Research on stability control of intelligent electric vehicles by combining multi-parameter control and feedforward feedback control
A feedforward-feedback control method for the stability of intelligent electric vehicles that integrates preview characteristics is proposed. A vehicle preview model is established, and the road curvature is introduced as an influencing factor of vehicle dynamic characteristics through the forward-l...
Saved in:
Published in | International journal of dynamics and control Vol. 13; no. 8 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A feedforward-feedback control method for the stability of intelligent electric vehicles that integrates preview characteristics is proposed. A vehicle preview model is established, and the road curvature is introduced as an influencing factor of vehicle dynamic characteristics through the forward-looking behavior of the vehicle during environmental perception. A stability feedforward control method for tire cornering stiffness compensation is established. At the same time, a model predictive control feedback control law based on multiple control parameters is designed to achieve multi-parameter control of lateral deviation, yaw angle deviation, sideslip angle, and yaw rate. The influence of the prediction time domain parameters on the control strategy is studied, and the prediction time is adaptively adjusted according to the preview information of the vehicle to eliminate the influence of uncertain factors such as feedforward control errors and road disturbances. Verified through the hardware-in-the-loop test platform: Under double lane change and slalom conditions, the sideslip angle, yaw rate, and lateral acceleration of the vehicle under the control strategy proposed in this paper are small, and the tracking accuracy is higher. |
---|---|
AbstractList | A feedforward-feedback control method for the stability of intelligent electric vehicles that integrates preview characteristics is proposed. A vehicle preview model is established, and the road curvature is introduced as an influencing factor of vehicle dynamic characteristics through the forward-looking behavior of the vehicle during environmental perception. A stability feedforward control method for tire cornering stiffness compensation is established. At the same time, a model predictive control feedback control law based on multiple control parameters is designed to achieve multi-parameter control of lateral deviation, yaw angle deviation, sideslip angle, and yaw rate. The influence of the prediction time domain parameters on the control strategy is studied, and the prediction time is adaptively adjusted according to the preview information of the vehicle to eliminate the influence of uncertain factors such as feedforward control errors and road disturbances. Verified through the hardware-in-the-loop test platform: Under double lane change and slalom conditions, the sideslip angle, yaw rate, and lateral acceleration of the vehicle under the control strategy proposed in this paper are small, and the tracking accuracy is higher. |
ArticleNumber | 287 |
Author | Gang, Liu |
Author_xml | – sequence: 1 givenname: Liu orcidid: 0009-0002-9823-3031 surname: Gang fullname: Gang, Liu |
BookMark | eNo9kE1LAzEQhoMoWGv_gKeA59V87GaboxS_oCCIgreQZCdt6japSar07g93tephmPfw8A7znKDDEAMgdEbJBSWkvcw1qXlTETYMbSWrxAEaMSqbigk5PfzP05djNMl5RQhhtCasliP0-QgZdLJLHAPORRvf-7LDNoaSYo-jwz4U6Hu_gFAw9GBL8ha_w9LbHjI23-za-ODDAq-3ffHVRie9hgLpv0WHDjuAzsX0odM-G21f_4BTdOR0n2Hyu8fo-eb6aXZXzR9u72dX88rSmpfKdcN7HaO0aW0jGsedY7UwriWNFkww6iyVjEw1F9bYDgxjNUhDQTTa1LLlY3S-792k-LaFXNQqblMYTirOeCvllDA-UGxP2RRzTuDUJvm1TjtFifoWrvbC1SBc_QhXgn8BQM14Ig |
Cites_doi | 10.1109/TIE.2016.2583400 10.1109/CVCI54083.2021.9661250 10.1080/00423114.2015.1025082 10.1016/j.compag.2018.03.013 10.1109/TSMC.1981.4308705 10.1080/00423110801995727 10.1109/TITS.2017.2754140 10.3901/JME.2021.08.205 10.1007/s12239-022-0075-1 10.1016/j.mechatronics.2015.10.002 10.1177/09544070211004506 10.1109/TITS.2016.2572208 10.1016/j.mechatronics.2017.04.001 10.1080/00423114.2014.951661 10.1109/SMC.2015.441 10.1080/00207721.2018.1479005 10.3901/CJME.2016.0314.031 10.3390/s22249791 10.1016/j.jfranklin.2014.09.019 10.1109/ACCESS.2022.3199752 10.1007/s12239-018-0067-3 10.1016/j.mechatronics.2017.10.003 10.1049/iet-cta.2020.0122 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s40435-025-01792-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2195-2698 |
ExternalDocumentID | 10_1007_s40435_025_01792_6 |
GroupedDBID | 0R~ 30V 4.4 406 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAZMS ABAKF ABBRH ABDBE ABDZT ABECU ABFSG ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADRFC ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AVXWI AXYYD AYFIA AZFZN BGNMA CITATION DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD H13 HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR J-C JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J PT4 RLLFE ROL RSV SCL SHX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR ABTEG |
ID | FETCH-LOGICAL-c143t-fd017d21157c565f3ff246bf705a62621fc19208a36cbcdeb224e9b1e65ab4973 |
ISSN | 2195-268X |
IngestDate | Sat Aug 30 15:43:50 EDT 2025 Thu Aug 14 00:14:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c143t-fd017d21157c565f3ff246bf705a62621fc19208a36cbcdeb224e9b1e65ab4973 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0002-9823-3031 |
PQID | 3237998023 |
PQPubID | 2043900 |
ParticipantIDs | proquest_journals_3237998023 crossref_primary_10_1007_s40435_025_01792_6 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-01 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | International journal of dynamics and control |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 1792_CR20 A Alfi (1792_CR16) 2009; 47 SA Suhail (1792_CR12) 2021; 235 X Jin (1792_CR8) 2017; 19 Z Leng (1792_CR2) 2016; 18 M Gözü (1792_CR14) 2022; 23 B Ren (1792_CR18) 2016; 38 S Yue (1792_CR4) 2018; 19 R Wang (1792_CR10) 2015; 352 A Nahidi (1792_CR23) 2017; 44 1792_CR26 1792_CR25 Z Cheng (1792_CR1) 2018; 148 G Xu (1792_CR15) 2019; 11 1792_CR28 1792_CR27 JAV Alves (1792_CR13) 2022; 10 H Alipour (1792_CR9) 2014; 52 M Podgorski (1792_CR21) 2015; 53 K Shi (1792_CR11) 2018; 49 L Li (1792_CR3) 2016; 64 M Jalali (1792_CR17) 2017; 48 K Shi (1792_CR19) 2018; 49 Z Yu (1792_CR5) 2016; 29 D Zhang (1792_CR7) 2021; 11 L Li (1792_CR6) 2015; 53 G Liu (1792_CR29) 2025; 16 CC MacAdam (1792_CR22) 1981; 11 RC Wang (1792_CR24) 2019; 41 |
References_xml | – volume: 64 start-page: 3389 issue: 4 year: 2016 ident: 1792_CR3 publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2016.2583400 – ident: 1792_CR20 doi: 10.1109/CVCI54083.2021.9661250 – volume: 53 start-page: 1093 issue: 8 year: 2015 ident: 1792_CR6 publication-title: Veh Syst Dyn doi: 10.1080/00423114.2015.1025082 – volume: 148 start-page: 142 year: 2018 ident: 1792_CR1 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2018.03.013 – volume: 16 issue: 3 year: 2025 ident: 1792_CR29 publication-title: World Electr Veh J – volume: 11 start-page: 393 issue: 6 year: 1981 ident: 1792_CR22 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1981.4308705 – volume: 47 start-page: 265 issue: 3 year: 2009 ident: 1792_CR16 publication-title: Veh Syst Dyn doi: 10.1080/00423110801995727 – volume: 19 start-page: 2696 issue: 8 year: 2017 ident: 1792_CR8 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2017.2754140 – ident: 1792_CR27 doi: 10.3901/JME.2021.08.205 – volume: 23 start-page: 841 issue: no. 3 year: 2022 ident: 1792_CR14 publication-title: Int J Automot Technol doi: 10.1007/s12239-022-0075-1 – volume: 38 start-page: 103 year: 2016 ident: 1792_CR18 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.10.002 – volume: 235 start-page: 3199 issue: 12 year: 2021 ident: 1792_CR12 publication-title: Proc Inst Mech Eng Part D J Automob Eng doi: 10.1177/09544070211004506 – volume: 18 start-page: 332 issue: 2 year: 2016 ident: 1792_CR2 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2016.2572208 – volume: 11 issue: no. 6 year: 2021 ident: 1792_CR7 publication-title: Appl Sci – volume: 44 start-page: 60 year: 2017 ident: 1792_CR23 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.04.001 – volume: 52 start-page: 1584 issue: 12 year: 2014 ident: 1792_CR9 publication-title: Veh Syst Dyn doi: 10.1080/00423114.2014.951661 – ident: 1792_CR26 doi: 10.1109/SMC.2015.441 – volume: 49 start-page: 1795 issue: 8 year: 2018 ident: 1792_CR11 publication-title: Int J Syst Sci doi: 10.1080/00207721.2018.1479005 – volume: 29 start-page: 486 issue: 3 year: 2016 ident: 1792_CR5 publication-title: Chin J Mech Eng doi: 10.3901/CJME.2016.0314.031 – ident: 1792_CR28 doi: 10.3390/s22249791 – volume: 352 start-page: 645 issue: 2 year: 2015 ident: 1792_CR10 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2014.09.019 – volume: 10 start-page: 87787 year: 2022 ident: 1792_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3199752 – volume: 11 issue: 11 year: 2019 ident: 1792_CR15 publication-title: Adv Mech Eng – volume: 53 start-page: 1427 issue: 10 year: 2015 ident: 1792_CR21 publication-title: Veh Syst Dyn – volume: 41 start-page: 763 year: 2019 ident: 1792_CR24 publication-title: Automot Eng – volume: 19 start-page: 695 year: 2018 ident: 1792_CR4 publication-title: Int J Automot Technol doi: 10.1007/s12239-018-0067-3 – volume: 49 start-page: 1795 issue: 8 year: 2018 ident: 1792_CR19 publication-title: Int J Syst Sci doi: 10.1080/00207721.2018.1479005 – volume: 48 start-page: 30 year: 2017 ident: 1792_CR17 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.10.003 – ident: 1792_CR25 doi: 10.1049/iet-cta.2020.0122 |
SSID | ssj0002140249 ssib031263557 |
Score | 2.312393 |
Snippet | A feedforward-feedback control method for the stability of intelligent electric vehicles that integrates preview characteristics is proposed. A vehicle preview... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Control methods Control stability Control systems Control theory Cornering Deviation Dynamic characteristics Electric vehicles Feedback control Feedforward control Lane changing Parameters Predictive control Roads & highways Sideslip Stability Yaw |
Title | Research on stability control of intelligent electric vehicles by combining multi-parameter control and feedforward feedback control |
URI | https://www.proquest.com/docview/3237998023 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELUgvcAB8SkKBfnALTLatffLxwqlVFDKJZHCyVp7bVEhkopskdozP5wZr-1sIELAZbVyHGfjebJnvG_eEPLK6LysRWOZg82SFW1mWKO1ZMI1Mms6XmqJ-c4fzqvTRfFuWS63_HmfXdLr1-Zmb17J_1gV2sCumCX7D5ZNg0ID3IN94QoWhutf2TjS5vDEH7w8z3O9TuzzIAYxCG7206HgzYWZfrefPRcOPU94Ku1LRAzMQoZK4F-RIZNGwYN1B1scOLdIsPX3ujVfYoexd7t7vDgSpeiGuvebkEW3_SJSgS6u_OF8G_bQcATBy0SA2z2CRH41vvVIKTK4inEsBskrXz8YNpxx21B-Oi3DYgS3Zu_qPhA6NigIhGnlyDqsJWd7pLTPP6qTxdmZms-W89vkgEMMwSfk4Pjtp_ezuNyIHIV4wktf3Lg5BJvcB0zpoUOalU-2_O1nd12Z3Z3cuyfz--ReiCvo8QCSB-SWXT0kd0dqk4_IjwgXul7RBBcazEHXjo7gQiNcaIQL1dg3wIX-Apc0ChiYjuBCI1xih8dkcTKbvzlloQgHM-BK98x18G87jppMBpx_J5zjRaVdnZUtBMM8dwaChKxpRWW06awGn9BKnduqbHUha_GETFbrlX1KaNGUBgLorK1R80jDUlDaLmutcJ00vMsPyTTOp7octFZUUtX2s69g9pWffVUdkqM45SoAeqMEF7WUKGr47M8fPyd3tkg-IpP-25V9Ae5lr18GmPwE3XOAUw |
linkProvider | Springer Nature |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+stability+control+of+intelligent+electric+vehicles+by+combining+multi-parameter+control+and+feedforward+feedback+control&rft.jtitle=International+journal+of+dynamics+and+control&rft.au=Liu%2C+Gang&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2195-268X&rft.eissn=2195-2698&rft.volume=13&rft.issue=8&rft_id=info:doi/10.1007%2Fs40435-025-01792-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2195-268X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2195-268X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2195-268X&client=summon |