Privacy preservation through makeup transfer for facial feature obfuscation
Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial perturbation methods often degrade visual fidelity and compromise identity utility. We propose makeup-transfer obfuscation GAN (MTO-GAN), which uses...
Saved in:
Published in | The Journal of supercomputing Vol. 81; no. 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer Nature B.V
21.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial perturbation methods often degrade visual fidelity and compromise identity utility. We propose makeup-transfer obfuscation GAN (MTO-GAN), which uses makeup-inspired perturbations to obfuscate soft biometric traits while preserving realism and recognition performance. Methodologically, (i) an entropy-increase perspective motivates the use of adversarial noise; (ii) a density-ratio-to-probabilistic-classification reformulation with a Siamese objective estimates and mitigates domain shift while alleviating conflicts with cycle consistency; and (iii) a lightweight domain regularization module based on RRDB denoises and harmonizes features to stabilize the cycle. To address the challenges of large-scale facial image privacy computation and extreme computational load in deep learning, we employ GPU-accelerated parallel inference to meet throughput and latency requirements. Experiments across four public face datasets and five face recognizers show that MTO-GAN drives age and race predictability toward random-guessing levels while largely preserving identity verification, and it improves perceptual quality over prior perturbation approaches. Overall, MTO-GAN achieves a favorable balance among privacy protection, visual fidelity, and identity utility. |
---|---|
AbstractList | Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial perturbation methods often degrade visual fidelity and compromise identity utility. We propose makeup-transfer obfuscation GAN (MTO-GAN), which uses makeup-inspired perturbations to obfuscate soft biometric traits while preserving realism and recognition performance. Methodologically, (i) an entropy-increase perspective motivates the use of adversarial noise; (ii) a density-ratio-to-probabilistic-classification reformulation with a Siamese objective estimates and mitigates domain shift while alleviating conflicts with cycle consistency; and (iii) a lightweight domain regularization module based on RRDB denoises and harmonizes features to stabilize the cycle. To address the challenges of large-scale facial image privacy computation and extreme computational load in deep learning, we employ GPU-accelerated parallel inference to meet throughput and latency requirements. Experiments across four public face datasets and five face recognizers show that MTO-GAN drives age and race predictability toward random-guessing levels while largely preserving identity verification, and it improves perceptual quality over prior perturbation approaches. Overall, MTO-GAN achieves a favorable balance among privacy protection, visual fidelity, and identity utility. |
ArticleNumber | 1258 |
Author | Jin, Biao Hu, Renyuan Chen, Zheyu Yao, Zhiqiang |
Author_xml | – sequence: 1 givenname: Renyuan surname: Hu fullname: Hu, Renyuan – sequence: 2 givenname: Zheyu surname: Chen fullname: Chen, Zheyu – sequence: 3 givenname: Biao surname: Jin fullname: Jin, Biao – sequence: 4 givenname: Zhiqiang surname: Yao fullname: Yao, Zhiqiang |
BookMark | eNpNkEtPwzAQhC1UJNrCH-BkiXPAz6xzRBUvUQkOcLa2rk1T2jjYSaX21xMoBw6jmcPMrvRNyKiJjSfkkrNrzhjcZM6FgIIJXTAAXRaHEzLmGmTBlFGjf_mMTHJeM8aUBDkmz6-p3qHb0zb57NMOuzo2tFul2H-s6BY_fd_SLmGTg080xEHoatzQ4LHrk6dxEfrsfmfn5DTgJvuLP5-S9_u7t9ljMX95eJrdzgvHleyKpeIAlXbaB7HUyLUrDYCUJV_40iCCAbM0ZSgr6ZAZITxWEkEJXQUpQMkpuTrebVP86n3u7Dr2qRleWimUYEzqCoaWOLZcijknH2yb6i2mveXM_kCzR2h2gGZ_odmD_AbBOmGa |
Cites_doi | 10.1007/978-3-030-11021-5_5 10.1109/CVPR52733.2024.02151 10.1109/WACVW60836.2024.00124 10.1007/978-3-031-19787-1_9 10.1109/TIFS.2024.3424303 10.1109/TIFS.2021.3065495 10.1016/j.cosrev.2025.100785 10.1016/j.neucom.2022.06.039 10.1145/954339.954342 10.1109/CVPRW.2006.125 10.1186/s40537-016-0043-6 10.1109/WACV56688.2023.00138 10.1145/3664596 10.1007/s11042-021-10622-8 10.1109/TIP.2020.3024026 10.1109/CVPR.2017.463 10.1109/CVPR42600.2020.00813 10.1109/TIFS.2024.3449104 10.1109/TIFS.2022.3215913 10.1109/CVPR.2018.00745 10.1109/WACV48630.2021.00159 10.1109/BTAS.2014.6996249 10.1109/TIFS.2023.3262112 10.1109/TCSVT.2025.3543408 10.1007/978-3-319-16181-5_52 10.1109/FG.2018.00020 10.1109/ICCV48922.2021.00332 10.24963/ijcai.2018/91 10.1109/ICCV.2019.01058 10.1109/ICB2018.2018.00023 10.1109/CVPRW53098.2021.00366 10.1007/978-3-030-58568-6_2 10.1109/TIFS.2023.3274359 10.24963/ijcai.2021/173 10.1016/j.patcog.2025.112063 10.1109/TIFS.2024.3388976 10.1109/TKDE.2005.32 10.1109/ICCV.2019.00947 10.1109/TPAMI.2024.3522994 10.1007/s11263-024-02088-6 10.1109/CVPR42600.2020.00524 10.1109/TPAMI.2020.3034267 10.1007/978-3-030-33720-9_44 10.1109/CVPR.2018.00916 10.1109/BTAS.2018.8698605 10.1109/CVPR42600.2020.00926 10.1145/3474085.3475367 10.1109/CVPR52688.2022.01459 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11227-025-07756-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-0484 |
ExternalDocumentID | 10_1007_s11227_025_07756_z |
GroupedDBID | -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BSONS CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAP EBLON EBS EIOEI ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- N9A NB0 NPVJJ NQJWS O9- O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV ROL RPX RSV S16 S1Z S27 S3B SAP SCJ SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZMTXR ~EX BGNMA M4Y NU0 |
ID | FETCH-LOGICAL-c143t-d417795c5ef2d5a15c68773361be68aa7878d86f693ca0822ea93a74259f32743 |
ISSN | 1573-0484 0920-8542 |
IngestDate | Fri Aug 22 20:15:29 EDT 2025 Wed Aug 27 16:23:34 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c143t-d417795c5ef2d5a15c68773361be68aa7878d86f693ca0822ea93a74259f32743 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3242003597 |
PQPubID | 2043774 |
ParticipantIDs | proquest_journals_3242003597 crossref_primary_10_1007_s11227_025_07756_z |
PublicationCentury | 2000 |
PublicationDate | 2025-08-21 |
PublicationDateYYYYMMDD | 2025-08-21 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Journal of supercomputing |
PublicationYear | 2025 |
Publisher | Springer Nature B.V |
Publisher_xml | – name: Springer Nature B.V |
References | W Zhao (7756_CR1) 2003; 35 7756_CR5 7756_CR8 H Yang (7756_CR6) 2024; 19 7756_CR2 7756_CR49 7756_CR47 7756_CR48 7756_CR45 7756_CR46 7756_CR43 7756_CR44 7756_CR41 7756_CR42 7756_CR40 Y Xu (7756_CR3) 2025; 35 Y Shen (7756_CR39) 2022; 44 Z Sun (7756_CR10) 2025 V Mirjalili (7756_CR17) 2020; 29 Q Chen (7756_CR9) 2024 S Chen (7756_CR4) 2025 7756_CR38 7756_CR36 7756_CR34 7756_CR33 7756_CR30 7756_CR31 P Melzi (7756_CR11) 2024; 56 K Weiss (7756_CR19) 2016; 3 Y Wen (7756_CR28) 2022; 501 7756_CR29 7756_CR27 A Liu (7756_CR32) 2021; 16 7756_CR25 7756_CR26 7756_CR23 J Li (7756_CR35) 2023; 18 7756_CR24 Y Zhang (7756_CR16) 2023; 18 7756_CR21 7756_CR20 B Razeghi (7756_CR37) 2023; 18 T Xie (7756_CR7) 2025; 47 7756_CR18 7756_CR14 7756_CR12 7756_CR13 7756_CR54 7756_CR52 7756_CR53 7756_CR50 7756_CR51 Z Chen (7756_CR15) 2024 EM Newton (7756_CR22) 2005; 17 |
References_xml | – ident: 7756_CR44 doi: 10.1007/978-3-030-11021-5_5 – ident: 7756_CR2 doi: 10.1109/CVPR52733.2024.02151 – ident: 7756_CR14 doi: 10.1109/WACVW60836.2024.00124 – ident: 7756_CR51 doi: 10.1007/978-3-031-19787-1_9 – ident: 7756_CR38 doi: 10.1109/TIFS.2024.3424303 – volume: 16 start-page: 2759 year: 2021 ident: 7756_CR32 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2021.3065495 – year: 2025 ident: 7756_CR10 publication-title: Comput Sci Rev doi: 10.1016/j.cosrev.2025.100785 – volume: 501 start-page: 197 year: 2022 ident: 7756_CR28 publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.039 – volume: 35 start-page: 399 issue: 4 year: 2003 ident: 7756_CR1 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/954339.954342 – year: 2024 ident: 7756_CR15 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2024.3424303 – ident: 7756_CR21 doi: 10.1109/CVPRW.2006.125 – volume: 3 start-page: 1 issue: 1 year: 2016 ident: 7756_CR19 publication-title: J Big Data doi: 10.1186/s40537-016-0043-6 – ident: 7756_CR54 – ident: 7756_CR52 doi: 10.1109/WACV56688.2023.00138 – volume: 56 start-page: 1 issue: 12 year: 2024 ident: 7756_CR11 publication-title: ACM Comput Surv doi: 10.1145/3664596 – ident: 7756_CR5 doi: 10.1007/s11042-021-10622-8 – volume: 29 start-page: 9400 year: 2020 ident: 7756_CR17 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2020.3024026 – ident: 7756_CR48 doi: 10.1109/CVPR.2017.463 – ident: 7756_CR40 doi: 10.1109/CVPR42600.2020.00813 – ident: 7756_CR24 – ident: 7756_CR20 doi: 10.1109/TIFS.2024.3449104 – volume: 18 start-page: 1 year: 2023 ident: 7756_CR35 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2022.3215913 – ident: 7756_CR53 doi: 10.1109/CVPR.2018.00745 – ident: 7756_CR47 doi: 10.1109/WACV48630.2021.00159 – ident: 7756_CR33 doi: 10.1109/BTAS.2014.6996249 – volume: 18 start-page: 2060 year: 2023 ident: 7756_CR37 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2023.3262112 – volume: 35 start-page: 6926 issue: 7 year: 2025 ident: 7756_CR3 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2025.3543408 – ident: 7756_CR31 doi: 10.1007/978-3-319-16181-5_52 – ident: 7756_CR49 doi: 10.1109/FG.2018.00020 – ident: 7756_CR29 doi: 10.1109/ICCV48922.2021.00332 – ident: 7756_CR13 doi: 10.24963/ijcai.2018/91 – ident: 7756_CR46 – ident: 7756_CR50 doi: 10.1109/ICCV.2019.01058 – ident: 7756_CR12 doi: 10.1109/ICB2018.2018.00023 – ident: 7756_CR36 doi: 10.1109/CVPRW53098.2021.00366 – ident: 7756_CR30 doi: 10.1007/978-3-030-58568-6_2 – volume: 18 start-page: 3074 year: 2023 ident: 7756_CR16 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2023.3274359 – ident: 7756_CR8 doi: 10.24963/ijcai.2021/173 – year: 2025 ident: 7756_CR4 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2025.112063 – year: 2024 ident: 7756_CR9 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2024.3388976 – volume: 17 start-page: 232 issue: 2 year: 2005 ident: 7756_CR22 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.32 – ident: 7756_CR27 doi: 10.1109/ICCV.2019.00947 – volume: 47 start-page: 2089 issue: 3 year: 2025 ident: 7756_CR7 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2024.3522994 – ident: 7756_CR42 doi: 10.1007/s11263-024-02088-6 – ident: 7756_CR45 doi: 10.1109/CVPR42600.2020.00524 – volume: 19 start-page: 8773 year: 2024 ident: 7756_CR6 publication-title: IEEE Trans Inf Forensics Secur doi: 10.1109/TIFS.2024.3449104 – volume: 44 start-page: 2004 issue: 4 year: 2022 ident: 7756_CR39 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2020.3034267 – ident: 7756_CR26 doi: 10.1007/978-3-030-33720-9_44 – ident: 7756_CR41 doi: 10.1109/CVPR.2018.00916 – ident: 7756_CR34 doi: 10.1109/BTAS.2018.8698605 – ident: 7756_CR43 doi: 10.1109/CVPR42600.2020.00926 – ident: 7756_CR23 doi: 10.1109/BTAS.2014.6996249 – ident: 7756_CR18 doi: 10.1145/3474085.3475367 – ident: 7756_CR25 doi: 10.1109/CVPR52688.2022.01459 |
SSID | ssj0004373 |
Score | 2.3829064 |
Snippet | Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
SubjectTerms | Face recognition Perturbation methods Privacy Regularization |
Title | Privacy preservation through makeup transfer for facial feature obfuscation |
URI | https://www.proquest.com/docview/3242003597 |
Volume | 81 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5m9eJlfS7rkz54k8gknXQnRxVFFMWDgngwdHe6dVacGWcmgvPrrX7kocyCegmhCZWQ7-uqSqUeCO1GsRnoInkAHx9JEDORwp7jAnZ8V6pQKxlqE9C_uKSnN_HZbXLb6dy3spbKidiX05l1JT9BFdYAV1Ml-w1ka6GwAOeALxwBYTh-CeOrUe_VjGs3yaxVcLWevPPMn1Q5NDMgwDNVI5tPqLmNkGtl23nuDYQux7LB5l9DnZajOi6HaiTt9IfKzlkeOHT6b2VDsCNf63H3qN7KOjnHj4Tv8UGtY_jAXdZ7AXo-tEMPUWJiqa6eudKWjARd14wUjMmMNa9i07BNJTJTdXd9KXMYRSywN2MsocG0MVTVz_lP9qvOKmw6MBsZOcjIrYx8-gvNR_AZAXpw_uDk8PCyqZwlNgehfmhfVuWKKz8_yUfX5aPltu7I9RL67eHBB44Uy6ij-itosZrRgb3KXkXnniO4zRHsOYIdR3DFEQwcwY4j2HMEtziyhm5Ojq-PTgM_QCOQ4AZPgiIOGcsSmSgdFQkPE0lTZvpfhkLRlHNQ1mmRUk0zIrlp_a94RjgDNZ5pAluY_EFz_UFf_UWYFDrjqhBUFhp8QC4YVVlMNCW06IqUr6O96t3kQ9cnJf8_Hutoq3p9ud9P49y49rajJNv4lrBNtNCQcwvNTUal2gZPcSJ2PNzvEwdn5Q |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+preservation+through+makeup+transfer+for+facial+feature+obfuscation&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hu%2C+Renyuan&rft.au=Chen%2C+Zheyu&rft.au=Jin%2C+Biao&rft.au=Yao%2C+Zhiqiang&rft.date=2025-08-21&rft.issn=1573-0484&rft.eissn=1573-0484&rft.volume=81&rft.issue=13&rft_id=info:doi/10.1007%2Fs11227-025-07756-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_025_07756_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon |