Efficient scheduling of integrated operating rooms and post-anesthesia care units under uncertain surgery and recovery times: an artificial neural network-metaheuristic framework

Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this situation, some surgery parameters, like surgery and recovery times, are subject to uncertainty due to the unstable environment of hospital processes...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 29; no. 8; pp. 3909 - 3941
Main Authors Ahmadian, Mohammad Amin, Varmazyar, Mohsen, Fallahi, Ali
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.04.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this situation, some surgery parameters, like surgery and recovery times, are subject to uncertainty due to the unstable environment of hospital processes. Therefore, efficient methodologies should be designed to address these uncertainty sources and provide acceptable solutions in a reasonable time. Typically, solving the problem involves simulation-optimization approaches known to be time-consuming. This work presents a new data mining-optimization approach for integrated ORs and post-anesthesia care unit (PACU) scheduling, known as the operating theater room (OTR) scheduling problem, under uncertainty in surgery and PACU times. Concerning the complexity of the problem, we design four metaheuristics, including genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), and tabu search (TS) based on the problem features to search the solution space. Our presented approach aims to improve the traditional simulation-optimization frameworks, and utilizes simulation experiment results to train an artificial neural network (ANN), which evaluates the generated sequences of metaheuristic algorithms. The goal is to optimize the patients’ scheduling to minimize the problems’ single objective function. Two cases of the problem are defined based on makespan and total tardiness objectives. Extensive analysis of the results is established by providing three different sizes of example categories from the literature with several probability distributions for surgery and PACU times of patients. The input parameters of metaheuristic algorithms are tunned using the Taguchi design of experiments method, and the results are analyzed using several computational measures. The analysis of results reveals that GA performs better than the other algorithms regarding the solution quality measure for both cases. For the makespan objective case, the average relative percentage deviation (RPD) of GA is zero, while for PSO, SA, and TS, the deviations are 0.03, 0.01, and 0.04, respectively. This difference becomes even more pronounced in the total tardiness objective case, where the average RPD of GA is 0.04, compared to 0.36, 0.41, and 0.84 for PSO, SA, and TS, respectively. Finally, analysis of variance (ANOVA) and Kruskal–Wallis tests are utilized as parametric and non-parametric tests for statistical comparisons. The p value of the conducted tests is less than 0.05 at the 0.05 significance level, confirming a significant difference in the performance of the algorithms. Some managerial insights and practical implications are presented based on obtained results.
AbstractList Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this situation, some surgery parameters, like surgery and recovery times, are subject to uncertainty due to the unstable environment of hospital processes. Therefore, efficient methodologies should be designed to address these uncertainty sources and provide acceptable solutions in a reasonable time. Typically, solving the problem involves simulation-optimization approaches known to be time-consuming. This work presents a new data mining-optimization approach for integrated ORs and post-anesthesia care unit (PACU) scheduling, known as the operating theater room (OTR) scheduling problem, under uncertainty in surgery and PACU times. Concerning the complexity of the problem, we design four metaheuristics, including genetic algorithm (GA), particle swarm optimization (PSO), simulated annealing (SA), and tabu search (TS) based on the problem features to search the solution space. Our presented approach aims to improve the traditional simulation-optimization frameworks, and utilizes simulation experiment results to train an artificial neural network (ANN), which evaluates the generated sequences of metaheuristic algorithms. The goal is to optimize the patients’ scheduling to minimize the problems’ single objective function. Two cases of the problem are defined based on makespan and total tardiness objectives. Extensive analysis of the results is established by providing three different sizes of example categories from the literature with several probability distributions for surgery and PACU times of patients. The input parameters of metaheuristic algorithms are tunned using the Taguchi design of experiments method, and the results are analyzed using several computational measures. The analysis of results reveals that GA performs better than the other algorithms regarding the solution quality measure for both cases. For the makespan objective case, the average relative percentage deviation (RPD) of GA is zero, while for PSO, SA, and TS, the deviations are 0.03, 0.01, and 0.04, respectively. This difference becomes even more pronounced in the total tardiness objective case, where the average RPD of GA is 0.04, compared to 0.36, 0.41, and 0.84 for PSO, SA, and TS, respectively. Finally, analysis of variance (ANOVA) and Kruskal–Wallis tests are utilized as parametric and non-parametric tests for statistical comparisons. The p value of the conducted tests is less than 0.05 at the 0.05 significance level, confirming a significant difference in the performance of the algorithms. Some managerial insights and practical implications are presented based on obtained results.
Author Ahmadian, Mohammad Amin
Varmazyar, Mohsen
Fallahi, Ali
Author_xml – sequence: 1
  givenname: Mohammad Amin
  surname: Ahmadian
  fullname: Ahmadian, Mohammad Amin
– sequence: 2
  givenname: Mohsen
  orcidid: 0000-0002-4857-5589
  surname: Varmazyar
  fullname: Varmazyar, Mohsen
– sequence: 3
  givenname: Ali
  orcidid: 0000-0002-0731-3531
  surname: Fallahi
  fullname: Fallahi, Ali
BookMark eNotUctuFDEQtFCQSAI_wMkSZ0P7MS9uKAoBKRIXOFteT3vXYcde2h5QfosvxLPLpbu61K9S3bCrlBMy9lbCewkwfCgAHYAA1QkJvWroBbuWRmsxmGG6OmMlht7oV-ymlCcAJYdOX7O_9yFEHzFVXvwB5_UY057nwGOquCdXceb5hA1sPOW8FO7SzE-5VOESlnrAEh33jpCvKdbS4ozUokeqLiZeVtojPZ_HCH3-vRU1Llg-No47qnF7wR15wpXOqf7J9FMsWN2hUbHU6Hkgt-DGv2YvgzsWfPM_37Ifn--_330Rj98evt59ehS-ia0CYSfdtFM9YN8r03UwawO7Uc0hdKrXavDemDDqcZLg-n7adaOcvcPJDPM0jvqWvbvsPVH-tTal9imvlNpJq5WczDgNampd6tLlKZdCGOyJ4uLo2Uqwmzf24o1t3tizNxb0P5BLiHY
Cites_doi 10.1016/j.cie.2022.108808
10.1007/s00181-012-0594-0
10.1145/1961189.1961199
10.2113/gsecongeo.58.8.1246
10.1007/s10878-018-0322-6
10.1016/j.ejor.2007.10.013
10.1213/ANE.0b013e3181b5de07
10.1016/j.asoc.2022.109798
10.1126/science.220.4598.671
10.1016/j.cie.2016.05.016
10.1007/s00500-020-04948-y
10.1007/s00500-016-2474-6
10.1016/j.ejor.2009.04.011
10.1007/BF02134016
10.1007/0-387-28356-0_6
10.1016/j.ejor.2006.03.059
10.1007/s10951-016-0489-6
10.1016/j.cie.2015.04.010
10.1016/S0952-1976(03)00043-5
10.1007/s12553-021-00547-5
10.1111/j.1540-5915.1977.tb01074.x
10.1007/s10479-022-04667-7
10.1007/s10668-022-02793-7
10.1007/s10696-015-9213-7
10.1007/s10729-019-09481-5
10.1111/j.1467-9574.2009.00440.x
10.1057/palgrave.jors.2602068
10.1162/neco.1989.1.2.281
10.1007/s11047-016-9607-9
10.1016/j.cor.2015.02.014
10.1109/WSC.2008.4736245
10.1007/978-3-540-39930-8_8
10.1016/j.cor.2022.106136
10.1109/ICNN.1995.488968
10.1016/j.cie.2007.08.012
10.7551/mitpress/1090.001.0001
10.1007/s10479-022-04870-6
10.1109/COASE.2007.4341749
10.1586/14737167.2016.1165608
10.1016/j.ejor.2012.09.010
10.1007/s00500-021-06014-7
10.1007/s11042-020-10139-6
10.1080/24725854.2019.1628372
10.2507/IJSIMM14(2)3.287
10.1016/j.orhc.2019.01.001
10.1016/j.orhc.2015.05.005
10.1016/j.scient.2011.05.023
10.1007/s10479-022-04686-4
10.2307/2344614
10.1016/j.ijpe.2004.12.006
10.1016/j.knosys.2021.106943
10.1016/j.eswa.2021.116442
10.1016/j.orhc.2012.07.001
10.1016/j.cie.2009.01.005
10.1016/j.cie.2018.10.014
10.1007/s00500-023-08754-0
10.1016/j.eswa.2022.116550
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Apr 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Apr 2025
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s00500-025-10620-0
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1433-7479
EndPage 3941
ExternalDocumentID 10_1007_s00500_025_10620_0
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PHGZM
PHGZT
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ABRTQ
JQ2
ID FETCH-LOGICAL-c143t-e0b1a9b260e6624550d340b82dff526327cc44f838910a669b581dcae947d9883
ISSN 1432-7643
IngestDate Fri Jul 25 09:20:31 EDT 2025
Thu Jul 03 08:14:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c143t-e0b1a9b260e6624550d340b82dff526327cc44f838910a669b581dcae947d9883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0731-3531
0000-0002-4857-5589
PQID 3219489729
PQPubID 2043697
PageCount 33
ParticipantIDs proquest_journals_3219489729
crossref_primary_10_1007_s00500_025_10620_0
PublicationCentury 2000
PublicationDate 2025-04-00
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-00
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Soft computing (Berlin, Germany)
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References 10620_CR37
G Matheron (10620_CR40) 1963; 58
MM Vali-Siar (10620_CR59) 2018; 126
J-J Wang (10620_CR65) 2023; 321
D Hajinejad (10620_CR24) 2011; 18
DJ Fonseca (10620_CR20) 2003; 16
10620_CR33
C-C Chang (10620_CR12) 2011; 2
A Najjarbashi (10620_CR46) 2019; 20
A Fallahi (10620_CR19) 2024; 26
H Mokhtari (10620_CR41) 2015; 61
J Moody (10620_CR43) 1989; 1
R Bargetto (10620_CR7) 2023; 152
N Lahrichi (10620_CR36) 2022; 193
A Jebali (10620_CR29) 2006; 99
A Pritsker (10620_CR51) 1999
S Katoch (10620_CR31) 2021; 80
F Baesler (10620_CR6) 2015; 14
S Zhu (10620_CR68) 2019; 37
S Kirkpatrick (10620_CR34) 1983; 220
M Mousavi (10620_CR44) 2020; 24
CW Zobel (10620_CR69) 2008; 54
M Samudra (10620_CR53) 2016; 19
JJ Caro (10620_CR11) 2016; 16
C Cortes (10620_CR13) 1995; 20
SM Mousavi (10620_CR45) 2021; 220
10620_CR48
H Hashemi Doulabi (10620_CR25) 2023; 328
J-J Wang (10620_CR64) 2021; 25
D-N Pham (10620_CR50) 2008; 185
P Shahhosseini (10620_CR54) 2021; 13
B Addis (10620_CR2) 2016; 28
RL Haupt (10620_CR26) 2004
ZA Abdalkareem (10620_CR1) 2021; 11
B Suman (10620_CR57) 2006; 57
JP Kleijnen (10620_CR35) 2009; 192
C Van Riet (10620_CR60) 2015; 7
W Xiang (10620_CR67) 2015; 85
Y-K Lin (10620_CR39) 2020; 23
CAP da Silva Godinho (10620_CR15) 2014
T Thaher (10620_CR58) 2022; 195
Y Hou (10620_CR28) 2022; 240
G Latorre-Núñez (10620_CR38) 2016; 97
P Kelle (10620_CR32) 2012; 1
10620_CR17
E Amani Bani (10620_CR3) 2022; 174
10620_CR10
GS Peace (10620_CR49) 1993
F Dexter (10620_CR16) 1999; 89
B Roland (10620_CR52) 2010; 58
M Varmazyar (10620_CR61) 2020; 52
DC Montgomery (10620_CR42) 2017
JH Holland (10620_CR27) 1992
10620_CR5
10620_CR4
B Vijayakumar (10620_CR62) 2013; 224
10620_CR9
10620_CR21
JA Nelder (10620_CR47) 1972; 135
10620_CR23
PS Stepaniak (10620_CR56) 2010; 64
M Bruni (10620_CR8) 2015; 26
G Cybenko (10620_CR14) 1992; 5
P Joustra (10620_CR30) 2013; 44
PS Stepaniak (10620_CR55) 2009; 109
W Xiang (10620_CR66) 2017; 16
F Glover (10620_CR22) 1977; 8
A Fallahi (10620_CR18) 2023; 27
D Wang (10620_CR63) 2018; 22
References_xml – volume: 174
  year: 2022
  ident: 10620_CR3
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108808
– volume: 44
  start-page: 1697
  year: 2013
  ident: 10620_CR30
  publication-title: Empir Econ
  doi: 10.1007/s00181-012-0594-0
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 10620_CR12
  publication-title: ACM Trans Intel Syst Technol (TIST)
  doi: 10.1145/1961189.1961199
– volume: 58
  start-page: 1246
  issue: 8
  year: 1963
  ident: 10620_CR40
  publication-title: Econ Geol
  doi: 10.2113/gsecongeo.58.8.1246
– volume: 37
  start-page: 757
  year: 2019
  ident: 10620_CR68
  publication-title: J Comb Optim
  doi: 10.1007/s10878-018-0322-6
– volume: 192
  start-page: 707
  issue: 3
  year: 2009
  ident: 10620_CR35
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2007.10.013
– volume: 109
  start-page: 1232
  issue: 4
  year: 2009
  ident: 10620_CR55
  publication-title: Anesth Anal
  doi: 10.1213/ANE.0b013e3181b5de07
– volume-title: Design and analysis of experiments
  year: 2017
  ident: 10620_CR42
– ident: 10620_CR17
  doi: 10.1016/j.asoc.2022.109798
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10620_CR34
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 97
  start-page: 248
  year: 2016
  ident: 10620_CR38
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2016.05.016
– volume: 24
  start-page: 16383
  issue: 21
  year: 2020
  ident: 10620_CR44
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04948-y
– volume: 22
  start-page: 387
  year: 2018
  ident: 10620_CR63
  publication-title: Soft Comput
  doi: 10.1007/s00500-016-2474-6
– ident: 10620_CR10
  doi: 10.1016/j.ejor.2009.04.011
– volume: 5
  start-page: 455
  issue: 4
  year: 1992
  ident: 10620_CR14
  publication-title: Math Control Signals Syst
  doi: 10.1007/BF02134016
– ident: 10620_CR21
  doi: 10.1007/0-387-28356-0_6
– volume: 89
  start-page: 7
  issue: 1
  year: 1999
  ident: 10620_CR16
  publication-title: Anesthesia Anal
– volume: 185
  start-page: 1011
  issue: 3
  year: 2008
  ident: 10620_CR50
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2006.03.059
– volume: 19
  start-page: 493
  year: 2016
  ident: 10620_CR53
  publication-title: J Sched
  doi: 10.1007/s10951-016-0489-6
– volume: 85
  start-page: 335
  year: 2015
  ident: 10620_CR67
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2015.04.010
– volume: 20
  start-page: 273
  year: 1995
  ident: 10620_CR13
  publication-title: Mach Learn
– volume: 16
  start-page: 177
  issue: 3
  year: 2003
  ident: 10620_CR20
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/S0952-1976(03)00043-5
– volume: 240
  year: 2022
  ident: 10620_CR28
  publication-title: Knowl Based Syst
– volume: 13
  start-page: 262
  issue: 4
  year: 2021
  ident: 10620_CR54
  publication-title: J Ind Syst Eng
– volume: 11
  start-page: 445
  year: 2021
  ident: 10620_CR1
  publication-title: Heal Technol
  doi: 10.1007/s12553-021-00547-5
– volume: 8
  start-page: 156
  issue: 1
  year: 1977
  ident: 10620_CR22
  publication-title: Decis Sci
  doi: 10.1111/j.1540-5915.1977.tb01074.x
– volume: 26
  start-page: 99
  issue: 1
  year: 2015
  ident: 10620_CR8
  publication-title: IMA J Manag Math
– ident: 10620_CR4
  doi: 10.1007/s10479-022-04667-7
– volume: 26
  start-page: 1965
  issue: 1
  year: 2024
  ident: 10620_CR19
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-022-02793-7
– volume: 28
  start-page: 206
  issue: 1–2
  year: 2016
  ident: 10620_CR2
  publication-title: Flex Serv Manuf J
  doi: 10.1007/s10696-015-9213-7
– volume: 23
  start-page: 249
  year: 2020
  ident: 10620_CR39
  publication-title: Health Care Manag Sci
  doi: 10.1007/s10729-019-09481-5
– volume-title: Taguchi methods: a hands-on approach
  year: 1993
  ident: 10620_CR49
– volume: 64
  start-page: 1
  issue: 1
  year: 2010
  ident: 10620_CR56
  publication-title: Stat Neerl
  doi: 10.1111/j.1467-9574.2009.00440.x
– volume: 57
  start-page: 1143
  year: 2006
  ident: 10620_CR57
  publication-title: J Oper Res Soc
  doi: 10.1057/palgrave.jors.2602068
– volume: 1
  start-page: 281
  issue: 2
  year: 1989
  ident: 10620_CR43
  publication-title: Neural Comput
  doi: 10.1162/neco.1989.1.2.281
– volume: 16
  start-page: 607
  year: 2017
  ident: 10620_CR66
  publication-title: Nat Comput
  doi: 10.1007/s11047-016-9607-9
– volume: 61
  start-page: 31
  year: 2015
  ident: 10620_CR41
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2015.02.014
– ident: 10620_CR5
  doi: 10.1109/WSC.2008.4736245
– ident: 10620_CR9
– ident: 10620_CR48
  doi: 10.1007/978-3-540-39930-8_8
– volume-title: Practical genetic algorithms
  year: 2004
  ident: 10620_CR26
– volume: 152
  year: 2023
  ident: 10620_CR7
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2022.106136
– ident: 10620_CR33
  doi: 10.1109/ICNN.1995.488968
– volume: 54
  start-page: 879
  issue: 4
  year: 2008
  ident: 10620_CR69
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2007.08.012
– volume-title: Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence
  year: 1992
  ident: 10620_CR27
  doi: 10.7551/mitpress/1090.001.0001
– volume: 321
  start-page: 565
  issue: 1–2
  year: 2023
  ident: 10620_CR65
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-022-04870-6
– ident: 10620_CR37
  doi: 10.1109/COASE.2007.4341749
– volume: 16
  start-page: 327
  issue: 3
  year: 2016
  ident: 10620_CR11
  publication-title: Expert Rev Pharmacoecon Outcomes Res
  doi: 10.1586/14737167.2016.1165608
– volume: 224
  start-page: 583
  issue: 3
  year: 2013
  ident: 10620_CR62
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2012.09.010
– volume: 25
  start-page: 10749
  year: 2021
  ident: 10620_CR64
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06014-7
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10620_CR31
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-020-10139-6
– volume: 52
  start-page: 216
  issue: 2
  year: 2020
  ident: 10620_CR61
  publication-title: IISE Trans
  doi: 10.1080/24725854.2019.1628372
– volume: 14
  start-page: 215
  issue: 2
  year: 2015
  ident: 10620_CR6
  publication-title: Int J Simul Model
  doi: 10.2507/IJSIMM14(2)3.287
– volume: 20
  start-page: 25
  year: 2019
  ident: 10620_CR46
  publication-title: Oper Res Health Care
  doi: 10.1016/j.orhc.2019.01.001
– volume: 7
  start-page: 52
  year: 2015
  ident: 10620_CR60
  publication-title: Oper Res Health Care
  doi: 10.1016/j.orhc.2015.05.005
– volume: 18
  start-page: 759
  issue: 3
  year: 2011
  ident: 10620_CR24
  publication-title: Sci Iran
  doi: 10.1016/j.scient.2011.05.023
– volume: 328
  start-page: 643
  issue: 1
  year: 2023
  ident: 10620_CR25
  publication-title: Ann Oper Res
  doi: 10.1007/s10479-022-04686-4
– volume: 135
  start-page: 370
  issue: 3
  year: 1972
  ident: 10620_CR47
  publication-title: J R Stat Soc Ser A (General)
  doi: 10.2307/2344614
– ident: 10620_CR23
– volume: 99
  start-page: 52
  issue: 1–2
  year: 2006
  ident: 10620_CR29
  publication-title: Int J Prod Econ
  doi: 10.1016/j.ijpe.2004.12.006
– start-page: 1
  volume-title: Optimizing operating theater planning—a data mining and optimization approach
  year: 2014
  ident: 10620_CR15
– volume: 220
  year: 2021
  ident: 10620_CR45
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2021.106943
– volume-title: Simulation with visual SLAM and AweSim
  year: 1999
  ident: 10620_CR51
– volume: 193
  year: 2022
  ident: 10620_CR36
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116442
– volume: 1
  start-page: 54
  issue: 2–3
  year: 2012
  ident: 10620_CR32
  publication-title: Oper Res Health Care
  doi: 10.1016/j.orhc.2012.07.001
– volume: 58
  start-page: 212
  issue: 2
  year: 2010
  ident: 10620_CR52
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2009.01.005
– volume: 126
  start-page: 549
  year: 2018
  ident: 10620_CR59
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2018.10.014
– volume: 27
  start-page: 17063
  issue: 22
  year: 2023
  ident: 10620_CR18
  publication-title: Soft Comput
  doi: 10.1007/s00500-023-08754-0
– volume: 195
  year: 2022
  ident: 10620_CR58
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116550
SSID ssj0021753
Score 2.391728
Snippet Hospital managers must plan and schedule their operating rooms (ORs) and related units to increase productivity and deliver high-quality care. In this...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 3909
SubjectTerms Anesthesia
Artificial neural networks
Computer simulation
COVID-19
Data mining
Decision making
Deviation
Genetic algorithms
Health care expenditures
Heuristic methods
Hospital costs
Hospitals
Integer programming
Lateness
Medical wastes
Monte Carlo simulation
Nurses
Optimization techniques
Parameters
Particle swarm optimization
Patient satisfaction
Planning
Recovery
Scheduling
Simulated annealing
Solution space
Statistical analysis
Supply chains
Surgeons
Surgery
Tabu search
Taguchi methods
Uncertainty
Variance analysis
Title Efficient scheduling of integrated operating rooms and post-anesthesia care units under uncertain surgery and recovery times: an artificial neural network-metaheuristic framework
URI https://www.proquest.com/docview/3219489729
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2F9sKFb0ShoDlws1y59trZ5daiRBUq4UAi5WbZ611RCZyosZHon-h_4Rcys7v-KK0QcHHijWJHmeeZebszbxl7WwiR8EpIfJB4hASlTEIhuQoRXUaqqaqOrXbnx0V2tuIf1ul6MrkeVS21TXmkru7sK_kfq-IY2pW6ZP_Bsv1FcQDfo33xiBbG41_ZeGb1H2g1HzkqxoyvvoS514Cogs2WVJNpnFJkJ8i83eyasEAfh8nf7qKw6tRBW9MSArWUXeJRuUqBYOe6pl0VOjLV73Ri96O3XdI1aSRdeBEKksa0L7awPPymm-KLbp0SdGC6IrBxNvwZY4Atam8bP2Ph1LfcZD21M_zoZir8xEScjupZxhOTVHVNayF944z1szzBxD5zCk1HuhtLQmQ3cuyc_U0cCMXI0yYykqOonUinn3UrIrgiENrcnVroY5JdzZAxR0P869b8F5_y-er8PF_O1st7bD9G3oGOc_9kfnq66Dm8Fzbtf7_vw7LdmLfucTPXuRnqbf6yfMQeeOIBJw5Fj9lE10_Yw25TD_A-_in72YMKBlDBxsAAKuhBBRZUgOiA30AFBCqwoAILKuhBBR5U9msdqMCC6h2OwQApcJCCOyEFPaSesdV8tnx_FvqNPUKFf1wT6qg8LmSJVFpnWUx99VWCbkLElTEpbSAwVYpzI2gNPSqyTJYp0ipVaMmnlUTv8pzt1Ztav2CgUmNo3zzk_ZJLI4Q0JsNL6SKqkE2oAxZ0Jsi3Tr8l75W6rcFyNFhuDZZHB-yws1Lun_NdnmBQ50IiC335549fsfvDc3DI9prLVr_GlLUp33gY_QJwuZ7C
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+scheduling+of+integrated+operating+rooms+and+post-anesthesia+care+units+under+uncertain+surgery+and+recovery+times%3A+an+artificial+neural+network-metaheuristic+framework&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.date=2025-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=29&rft.issue=8&rft.spage=3909&rft.epage=3941&rft_id=info:doi/10.1007%2Fs00500-025-10620-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon