Spatio-temporal graph neural networks to improve precipitation forecasts from numerical models

Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of several atmospheric processes. The classical approach for weather forecasting is based on numerical weather prediction (NWP). However, this a...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 29; no. 9-10; pp. 4481 - 4494
Main Authors Yousaf, Umair, De Rango, Alessio, Furnari, Luca, D’Ambrosio, Donato, Senatore, Alfonso, Mendicino, Giuseppe
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of several atmospheric processes. The classical approach for weather forecasting is based on numerical weather prediction (NWP). However, this approach is subject to errors and criticism as it is unable to predict severe events accurately, especially if located in complex areas characterized by steep orographic effects or strong air-sea interactions. In this work, a Deep Learning (DL) methodology has been applied to improve the one-day ahead precipitation accuracy of the Weather Research and Forecasting (WRF) NWP system by correcting the prediction error. The WRF data consists of a spatial resolution of 2 km and refers to a portion of the Calabria region (Italy). A weather station network of 22 gauges has been considered inside this latter area. The meteorological data for the whole year of 2021 and 4 months of 2022 is considered for training and evaluation respectively. The developed DL model is based on Spatio-Temporal Graph Neural Network (called WRF-GNN). The improved prediction has been compared with observed precipitation data from the rain gauge network, the WRF output, Random Forest (WRF-RF), XGBoost (WRF-XGB), and another Artificial Neural Network (WRF-ANN) model. The WRF-GNN significantly enhanced the prediction accuracy compared to the WRF and WRF-ANN models, with an improvement from + 16 to + 34% with respect to WRF, by minimizing the error compared to observations.
AbstractList Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of several atmospheric processes. The classical approach for weather forecasting is based on numerical weather prediction (NWP). However, this approach is subject to errors and criticism as it is unable to predict severe events accurately, especially if located in complex areas characterized by steep orographic effects or strong air-sea interactions. In this work, a Deep Learning (DL) methodology has been applied to improve the one-day ahead precipitation accuracy of the Weather Research and Forecasting (WRF) NWP system by correcting the prediction error. The WRF data consists of a spatial resolution of 2 km and refers to a portion of the Calabria region (Italy). A weather station network of 22 gauges has been considered inside this latter area. The meteorological data for the whole year of 2021 and 4 months of 2022 is considered for training and evaluation respectively. The developed DL model is based on Spatio-Temporal Graph Neural Network (called WRF-GNN). The improved prediction has been compared with observed precipitation data from the rain gauge network, the WRF output, Random Forest (WRF-RF), XGBoost (WRF-XGB), and another Artificial Neural Network (WRF-ANN) model. The WRF-GNN significantly enhanced the prediction accuracy compared to the WRF and WRF-ANN models, with an improvement from + 16 to + 34% with respect to WRF, by minimizing the error compared to observations.
Author Furnari, Luca
Mendicino, Giuseppe
De Rango, Alessio
Senatore, Alfonso
Yousaf, Umair
D’Ambrosio, Donato
Author_xml – sequence: 1
  givenname: Umair
  orcidid: 0009-0003-2430-5618
  surname: Yousaf
  fullname: Yousaf, Umair
– sequence: 2
  givenname: Alessio
  orcidid: 0000-0002-7045-2702
  surname: De Rango
  fullname: De Rango, Alessio
– sequence: 3
  givenname: Luca
  orcidid: 0000-0002-7360-0811
  surname: Furnari
  fullname: Furnari, Luca
– sequence: 4
  givenname: Donato
  orcidid: 0000-0003-1701-2203
  surname: D’Ambrosio
  fullname: D’Ambrosio, Donato
– sequence: 5
  givenname: Alfonso
  orcidid: 0000-0001-9716-3532
  surname: Senatore
  fullname: Senatore, Alfonso
– sequence: 6
  givenname: Giuseppe
  orcidid: 0000-0003-0353-5206
  surname: Mendicino
  fullname: Mendicino, Giuseppe
BookMark eNotkE1LAzEQhoNUsK3-AU8Bz9F8p3uU4hcUPKhXQzY7q1u7mzXJKv57UytzmBl435mXZ4FmQxgAoXNGLxml5ipRqigllCvCqBaKmCM0Z1IIYqSpZn8zJ0ZLcYIWKW0p5cwoMUevT6PLXSAZ-jFEt8Nv0Y3veIBpvwyQv0P8SDgH3PVjDF-Axwi-G7u8tw24DWV1KSfcxtDjYeohdr5Y-9DALp2i49btEpz99yV6ub15Xt-TzePdw_p6Q3wJlglowSqqGgWNb4XTTmoPNV81XmvpGEjjSglgDnizUrVTlDXC1UaCZjVzYokuDndLxs8JUrbbMMWhvLSCc71isqpoUfGDyseQUoTWjrHrXfyxjNo9R3vgaAtH-8fRGvELSo5qEg
Cites_doi 10.1109/ICICCT.2018.8473167
10.3390/atmos11030246
10.1007/978-3-031-81244-6_35
10.1109/TITS.2019.2935152
10.3390/w12061545
10.1007/s11269-006-9091-6
10.1017/CBO9781107298019
10.1029/2000JD900719
10.48550/ARXIV.2202.11214
10.1029/2023JD039011
10.1109/TNNLS.2021.3100902
10.1109/TNN.2008.2010350
10.1016/j.jhydrol.2019.124231
10.1038/s41586-023-06185-3
10.1007/s11269-014-0860-3
10.1016/j.eswa.2022.117921
10.3390/ijgi10070485
10.21957/26f0ad3473
10.48550/ARXIV.1312.6203
10.1016/j.heliyon.2018.e00938
10.1007/s10489-021-02587-w
10.3390/atmos13020180
10.1016/j.aiopen.2021.01.001
10.3390/w12071909
10.5065/ew8g-yr95
10.1016/j.eswa.2023.121907
10.1038/s41612-023-00512-1
10.3389/fenvs.2022.935696
10.1007/s12665-017-6870-8
10.48550/ARXIV.2304.02948
10.1175/JHM-D-19-0270.1
10.48550/arXiv.2311.07222
10.5194/gmd-16-6433-2023
10.1213/ANE.0000000000002864
10.48550/arXiv.2306.06079
10.1126/science.aat1871
10.1186/s40537-023-00876-4
10.1007/s12665-018-7498-z
10.1109/MSP.2012.2235192
10.1109/TITS.2019.2950416
10.1126/science.adi2336
10.1016/j.dsp.2023.103989
10.1029/2006GL025734
10.48550/ARXIV.1606.09375
10.1007/s11269-022-03218-w
10.5194/nhess-19-1619-2019
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00500-025-10635-7
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-7479
EndPage 4494
ExternalDocumentID 10_1007_s00500_025_10635_7
GeographicLocations United States--US
China
GeographicLocations_xml – name: China
– name: United States--US
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ABRTQ
JQ2
ID FETCH-LOGICAL-c143t-e631905d5edcf3a6a46ceb28dc664a1e47a7a73e1ae2d85ba501d3ab74e61b1a3
ISSN 1432-7643
IngestDate Fri Jul 25 09:13:41 EDT 2025
Thu Jul 10 10:01:10 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9-10
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c143t-e631905d5edcf3a6a46ceb28dc664a1e47a7a73e1ae2d85ba501d3ab74e61b1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1701-2203
0000-0003-0353-5206
0009-0003-2430-5618
0000-0002-7360-0811
0000-0002-7045-2702
0000-0001-9716-3532
PQID 3226814990
PQPubID 2043697
PageCount 14
ParticipantIDs proquest_journals_3226814990
crossref_primary_10_1007_s00500_025_10635_7
PublicationCentury 2000
PublicationDate 2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-00
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Soft computing (Berlin, Germany)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 10635_CR9
L Furnari (10635_CR24) 2020
KE Taylor (10635_CR46) 2001; 106
L Chen (10635_CR12) 2023; 6
10635_CR49
R Lam (10635_CR33) 2023; 382
L Zhao (10635_CR52) 2019; 21
10635_CR41
E Avolio (10635_CR5) 2019; 19
B Bochenek (10635_CR8) 2022; 13
AG Pendergrass (10635_CR38) 2018; 360
10635_CR43
A Micheli (10635_CR35) 2009; 20
DI Shuman (10635_CR45) 2013; 30
F-H Zhang (10635_CR51) 2023; 136
M Wei (10635_CR48) 2022; 36
CO Burgh-Day (10635_CR11) 2023; 16
J Bai (10635_CR6) 2021; 10
10635_CR19
J Kang (10635_CR29) 2020; 11
10635_CR18
W Jiang (10635_CR28) 2022; 207
10635_CR50
10635_CR13
S Shalev-Shwartz (10635_CR44) 2014
P Costabile (10635_CR16) 2020; 580
B Choubin (10635_CR15) 2018; 77
G Mendicino (10635_CR34) 2007; 21
OI Abiodun (10635_CR1) 2018
X Peng (10635_CR39) 2023
Z Cui (10635_CR17) 2019; 21
Q Feng (10635_CR22) 2015; 29
M Valipour (10635_CR47) 2024
10635_CR27
F Giorgi (10635_CR25) 2006
10635_CR20
E Alpaydin (10635_CR3) 2020
10635_CR23
K Bi (10635_CR7) 2023; 619
A Senatore (10635_CR42) 2020; 21
J Estévez (10635_CR21) 2020; 12
J Zhou (10635_CR53) 2020; 1
K-HN Bui (10635_CR10) 2022; 52
O Haraldur (10635_CR26) 2021
B Choubin (10635_CR14) 2017; 76
10635_CR37
10635_CR36
A Sayeed (10635_CR40) 2020; 34
10635_CR31
TP Agyekum (10635_CR2) 2022
B Khemani (10635_CR30) 2024; 11
10635_CR4
10635_CR32
References_xml – ident: 10635_CR23
  doi: 10.1109/ICICCT.2018.8473167
– volume: 11
  start-page: 246
  issue: 3
  year: 2020
  ident: 10635_CR29
  publication-title: Atmosphere
  doi: 10.3390/atmos11030246
– ident: 10635_CR50
  doi: 10.1007/978-3-031-81244-6_35
– volume: 21
  start-page: 3848
  issue: 9
  year: 2019
  ident: 10635_CR52
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2935152
– year: 2020
  ident: 10635_CR24
  publication-title: Water
  doi: 10.3390/w12061545
– volume: 21
  start-page: 1409
  issue: 8
  year: 2007
  ident: 10635_CR34
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-006-9091-6
– ident: 10635_CR36
– volume-title: Understanding machine learning: from theory to algorithms
  year: 2014
  ident: 10635_CR44
  doi: 10.1017/CBO9781107298019
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 10635_CR46
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2000JD900719
– ident: 10635_CR37
  doi: 10.48550/ARXIV.2202.11214
– year: 2023
  ident: 10635_CR39
  publication-title: J Geophys Res Atmos
  doi: 10.1029/2023JD039011
– volume: 34
  start-page: 750
  issue: 2
  year: 2020
  ident: 10635_CR40
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2021.3100902
– volume: 20
  start-page: 498
  issue: 3
  year: 2009
  ident: 10635_CR35
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2008.2010350
– volume: 580
  year: 2020
  ident: 10635_CR16
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.124231
– volume: 619
  start-page: 533
  issue: 7970
  year: 2023
  ident: 10635_CR7
  publication-title: Nature
  doi: 10.1038/s41586-023-06185-3
– volume: 29
  start-page: 1049
  year: 2015
  ident: 10635_CR22
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-014-0860-3
– volume: 207
  year: 2022
  ident: 10635_CR28
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.117921
– volume: 10
  start-page: 485
  issue: 7
  year: 2021
  ident: 10635_CR6
  publication-title: ISPRS Int J Geo-Inf
  doi: 10.3390/ijgi10070485
– ident: 10635_CR49
– ident: 10635_CR19
  doi: 10.21957/26f0ad3473
– ident: 10635_CR9
  doi: 10.48550/ARXIV.1312.6203
– volume-title: Uncertainties in numerical weather prediction
  year: 2021
  ident: 10635_CR26
– year: 2018
  ident: 10635_CR1
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2018.e00938
– volume-title: Introduction to machine learning
  year: 2020
  ident: 10635_CR3
– volume: 52
  start-page: 2763
  issue: 3
  year: 2022
  ident: 10635_CR10
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02587-w
– volume: 13
  start-page: 180
  issue: 2
  year: 2022
  ident: 10635_CR8
  publication-title: Atmosphere
  doi: 10.3390/atmos13020180
– ident: 10635_CR43
– volume: 1
  start-page: 57
  year: 2020
  ident: 10635_CR53
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2021.01.001
– volume: 12
  start-page: 1909
  issue: 7
  year: 2020
  ident: 10635_CR21
  publication-title: Water
  doi: 10.3390/w12071909
– ident: 10635_CR27
  doi: 10.5065/ew8g-yr95
– year: 2024
  ident: 10635_CR47
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.121907
– volume: 6
  start-page: 190
  issue: 1
  year: 2023
  ident: 10635_CR12
  publication-title: npj Clim Atmos Sci
  doi: 10.1038/s41612-023-00512-1
– year: 2022
  ident: 10635_CR2
  publication-title: Front Environ Sci
  doi: 10.3389/fenvs.2022.935696
– volume: 76
  start-page: 1
  year: 2017
  ident: 10635_CR14
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-017-6870-8
– ident: 10635_CR13
  doi: 10.48550/ARXIV.2304.02948
– volume: 21
  start-page: 1865
  issue: 8
  year: 2020
  ident: 10635_CR42
  publication-title: J Hydrometeorol
  doi: 10.1175/JHM-D-19-0270.1
– ident: 10635_CR32
  doi: 10.48550/arXiv.2311.07222
– volume: 16
  start-page: 6433
  issue: 22
  year: 2023
  ident: 10635_CR11
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-16-6433-2023
– ident: 10635_CR41
  doi: 10.1213/ANE.0000000000002864
– ident: 10635_CR4
  doi: 10.48550/arXiv.2306.06079
– volume: 360
  start-page: 1072
  issue: 6393
  year: 2018
  ident: 10635_CR38
  publication-title: Science
  doi: 10.1126/science.aat1871
– volume: 11
  start-page: 18
  issue: 1
  year: 2024
  ident: 10635_CR30
  publication-title: J Big Data
  doi: 10.1186/s40537-023-00876-4
– volume: 77
  start-page: 1
  year: 2018
  ident: 10635_CR15
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7498-z
– volume: 30
  start-page: 83
  issue: 3
  year: 2013
  ident: 10635_CR45
  publication-title: IEEE Signal Process Mag
  doi: 10.1109/MSP.2012.2235192
– volume: 21
  start-page: 4883
  issue: 11
  year: 2019
  ident: 10635_CR17
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2019.2950416
– ident: 10635_CR20
– volume: 382
  start-page: 1416
  issue: 6677
  year: 2023
  ident: 10635_CR33
  publication-title: Science
  doi: 10.1126/science.adi2336
– volume: 136
  year: 2023
  ident: 10635_CR51
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2023.103989
– year: 2006
  ident: 10635_CR25
  publication-title: Geophys Res Lett
  doi: 10.1029/2006GL025734
– ident: 10635_CR18
  doi: 10.48550/ARXIV.1606.09375
– ident: 10635_CR31
– volume: 36
  start-page: 4003
  issue: 11
  year: 2022
  ident: 10635_CR48
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03218-w
– volume: 19
  start-page: 1619
  issue: 8
  year: 2019
  ident: 10635_CR5
  publication-title: Nat Hazards Earth Syst Sci
  doi: 10.5194/nhess-19-1619-2019
SSID ssj0021753
Score 2.394231
Snippet Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 4481
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Climate change
Error correction
Graph neural networks
Machine learning
Meteorological data
Neural networks
Numerical models
Numerical weather forecasting
Precipitation
Spatial resolution
Weather forecasting
Weather stations
Title Spatio-temporal graph neural networks to improve precipitation forecasts from numerical models
URI https://www.proquest.com/docview/3226814990
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILd8RgID_wVmVqfGvz2LFVEypFYq3UJyLbMSjSlk5L8gA_iN_J8SVOyhACVClqHampfb6em79zjNDbCSkUJ4onfCaLhKVGJ5JkLBGaZQYsIKXK7uh-WImLDXu_5dvR6MeAtdQ26kR__21dyf9IFcZArrZK9h8kG78UBuA9yBeuIGG4_pWMLx0dOgntpa7Grvv02LaohA-VJ3i7Dg6lSx3Ymiijy5uyZxgaLeum9kUmVet3b6788Tj10G-9BG3t6OdtE3ILvk-WT6vbwoNvg5wCqJBaum6Pm2tZRvrvmRl_ktXXrrDG8m8jfOxsfdH7su3ZQ2cdFyObXyuw5-XOO_2VbHbDfAXhPTtwL19pydh2iyTW0zj1yyj4-8I3bjox3RhNIOjJhjo7zMhjMxsoYIg204ExZ8wfoXzHUHhuiD3z3VbWE9uNVdjmnb1Z7KgAq4_5YrNc5uvz7foeOiQQjoA-PZwvTk9XMbQP_U7j7w_lWa5I884z9l2gfQ_AuTXrR-hBiEfw3IPrMRqZ6gl62J31gYPqf4o-_4I17LCGPdZwhzXc7HDAGt7DGo5YwxZrOGINe6w9Q5vF-frdRRLO5kg0TLJJjADdPeEFN4X-QqWQTGijyKzQQjCZGjaV8KImlYYUM64kn6QFlWrKjEhVKulzdFDtKvMCYa6LKVOEM1JouMszSVzFuDv5gBl6hMbdcuU3vgVLHpttu8XNYXFzt7j59Agddyuah79qnYPVErMUgvvJyz_ffoXu95g9RgfNbWteg9fZqDdB5D8Bk9ODzw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+graph+neural+networks+to+improve+precipitation+forecasts+from+numerical+models&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Yousaf%2C+Umair&rft.au=De+Rango%2C+Alessio&rft.au=Furnari%2C+Luca&rft.au=D%E2%80%99Ambrosio%2C+Donato&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=9&rft.spage=4481&rft.epage=4494&rft_id=info:doi/10.1007%2Fs00500-025-10635-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon