Efficient scheduling of integrated operating rooms and post-anesthesia care units under uncertain surgery and recovery times: an artificial neural network-metaheuristic framework
Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this situation, some surgery parameters, like surgery and recovery times, are subject to uncertainty due to the unstable environment of hospital processes...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 29; no. 8; pp. 3909 - 3941 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.04.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this situation, some surgery parameters, like surgery and recovery times, are subject to uncertainty due to the unstable environment of hospital processes. Therefore, efficient methodologies should be designed to address these uncertainty sources and provide acceptable solutions in a reasonable time. Typically, solving the problem involves simulation-optimization approaches known to be time-consuming. This work presents a new data mining-optimization approach for integrated ORs and post-anesthesia care unit (PACU) scheduling, known as the operating theater room (OTR) scheduling problem, under uncertainty in surgery and PACU times. Concerning the complexity of the problem, we design four metaheuristics, including genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), and tabu search (TS) based on the problem features to search the solution space. Our presented approach aims to improve the traditional simulation-optimization frameworks, and utilizes simulation experiment results to train an artificial neural network (ANN), which evaluates the generated sequences of metaheuristic algorithms. The goal is to optimize the patients’ scheduling to minimize the problems’ single objective function. Two cases of the problem are defined based on makespan and total tardiness objectives. Extensive analysis of the results is established by providing three different sizes of example categories from the literature with several probability distributions for surgery and PACU times of patients. The input parameters of metaheuristic algorithms are tunned using the Taguchi design of experiments method, and the results are analyzed using several computational measures. The analysis of results reveals that GA performs better than the other algorithms regarding the solution quality measure for both cases. For the makespan objective case, the average relative percentage deviation (RPD) of GA is zero, while for PSO, SA, and TS, the deviations are 0.03, 0.01, and 0.04, respectively. This difference becomes even more pronounced in the total tardiness objective case, where the average RPD of GA is 0.04, compared to 0.36, 0.41, and 0.84 for PSO, SA, and TS, respectively. Finally, analysis of variance (ANOVA) and Kruskal–Wallis tests are utilized as parametric and non-parametric tests for statistical comparisons. The p value of the conducted tests is less than 0.05 at the 0.05 significance level, confirming a significant difference in the performance of the algorithms. Some managerial insights and practical implications are presented based on obtained results. |
---|---|
AbstractList | Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this situation, some surgery parameters, like surgery and recovery times, are subject to uncertainty due to the unstable environment of hospital processes. Therefore, efficient methodologies should be designed to address these uncertainty sources and provide acceptable solutions in a reasonable time. Typically, solving the problem involves simulation-optimization approaches known to be time-consuming. This work presents a new data mining-optimization approach for integrated ORs and post-anesthesia care unit (PACU) scheduling, known as the operating theater room (OTR) scheduling problem, under uncertainty in surgery and PACU times. Concerning the complexity of the problem, we design four metaheuristics, including genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), and tabu search (TS) based on the problem features to search the solution space. Our presented approach aims to improve the traditional simulation-optimization frameworks, and utilizes simulation experiment results to train an artificial neural network (ANN), which evaluates the generated sequences of metaheuristic algorithms. The goal is to optimize the patients’ scheduling to minimize the problems’ single objective function. Two cases of the problem are defined based on makespan and total tardiness objectives. Extensive analysis of the results is established by providing three different sizes of example categories from the literature with several probability distributions for surgery and PACU times of patients. The input parameters of metaheuristic algorithms are tunned using the Taguchi design of experiments method, and the results are analyzed using several computational measures. The analysis of results reveals that GA performs better than the other algorithms regarding the solution quality measure for both cases. For the makespan objective case, the average relative percentage deviation (RPD) of GA is zero, while for PSO, SA, and TS, the deviations are 0.03, 0.01, and 0.04, respectively. This difference becomes even more pronounced in the total tardiness objective case, where the average RPD of GA is 0.04, compared to 0.36, 0.41, and 0.84 for PSO, SA, and TS, respectively. Finally, analysis of variance (ANOVA) and Kruskal–Wallis tests are utilized as parametric and non-parametric tests for statistical comparisons. The p value of the conducted tests is less than 0.05 at the 0.05 significance level, confirming a significant difference in the performance of the algorithms. Some managerial insights and practical implications are presented based on obtained results. |
Author | Ahmadian, Mohammad Amin Varmazyar, Mohsen Fallahi, Ali |
Author_xml | – sequence: 1 givenname: Mohammad Amin surname: Ahmadian fullname: Ahmadian, Mohammad Amin – sequence: 2 givenname: Mohsen orcidid: 0000-0002-4857-5589 surname: Varmazyar fullname: Varmazyar, Mohsen – sequence: 3 givenname: Ali orcidid: 0000-0002-0731-3531 surname: Fallahi fullname: Fallahi, Ali |
BookMark | eNotUctuFDEQtFCQSAI_wMkSZ0P7MS9uKAoBKRIXOFteT3vXYcde2h5QfosvxLPLpbu61K9S3bCrlBMy9lbCewkwfCgAHYAA1QkJvWroBbuWRmsxmGG6OmMlht7oV-ymlCcAJYdOX7O_9yFEHzFVXvwB5_UY057nwGOquCdXceb5hA1sPOW8FO7SzE-5VOESlnrAEh33jpCvKdbS4ozUokeqLiZeVtojPZ_HCH3-vRU1Llg-No47qnF7wR15wpXOqf7J9FMsWN2hUbHU6Hkgt-DGv2YvgzsWfPM_37Ifn--_330Rj98evt59ehS-ia0CYSfdtFM9YN8r03UwawO7Uc0hdKrXavDemDDqcZLg-n7adaOcvcPJDPM0jvqWvbvsPVH-tTal9imvlNpJq5WczDgNampd6tLlKZdCGOyJ4uLo2Uqwmzf24o1t3tizNxb0P5BLiHY |
Cites_doi | 10.1016/j.cie.2022.108808 10.1007/s00181-012-0594-0 10.1145/1961189.1961199 10.2113/gsecongeo.58.8.1246 10.1007/s10878-018-0322-6 10.1016/j.ejor.2007.10.013 10.1213/ANE.0b013e3181b5de07 10.1016/j.asoc.2022.109798 10.1126/science.220.4598.671 10.1016/j.cie.2016.05.016 10.1007/s00500-020-04948-y 10.1007/s00500-016-2474-6 10.1016/j.ejor.2009.04.011 10.1007/BF02134016 10.1007/0-387-28356-0_6 10.1016/j.ejor.2006.03.059 10.1007/s10951-016-0489-6 10.1016/j.cie.2015.04.010 10.1016/S0952-1976(03)00043-5 10.1007/s12553-021-00547-5 10.1111/j.1540-5915.1977.tb01074.x 10.1007/s10479-022-04667-7 10.1007/s10668-022-02793-7 10.1007/s10696-015-9213-7 10.1007/s10729-019-09481-5 10.1111/j.1467-9574.2009.00440.x 10.1057/palgrave.jors.2602068 10.1162/neco.1989.1.2.281 10.1007/s11047-016-9607-9 10.1016/j.cor.2015.02.014 10.1109/WSC.2008.4736245 10.1007/978-3-540-39930-8_8 10.1016/j.cor.2022.106136 10.1109/ICNN.1995.488968 10.1016/j.cie.2007.08.012 10.7551/mitpress/1090.001.0001 10.1007/s10479-022-04870-6 10.1109/COASE.2007.4341749 10.1586/14737167.2016.1165608 10.1016/j.ejor.2012.09.010 10.1007/s00500-021-06014-7 10.1007/s11042-020-10139-6 10.1080/24725854.2019.1628372 10.2507/IJSIMM14(2)3.287 10.1016/j.orhc.2019.01.001 10.1016/j.orhc.2015.05.005 10.1016/j.scient.2011.05.023 10.1007/s10479-022-04686-4 10.2307/2344614 10.1016/j.ijpe.2004.12.006 10.1016/j.knosys.2021.106943 10.1016/j.eswa.2021.116442 10.1016/j.orhc.2012.07.001 10.1016/j.cie.2009.01.005 10.1016/j.cie.2018.10.014 10.1007/s00500-023-08754-0 10.1016/j.eswa.2022.116550 |
ContentType | Journal Article |
Copyright | Copyright Springer Nature B.V. Apr 2025 |
Copyright_xml | – notice: Copyright Springer Nature B.V. Apr 2025 |
DBID | AAYXX CITATION JQ2 |
DOI | 10.1007/s00500-025-10620-0 |
DatabaseName | CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1433-7479 |
EndPage | 3941 |
ExternalDocumentID | 10_1007_s00500_025_10620_0 |
GroupedDBID | -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU CITATION COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PHGZM PHGZT PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ABRTQ JQ2 |
ID | FETCH-LOGICAL-c143t-e0b1a9b260e6624550d340b82dff526327cc44f838910a669b581dcae947d9883 |
ISSN | 1432-7643 |
IngestDate | Fri Jul 25 09:20:31 EDT 2025 Thu Jul 03 08:14:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c143t-e0b1a9b260e6624550d340b82dff526327cc44f838910a669b581dcae947d9883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-0731-3531 0000-0002-4857-5589 |
PQID | 3219489729 |
PQPubID | 2043697 |
PageCount | 33 |
ParticipantIDs | proquest_journals_3219489729 crossref_primary_10_1007_s00500_025_10620_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-04-00 20250401 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-00 |
PublicationDecade | 2020 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | 10620_CR37 G Matheron (10620_CR40) 1963; 58 MM Vali-Siar (10620_CR59) 2018; 126 J-J Wang (10620_CR65) 2023; 321 D Hajinejad (10620_CR24) 2011; 18 DJ Fonseca (10620_CR20) 2003; 16 10620_CR33 C-C Chang (10620_CR12) 2011; 2 A Najjarbashi (10620_CR46) 2019; 20 A Fallahi (10620_CR19) 2024; 26 H Mokhtari (10620_CR41) 2015; 61 J Moody (10620_CR43) 1989; 1 R Bargetto (10620_CR7) 2023; 152 N Lahrichi (10620_CR36) 2022; 193 A Jebali (10620_CR29) 2006; 99 A Pritsker (10620_CR51) 1999 S Katoch (10620_CR31) 2021; 80 F Baesler (10620_CR6) 2015; 14 S Zhu (10620_CR68) 2019; 37 S Kirkpatrick (10620_CR34) 1983; 220 M Mousavi (10620_CR44) 2020; 24 CW Zobel (10620_CR69) 2008; 54 M Samudra (10620_CR53) 2016; 19 JJ Caro (10620_CR11) 2016; 16 C Cortes (10620_CR13) 1995; 20 SM Mousavi (10620_CR45) 2021; 220 10620_CR48 H Hashemi Doulabi (10620_CR25) 2023; 328 J-J Wang (10620_CR64) 2021; 25 D-N Pham (10620_CR50) 2008; 185 P Shahhosseini (10620_CR54) 2021; 13 B Addis (10620_CR2) 2016; 28 RL Haupt (10620_CR26) 2004 ZA Abdalkareem (10620_CR1) 2021; 11 B Suman (10620_CR57) 2006; 57 JP Kleijnen (10620_CR35) 2009; 192 C Van Riet (10620_CR60) 2015; 7 W Xiang (10620_CR67) 2015; 85 Y-K Lin (10620_CR39) 2020; 23 CAP da Silva Godinho (10620_CR15) 2014 T Thaher (10620_CR58) 2022; 195 Y Hou (10620_CR28) 2022; 240 G Latorre-Núñez (10620_CR38) 2016; 97 P Kelle (10620_CR32) 2012; 1 10620_CR17 E Amani Bani (10620_CR3) 2022; 174 10620_CR10 GS Peace (10620_CR49) 1993 F Dexter (10620_CR16) 1999; 89 B Roland (10620_CR52) 2010; 58 M Varmazyar (10620_CR61) 2020; 52 DC Montgomery (10620_CR42) 2017 JH Holland (10620_CR27) 1992 10620_CR5 10620_CR4 B Vijayakumar (10620_CR62) 2013; 224 10620_CR9 10620_CR21 JA Nelder (10620_CR47) 1972; 135 10620_CR23 PS Stepaniak (10620_CR56) 2010; 64 M Bruni (10620_CR8) 2015; 26 G Cybenko (10620_CR14) 1992; 5 P Joustra (10620_CR30) 2013; 44 PS Stepaniak (10620_CR55) 2009; 109 W Xiang (10620_CR66) 2017; 16 F Glover (10620_CR22) 1977; 8 A Fallahi (10620_CR18) 2023; 27 D Wang (10620_CR63) 2018; 22 |
References_xml | – volume: 174 year: 2022 ident: 10620_CR3 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108808 – volume: 44 start-page: 1697 year: 2013 ident: 10620_CR30 publication-title: Empir Econ doi: 10.1007/s00181-012-0594-0 – volume: 2 start-page: 1 issue: 3 year: 2011 ident: 10620_CR12 publication-title: ACM Trans Intel Syst Technol (TIST) doi: 10.1145/1961189.1961199 – volume: 58 start-page: 1246 issue: 8 year: 1963 ident: 10620_CR40 publication-title: Econ Geol doi: 10.2113/gsecongeo.58.8.1246 – volume: 37 start-page: 757 year: 2019 ident: 10620_CR68 publication-title: J Comb Optim doi: 10.1007/s10878-018-0322-6 – volume: 192 start-page: 707 issue: 3 year: 2009 ident: 10620_CR35 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2007.10.013 – volume: 109 start-page: 1232 issue: 4 year: 2009 ident: 10620_CR55 publication-title: Anesth Anal doi: 10.1213/ANE.0b013e3181b5de07 – volume-title: Design and analysis of experiments year: 2017 ident: 10620_CR42 – ident: 10620_CR17 doi: 10.1016/j.asoc.2022.109798 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10620_CR34 publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 97 start-page: 248 year: 2016 ident: 10620_CR38 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2016.05.016 – volume: 24 start-page: 16383 issue: 21 year: 2020 ident: 10620_CR44 publication-title: Soft Comput doi: 10.1007/s00500-020-04948-y – volume: 22 start-page: 387 year: 2018 ident: 10620_CR63 publication-title: Soft Comput doi: 10.1007/s00500-016-2474-6 – ident: 10620_CR10 doi: 10.1016/j.ejor.2009.04.011 – volume: 5 start-page: 455 issue: 4 year: 1992 ident: 10620_CR14 publication-title: Math Control Signals Syst doi: 10.1007/BF02134016 – ident: 10620_CR21 doi: 10.1007/0-387-28356-0_6 – volume: 89 start-page: 7 issue: 1 year: 1999 ident: 10620_CR16 publication-title: Anesthesia Anal – volume: 185 start-page: 1011 issue: 3 year: 2008 ident: 10620_CR50 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2006.03.059 – volume: 19 start-page: 493 year: 2016 ident: 10620_CR53 publication-title: J Sched doi: 10.1007/s10951-016-0489-6 – volume: 85 start-page: 335 year: 2015 ident: 10620_CR67 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2015.04.010 – volume: 20 start-page: 273 year: 1995 ident: 10620_CR13 publication-title: Mach Learn – volume: 16 start-page: 177 issue: 3 year: 2003 ident: 10620_CR20 publication-title: Eng Appl Artif Intell doi: 10.1016/S0952-1976(03)00043-5 – volume: 240 year: 2022 ident: 10620_CR28 publication-title: Knowl Based Syst – volume: 13 start-page: 262 issue: 4 year: 2021 ident: 10620_CR54 publication-title: J Ind Syst Eng – volume: 11 start-page: 445 year: 2021 ident: 10620_CR1 publication-title: Heal Technol doi: 10.1007/s12553-021-00547-5 – volume: 8 start-page: 156 issue: 1 year: 1977 ident: 10620_CR22 publication-title: Decis Sci doi: 10.1111/j.1540-5915.1977.tb01074.x – volume: 26 start-page: 99 issue: 1 year: 2015 ident: 10620_CR8 publication-title: IMA J Manag Math – ident: 10620_CR4 doi: 10.1007/s10479-022-04667-7 – volume: 26 start-page: 1965 issue: 1 year: 2024 ident: 10620_CR19 publication-title: Environ Dev Sustain doi: 10.1007/s10668-022-02793-7 – volume: 28 start-page: 206 issue: 1–2 year: 2016 ident: 10620_CR2 publication-title: Flex Serv Manuf J doi: 10.1007/s10696-015-9213-7 – volume: 23 start-page: 249 year: 2020 ident: 10620_CR39 publication-title: Health Care Manag Sci doi: 10.1007/s10729-019-09481-5 – volume-title: Taguchi methods: a hands-on approach year: 1993 ident: 10620_CR49 – volume: 64 start-page: 1 issue: 1 year: 2010 ident: 10620_CR56 publication-title: Stat Neerl doi: 10.1111/j.1467-9574.2009.00440.x – volume: 57 start-page: 1143 year: 2006 ident: 10620_CR57 publication-title: J Oper Res Soc doi: 10.1057/palgrave.jors.2602068 – volume: 1 start-page: 281 issue: 2 year: 1989 ident: 10620_CR43 publication-title: Neural Comput doi: 10.1162/neco.1989.1.2.281 – volume: 16 start-page: 607 year: 2017 ident: 10620_CR66 publication-title: Nat Comput doi: 10.1007/s11047-016-9607-9 – volume: 61 start-page: 31 year: 2015 ident: 10620_CR41 publication-title: Comput Oper Res doi: 10.1016/j.cor.2015.02.014 – ident: 10620_CR5 doi: 10.1109/WSC.2008.4736245 – ident: 10620_CR9 – ident: 10620_CR48 doi: 10.1007/978-3-540-39930-8_8 – volume-title: Practical genetic algorithms year: 2004 ident: 10620_CR26 – volume: 152 year: 2023 ident: 10620_CR7 publication-title: Comput Oper Res doi: 10.1016/j.cor.2022.106136 – ident: 10620_CR33 doi: 10.1109/ICNN.1995.488968 – volume: 54 start-page: 879 issue: 4 year: 2008 ident: 10620_CR69 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2007.08.012 – volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence year: 1992 ident: 10620_CR27 doi: 10.7551/mitpress/1090.001.0001 – volume: 321 start-page: 565 issue: 1–2 year: 2023 ident: 10620_CR65 publication-title: Ann Oper Res doi: 10.1007/s10479-022-04870-6 – ident: 10620_CR37 doi: 10.1109/COASE.2007.4341749 – volume: 16 start-page: 327 issue: 3 year: 2016 ident: 10620_CR11 publication-title: Expert Rev Pharmacoecon Outcomes Res doi: 10.1586/14737167.2016.1165608 – volume: 224 start-page: 583 issue: 3 year: 2013 ident: 10620_CR62 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2012.09.010 – volume: 25 start-page: 10749 year: 2021 ident: 10620_CR64 publication-title: Soft Comput doi: 10.1007/s00500-021-06014-7 – volume: 80 start-page: 8091 year: 2021 ident: 10620_CR31 publication-title: Multimed Tools Appl doi: 10.1007/s11042-020-10139-6 – volume: 52 start-page: 216 issue: 2 year: 2020 ident: 10620_CR61 publication-title: IISE Trans doi: 10.1080/24725854.2019.1628372 – volume: 14 start-page: 215 issue: 2 year: 2015 ident: 10620_CR6 publication-title: Int J Simul Model doi: 10.2507/IJSIMM14(2)3.287 – volume: 20 start-page: 25 year: 2019 ident: 10620_CR46 publication-title: Oper Res Health Care doi: 10.1016/j.orhc.2019.01.001 – volume: 7 start-page: 52 year: 2015 ident: 10620_CR60 publication-title: Oper Res Health Care doi: 10.1016/j.orhc.2015.05.005 – volume: 18 start-page: 759 issue: 3 year: 2011 ident: 10620_CR24 publication-title: Sci Iran doi: 10.1016/j.scient.2011.05.023 – volume: 328 start-page: 643 issue: 1 year: 2023 ident: 10620_CR25 publication-title: Ann Oper Res doi: 10.1007/s10479-022-04686-4 – volume: 135 start-page: 370 issue: 3 year: 1972 ident: 10620_CR47 publication-title: J R Stat Soc Ser A (General) doi: 10.2307/2344614 – ident: 10620_CR23 – volume: 99 start-page: 52 issue: 1–2 year: 2006 ident: 10620_CR29 publication-title: Int J Prod Econ doi: 10.1016/j.ijpe.2004.12.006 – start-page: 1 volume-title: Optimizing operating theater planning—a data mining and optimization approach year: 2014 ident: 10620_CR15 – volume: 220 year: 2021 ident: 10620_CR45 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2021.106943 – volume-title: Simulation with visual SLAM and AweSim year: 1999 ident: 10620_CR51 – volume: 193 year: 2022 ident: 10620_CR36 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116442 – volume: 1 start-page: 54 issue: 2–3 year: 2012 ident: 10620_CR32 publication-title: Oper Res Health Care doi: 10.1016/j.orhc.2012.07.001 – volume: 58 start-page: 212 issue: 2 year: 2010 ident: 10620_CR52 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2009.01.005 – volume: 126 start-page: 549 year: 2018 ident: 10620_CR59 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2018.10.014 – volume: 27 start-page: 17063 issue: 22 year: 2023 ident: 10620_CR18 publication-title: Soft Comput doi: 10.1007/s00500-023-08754-0 – volume: 195 year: 2022 ident: 10620_CR58 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116550 |
SSID | ssj0021753 |
Score | 2.391728 |
Snippet | Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 3909 |
SubjectTerms | Anesthesia Artificial neural networks Computer simulation COVID-19 Data mining Decision making Deviation Genetic algorithms Health care expenditures Heuristic methods Hospital costs Hospitals Integer programming Lateness Medical wastes Monte Carlo simulation Nurses Optimization techniques Parameters Particle swarm optimization Patient satisfaction Planning Recovery Scheduling Simulated annealing Solution space Statistical analysis Supply chains Surgeons Surgery Tabu search Taguchi methods Uncertainty Variance analysis |
Title | Efficient scheduling of integrated operating rooms and post-anesthesia care units under uncertain surgery and recovery times: an artificial neural network-metaheuristic framework |
URI | https://www.proquest.com/docview/3219489729 |
Volume | 29 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9sKFb0ShoDlws1y59trZ5daiRBUq4UAi5WbZ611RCZyosZHon-h_4Rcys7v-KK0QcHHijWJHmeeZebszbxl7WwiR8EpIfJB4hASlTEIhuQoRXUaqqaqOrXbnx0V2tuIf1ul6MrkeVS21TXmkru7sK_kfq-IY2pW6ZP_Bsv1FcQDfo33xiBbG41_ZeGb1H2g1HzkqxoyvvoS514Cogs2WVJNpnFJkJ8i83eyasEAfh8nf7qKw6tRBW9MSArWUXeJRuUqBYOe6pl0VOjLV73Ri96O3XdI1aSRdeBEKksa0L7awPPymm-KLbp0SdGC6IrBxNvwZY4Atam8bP2Ph1LfcZD21M_zoZir8xEScjupZxhOTVHVNayF944z1szzBxD5zCk1HuhtLQmQ3cuyc_U0cCMXI0yYykqOonUinn3UrIrgiENrcnVroY5JdzZAxR0P869b8F5_y-er8PF_O1st7bD9G3oGOc_9kfnq66Dm8Fzbtf7_vw7LdmLfucTPXuRnqbf6yfMQeeOIBJw5Fj9lE10_Yw25TD_A-_in72YMKBlDBxsAAKuhBBRZUgOiA30AFBCqwoAILKuhBBR5U9msdqMCC6h2OwQApcJCCOyEFPaSesdV8tnx_FvqNPUKFf1wT6qg8LmSJVFpnWUx99VWCbkLElTEpbSAwVYpzI2gNPSqyTJYp0ipVaMmnlUTv8pzt1Ztav2CgUmNo3zzk_ZJLI4Q0JsNL6SKqkE2oAxZ0Jsi3Tr8l75W6rcFyNFhuDZZHB-yws1Lun_NdnmBQ50IiC335549fsfvDc3DI9prLVr_GlLUp33gY_QJwuZ7C |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+scheduling+of+integrated+operating+rooms+and+post-anesthesia+care+units+under+uncertain+surgery+and+recovery+times%3A+an+artificial+neural+network-metaheuristic+framework&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=8&rft.spage=3909&rft.epage=3941&rft_id=info:doi/10.1007%2Fs00500-025-10620-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |