Spatio-temporal graph neural networks to improve precipitation forecasts from numerical models
Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of several atmospheric processes. The classical approach for weather forecasting is based on numerical weather prediction (NWP). However, this a...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 29; no. 9-10; pp. 4481 - 4494 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of several atmospheric processes. The classical approach for weather forecasting is based on numerical weather prediction (NWP). However, this approach is subject to errors and criticism as it is unable to predict severe events accurately, especially if located in complex areas characterized by steep orographic effects or strong air-sea interactions. In this work, a Deep Learning (DL) methodology has been applied to improve the one-day ahead precipitation accuracy of the Weather Research and Forecasting (WRF) NWP system by correcting the prediction error. The WRF data consists of a spatial resolution of 2 km and refers to a portion of the Calabria region (Italy). A weather station network of 22 gauges has been considered inside this latter area. The meteorological data for the whole year of 2021 and 4 months of 2022 is considered for training and evaluation respectively. The developed DL model is based on Spatio-Temporal Graph Neural Network (called WRF-GNN). The improved prediction has been compared with observed precipitation data from the rain gauge network, the WRF output, Random Forest (WRF-RF), XGBoost (WRF-XGB), and another Artificial Neural Network (WRF-ANN) model. The WRF-GNN significantly enhanced the prediction accuracy compared to the WRF and WRF-ANN models, with an improvement from + 16 to + 34% with respect to WRF, by minimizing the error compared to observations. |
---|---|
AbstractList | Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of several atmospheric processes. The classical approach for weather forecasting is based on numerical weather prediction (NWP). However, this approach is subject to errors and criticism as it is unable to predict severe events accurately, especially if located in complex areas characterized by steep orographic effects or strong air-sea interactions. In this work, a Deep Learning (DL) methodology has been applied to improve the one-day ahead precipitation accuracy of the Weather Research and Forecasting (WRF) NWP system by correcting the prediction error. The WRF data consists of a spatial resolution of 2 km and refers to a portion of the Calabria region (Italy). A weather station network of 22 gauges has been considered inside this latter area. The meteorological data for the whole year of 2021 and 4 months of 2022 is considered for training and evaluation respectively. The developed DL model is based on Spatio-Temporal Graph Neural Network (called WRF-GNN). The improved prediction has been compared with observed precipitation data from the rain gauge network, the WRF output, Random Forest (WRF-RF), XGBoost (WRF-XGB), and another Artificial Neural Network (WRF-ANN) model. The WRF-GNN significantly enhanced the prediction accuracy compared to the WRF and WRF-ANN models, with an improvement from + 16 to + 34% with respect to WRF, by minimizing the error compared to observations. |
Author | Furnari, Luca Mendicino, Giuseppe De Rango, Alessio Senatore, Alfonso Yousaf, Umair D’Ambrosio, Donato |
Author_xml | – sequence: 1 givenname: Umair orcidid: 0009-0003-2430-5618 surname: Yousaf fullname: Yousaf, Umair – sequence: 2 givenname: Alessio orcidid: 0000-0002-7045-2702 surname: De Rango fullname: De Rango, Alessio – sequence: 3 givenname: Luca orcidid: 0000-0002-7360-0811 surname: Furnari fullname: Furnari, Luca – sequence: 4 givenname: Donato orcidid: 0000-0003-1701-2203 surname: D’Ambrosio fullname: D’Ambrosio, Donato – sequence: 5 givenname: Alfonso orcidid: 0000-0001-9716-3532 surname: Senatore fullname: Senatore, Alfonso – sequence: 6 givenname: Giuseppe orcidid: 0000-0003-0353-5206 surname: Mendicino fullname: Mendicino, Giuseppe |
BookMark | eNotkE1LAzEQhoNUsK3-AU8Bz9F8p3uU4hcUPKhXQzY7q1u7mzXJKv57UytzmBl435mXZ4FmQxgAoXNGLxml5ipRqigllCvCqBaKmCM0Z1IIYqSpZn8zJ0ZLcYIWKW0p5cwoMUevT6PLXSAZ-jFEt8Nv0Y3veIBpvwyQv0P8SDgH3PVjDF-Axwi-G7u8tw24DWV1KSfcxtDjYeohdr5Y-9DALp2i49btEpz99yV6ub15Xt-TzePdw_p6Q3wJlglowSqqGgWNb4XTTmoPNV81XmvpGEjjSglgDnizUrVTlDXC1UaCZjVzYokuDndLxs8JUrbbMMWhvLSCc71isqpoUfGDyseQUoTWjrHrXfyxjNo9R3vgaAtH-8fRGvELSo5qEg |
Cites_doi | 10.1109/ICICCT.2018.8473167 10.3390/atmos11030246 10.1007/978-3-031-81244-6_35 10.1109/TITS.2019.2935152 10.3390/w12061545 10.1007/s11269-006-9091-6 10.1017/CBO9781107298019 10.1029/2000JD900719 10.48550/ARXIV.2202.11214 10.1029/2023JD039011 10.1109/TNNLS.2021.3100902 10.1109/TNN.2008.2010350 10.1016/j.jhydrol.2019.124231 10.1038/s41586-023-06185-3 10.1007/s11269-014-0860-3 10.1016/j.eswa.2022.117921 10.3390/ijgi10070485 10.21957/26f0ad3473 10.48550/ARXIV.1312.6203 10.1016/j.heliyon.2018.e00938 10.1007/s10489-021-02587-w 10.3390/atmos13020180 10.1016/j.aiopen.2021.01.001 10.3390/w12071909 10.5065/ew8g-yr95 10.1016/j.eswa.2023.121907 10.1038/s41612-023-00512-1 10.3389/fenvs.2022.935696 10.1007/s12665-017-6870-8 10.48550/ARXIV.2304.02948 10.1175/JHM-D-19-0270.1 10.48550/arXiv.2311.07222 10.5194/gmd-16-6433-2023 10.1213/ANE.0000000000002864 10.48550/arXiv.2306.06079 10.1126/science.aat1871 10.1186/s40537-023-00876-4 10.1007/s12665-018-7498-z 10.1109/MSP.2012.2235192 10.1109/TITS.2019.2950416 10.1126/science.adi2336 10.1016/j.dsp.2023.103989 10.1029/2006GL025734 10.48550/ARXIV.1606.09375 10.1007/s11269-022-03218-w 10.5194/nhess-19-1619-2019 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00500-025-10635-7 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-7479 |
EndPage | 4494 |
ExternalDocumentID | 10_1007_s00500_025_10635_7 |
GeographicLocations | United States--US China |
GeographicLocations_xml | – name: China – name: United States--US |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PHGZM PHGZT PQGLB PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ABRTQ JQ2 |
ID | FETCH-LOGICAL-c143t-e631905d5edcf3a6a46ceb28dc664a1e47a7a73e1ae2d85ba501d3ab74e61b1a3 |
ISSN | 1432-7643 |
IngestDate | Fri Jul 25 09:13:41 EDT 2025 Thu Jul 10 10:01:10 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9-10 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c143t-e631905d5edcf3a6a46ceb28dc664a1e47a7a73e1ae2d85ba501d3ab74e61b1a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1701-2203 0000-0003-0353-5206 0009-0003-2430-5618 0000-0002-7360-0811 0000-0002-7045-2702 0000-0001-9716-3532 |
PQID | 3226814990 |
PQPubID | 2043697 |
PageCount | 14 |
ParticipantIDs | proquest_journals_3226814990 crossref_primary_10_1007_s00500_025_10635_7 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-00 20250501 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-00 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 10635_CR9 L Furnari (10635_CR24) 2020 KE Taylor (10635_CR46) 2001; 106 L Chen (10635_CR12) 2023; 6 10635_CR49 R Lam (10635_CR33) 2023; 382 L Zhao (10635_CR52) 2019; 21 10635_CR41 E Avolio (10635_CR5) 2019; 19 B Bochenek (10635_CR8) 2022; 13 AG Pendergrass (10635_CR38) 2018; 360 10635_CR43 A Micheli (10635_CR35) 2009; 20 DI Shuman (10635_CR45) 2013; 30 F-H Zhang (10635_CR51) 2023; 136 M Wei (10635_CR48) 2022; 36 CO Burgh-Day (10635_CR11) 2023; 16 J Bai (10635_CR6) 2021; 10 10635_CR19 J Kang (10635_CR29) 2020; 11 10635_CR18 W Jiang (10635_CR28) 2022; 207 10635_CR50 10635_CR13 S Shalev-Shwartz (10635_CR44) 2014 P Costabile (10635_CR16) 2020; 580 B Choubin (10635_CR15) 2018; 77 G Mendicino (10635_CR34) 2007; 21 OI Abiodun (10635_CR1) 2018 X Peng (10635_CR39) 2023 Z Cui (10635_CR17) 2019; 21 Q Feng (10635_CR22) 2015; 29 M Valipour (10635_CR47) 2024 10635_CR27 F Giorgi (10635_CR25) 2006 10635_CR20 E Alpaydin (10635_CR3) 2020 10635_CR23 K Bi (10635_CR7) 2023; 619 A Senatore (10635_CR42) 2020; 21 J Estévez (10635_CR21) 2020; 12 J Zhou (10635_CR53) 2020; 1 K-HN Bui (10635_CR10) 2022; 52 O Haraldur (10635_CR26) 2021 B Choubin (10635_CR14) 2017; 76 10635_CR37 10635_CR36 A Sayeed (10635_CR40) 2020; 34 10635_CR31 TP Agyekum (10635_CR2) 2022 B Khemani (10635_CR30) 2024; 11 10635_CR4 10635_CR32 |
References_xml | – ident: 10635_CR23 doi: 10.1109/ICICCT.2018.8473167 – volume: 11 start-page: 246 issue: 3 year: 2020 ident: 10635_CR29 publication-title: Atmosphere doi: 10.3390/atmos11030246 – ident: 10635_CR50 doi: 10.1007/978-3-031-81244-6_35 – volume: 21 start-page: 3848 issue: 9 year: 2019 ident: 10635_CR52 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2935152 – year: 2020 ident: 10635_CR24 publication-title: Water doi: 10.3390/w12061545 – volume: 21 start-page: 1409 issue: 8 year: 2007 ident: 10635_CR34 publication-title: Water Resour Manag doi: 10.1007/s11269-006-9091-6 – ident: 10635_CR36 – volume-title: Understanding machine learning: from theory to algorithms year: 2014 ident: 10635_CR44 doi: 10.1017/CBO9781107298019 – volume: 106 start-page: 7183 issue: D7 year: 2001 ident: 10635_CR46 publication-title: J Geophys Res Atmos doi: 10.1029/2000JD900719 – ident: 10635_CR37 doi: 10.48550/ARXIV.2202.11214 – year: 2023 ident: 10635_CR39 publication-title: J Geophys Res Atmos doi: 10.1029/2023JD039011 – volume: 34 start-page: 750 issue: 2 year: 2020 ident: 10635_CR40 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2021.3100902 – volume: 20 start-page: 498 issue: 3 year: 2009 ident: 10635_CR35 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2008.2010350 – volume: 580 year: 2020 ident: 10635_CR16 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.124231 – volume: 619 start-page: 533 issue: 7970 year: 2023 ident: 10635_CR7 publication-title: Nature doi: 10.1038/s41586-023-06185-3 – volume: 29 start-page: 1049 year: 2015 ident: 10635_CR22 publication-title: Water Resour Manag doi: 10.1007/s11269-014-0860-3 – volume: 207 year: 2022 ident: 10635_CR28 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.117921 – volume: 10 start-page: 485 issue: 7 year: 2021 ident: 10635_CR6 publication-title: ISPRS Int J Geo-Inf doi: 10.3390/ijgi10070485 – ident: 10635_CR49 – ident: 10635_CR19 doi: 10.21957/26f0ad3473 – ident: 10635_CR9 doi: 10.48550/ARXIV.1312.6203 – volume-title: Uncertainties in numerical weather prediction year: 2021 ident: 10635_CR26 – year: 2018 ident: 10635_CR1 publication-title: Heliyon doi: 10.1016/j.heliyon.2018.e00938 – volume-title: Introduction to machine learning year: 2020 ident: 10635_CR3 – volume: 52 start-page: 2763 issue: 3 year: 2022 ident: 10635_CR10 publication-title: Appl Intell doi: 10.1007/s10489-021-02587-w – volume: 13 start-page: 180 issue: 2 year: 2022 ident: 10635_CR8 publication-title: Atmosphere doi: 10.3390/atmos13020180 – ident: 10635_CR43 – volume: 1 start-page: 57 year: 2020 ident: 10635_CR53 publication-title: AI Open doi: 10.1016/j.aiopen.2021.01.001 – volume: 12 start-page: 1909 issue: 7 year: 2020 ident: 10635_CR21 publication-title: Water doi: 10.3390/w12071909 – ident: 10635_CR27 doi: 10.5065/ew8g-yr95 – year: 2024 ident: 10635_CR47 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.121907 – volume: 6 start-page: 190 issue: 1 year: 2023 ident: 10635_CR12 publication-title: npj Clim Atmos Sci doi: 10.1038/s41612-023-00512-1 – year: 2022 ident: 10635_CR2 publication-title: Front Environ Sci doi: 10.3389/fenvs.2022.935696 – volume: 76 start-page: 1 year: 2017 ident: 10635_CR14 publication-title: Environ Earth Sci doi: 10.1007/s12665-017-6870-8 – ident: 10635_CR13 doi: 10.48550/ARXIV.2304.02948 – volume: 21 start-page: 1865 issue: 8 year: 2020 ident: 10635_CR42 publication-title: J Hydrometeorol doi: 10.1175/JHM-D-19-0270.1 – ident: 10635_CR32 doi: 10.48550/arXiv.2311.07222 – volume: 16 start-page: 6433 issue: 22 year: 2023 ident: 10635_CR11 publication-title: Geosci Model Dev doi: 10.5194/gmd-16-6433-2023 – ident: 10635_CR41 doi: 10.1213/ANE.0000000000002864 – ident: 10635_CR4 doi: 10.48550/arXiv.2306.06079 – volume: 360 start-page: 1072 issue: 6393 year: 2018 ident: 10635_CR38 publication-title: Science doi: 10.1126/science.aat1871 – volume: 11 start-page: 18 issue: 1 year: 2024 ident: 10635_CR30 publication-title: J Big Data doi: 10.1186/s40537-023-00876-4 – volume: 77 start-page: 1 year: 2018 ident: 10635_CR15 publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7498-z – volume: 30 start-page: 83 issue: 3 year: 2013 ident: 10635_CR45 publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2012.2235192 – volume: 21 start-page: 4883 issue: 11 year: 2019 ident: 10635_CR17 publication-title: IEEE Trans Intell Transp Syst doi: 10.1109/TITS.2019.2950416 – ident: 10635_CR20 – volume: 382 start-page: 1416 issue: 6677 year: 2023 ident: 10635_CR33 publication-title: Science doi: 10.1126/science.adi2336 – volume: 136 year: 2023 ident: 10635_CR51 publication-title: Digit Signal Process doi: 10.1016/j.dsp.2023.103989 – year: 2006 ident: 10635_CR25 publication-title: Geophys Res Lett doi: 10.1029/2006GL025734 – ident: 10635_CR18 doi: 10.48550/ARXIV.1606.09375 – ident: 10635_CR31 – volume: 36 start-page: 4003 issue: 11 year: 2022 ident: 10635_CR48 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03218-w – volume: 19 start-page: 1619 issue: 8 year: 2019 ident: 10635_CR5 publication-title: Nat Hazards Earth Syst Sci doi: 10.5194/nhess-19-1619-2019 |
SSID | ssj0021753 |
Score | 2.394231 |
Snippet | Weather forecasting has always been a fascinating challenge due to the randomness, difficulty and multiple intersections in the spatiotemporal distribution of... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 4481 |
SubjectTerms | Accuracy Artificial intelligence Artificial neural networks Climate change Error correction Graph neural networks Machine learning Meteorological data Neural networks Numerical models Numerical weather forecasting Precipitation Spatial resolution Weather forecasting Weather stations |
Title | Spatio-temporal graph neural networks to improve precipitation forecasts from numerical models |
URI | https://www.proquest.com/docview/3226814990 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbK9sILd8RgID_wVmVqfGvz2LFVEypFYq3UJyLbMSjSlk5L8gA_iN_J8SVOyhACVClqHampfb6em79zjNDbCSkUJ4onfCaLhKVGJ5JkLBGaZQYsIKXK7uh-WImLDXu_5dvR6MeAtdQ26kR__21dyf9IFcZArrZK9h8kG78UBuA9yBeuIGG4_pWMLx0dOgntpa7Grvv02LaohA-VJ3i7Dg6lSx3Ymiijy5uyZxgaLeum9kUmVet3b6788Tj10G-9BG3t6OdtE3ILvk-WT6vbwoNvg5wCqJBaum6Pm2tZRvrvmRl_ktXXrrDG8m8jfOxsfdH7su3ZQ2cdFyObXyuw5-XOO_2VbHbDfAXhPTtwL19pydh2iyTW0zj1yyj4-8I3bjox3RhNIOjJhjo7zMhjMxsoYIg204ExZ8wfoXzHUHhuiD3z3VbWE9uNVdjmnb1Z7KgAq4_5YrNc5uvz7foeOiQQjoA-PZwvTk9XMbQP_U7j7w_lWa5I884z9l2gfQ_AuTXrR-hBiEfw3IPrMRqZ6gl62J31gYPqf4o-_4I17LCGPdZwhzXc7HDAGt7DGo5YwxZrOGINe6w9Q5vF-frdRRLO5kg0TLJJjADdPeEFN4X-QqWQTGijyKzQQjCZGjaV8KImlYYUM64kn6QFlWrKjEhVKulzdFDtKvMCYa6LKVOEM1JouMszSVzFuDv5gBl6hMbdcuU3vgVLHpttu8XNYXFzt7j59Agddyuah79qnYPVErMUgvvJyz_ffoXu95g9RgfNbWteg9fZqDdB5D8Bk9ODzw |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatio-temporal+graph+neural+networks+to+improve+precipitation+forecasts+from+numerical+models&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Yousaf%2C+Umair&rft.au=De+Rango%2C+Alessio&rft.au=Furnari%2C+Luca&rft.au=D%E2%80%99Ambrosio%2C+Donato&rft.date=2025-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=9&rft.spage=4481&rft.epage=4494&rft_id=info:doi/10.1007%2Fs00500-025-10635-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |