split#-8458.1 8459 8449 cr-split#-8458.2 |
References_xml | – ident: 8455 doi: 10.1515/anly-2012-1208 – ident: 8453 doi: 10.32513/asetmj/193220082340 – ident: 8449 – ident: 8450 – ident: #cr-split#-8458.1 doi: 10.1007/BFb0096825 – ident: 8454 doi: 10.30970/ms.52.1.38-47 – ident: 8463 doi: 10.1016/j.jmaa.2006.04.078 – ident: #cr-split#-8458.2 – ident: 8456 doi: 10.30970/ms.55.1.57-63 – ident: 8452 doi: 10.1017/S0027763000027215 – ident: 8465 doi: 10.1080/17476930108815411 – ident: 8467 doi: 10.1353/ajm.2000.0045 – ident: 8466 doi: 10.2996/kmj/1138044046 – ident: 8464 doi: 10.1155/S0161171201011036 – ident: 8462 doi: 10.5486/PMD.2010.4516 – ident: 8457 doi: 10.30970/ms.60.1.40-54 – ident: 8461 – ident: 8448 doi: 10.1515/GMJ.2008.21 – ident: 8459 – ident: 8451 doi: 10.1007/s40315-016-0174-y – ident: 8468 doi: 10.1017/S0004972700016737 – ident: 8469 doi: 10.1017/S0027763000008527 – ident: 8460 doi: 10.1515/ms-2017-0127 |
SSID | ssj0001342173 |
Score | 2.2870617 |
Snippet | In this paper, we establish some mathematical rules for determining the initial and terminal numbers of non-zero terms in any arbitrary polynomial. These rules... |
SourceID | doaj crossref |
SourceType | Open Website Index Database |
StartPage | 48 |
SubjectTerms | generating polynomial meromorphic functions shared sets weighted sharing wider sense |
Title | Meromorphic functions sharing the zeros of lower degree symmetric polynomials in weighted wider sense |
URI | https://doaj.org/article/c2f1e12ef7ff45cb8a9ea8e041d02855 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQ_iE9cXOQiesiZNmiZHFRdRVhAUvIWkmeDCPsQqor_eSbvKevLipYcylPDNDPNo5htCjpM22gbhGSRlmdKBs8xzwyQkG8vgdZJ5OHl4q68e1PVj-biw6ivfCevogTvgTusiCRAFpColVdbBeAveAFciYmgsW_ZSbvlCMdV2V6Qqut_LGEArPINUHWOj5Lbip5Omr2Vf9JVhWvyKSAvE_W2EGayTtXlqSM-6I22QpQibZHX4w6vabBEYQr4-h9iMappDUms1tHnyuT1HUZJ-okRDZ4mO8_4zGgELaqDNx2SSd2fV9Hk2_sijyGh2dDSl721rFCJ9z_N4tMGqFrbJw-Dy_uKKzRclsDov2mXAU0LX5bl4CCqGaDymPTEWJnmpk-AxWFMF0BqxtxaM9EUpdRkL1J_hUe6Q5elsCruEokeKGp00s75j6VX5uhLeesF5zXX0qUdOvsFyzx0fhsM6ooXVTRqnpRNOGadFj5xnLH-kMo91-wK16-badX9pd-8_PrJPVoq8tZdLVugDsvz68gaHmEq8hqPWavB5c2e-AD8YyIY |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meromorphic+functions+sharing+the+zeros+of+lower+degree+symmetric+polynomials+in+weighted+wider+sense&rft.jtitle=Matematychni+studii&rft.au=J.+Banerjee&rft.au=A.+Banerjee&rft.date=2025-03-26&rft.pub=Ivan+Franko+National+University+of+Lviv&rft.issn=1027-4634&rft.eissn=2411-0620&rft.volume=63&rft.issue=1&rft.spage=48&rft.epage=61&rft_id=info:doi/10.30970%2Fms.63.1.48-61&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c2f1e12ef7ff45cb8a9ea8e041d02855 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1027-4634&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1027-4634&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1027-4634&client=summon |