Privacy preservation through makeup transfer for facial feature obfuscation

Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial perturbation methods often degrade visual fidelity and compromise identity utility. We propose makeup-transfer obfuscation GAN (MTO-GAN), which uses...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of supercomputing Vol. 81; no. 13
Main Authors Hu, Renyuan, Chen, Zheyu, Jin, Biao, Yao, Zhiqiang
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 21.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial perturbation methods often degrade visual fidelity and compromise identity utility. We propose makeup-transfer obfuscation GAN (MTO-GAN), which uses makeup-inspired perturbations to obfuscate soft biometric traits while preserving realism and recognition performance. Methodologically, (i) an entropy-increase perspective motivates the use of adversarial noise; (ii) a density-ratio-to-probabilistic-classification reformulation with a Siamese objective estimates and mitigates domain shift while alleviating conflicts with cycle consistency; and (iii) a lightweight domain regularization module based on RRDB denoises and harmonizes features to stabilize the cycle. To address the challenges of large-scale facial image privacy computation and extreme computational load in deep learning, we employ GPU-accelerated parallel inference to meet throughput and latency requirements. Experiments across four public face datasets and five face recognizers show that MTO-GAN drives age and race predictability toward random-guessing levels while largely preserving identity verification, and it improves perceptual quality over prior perturbation approaches. Overall, MTO-GAN achieves a favorable balance among privacy protection, visual fidelity, and identity utility.
AbstractList Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial perturbation methods often degrade visual fidelity and compromise identity utility. We propose makeup-transfer obfuscation GAN (MTO-GAN), which uses makeup-inspired perturbations to obfuscate soft biometric traits while preserving realism and recognition performance. Methodologically, (i) an entropy-increase perspective motivates the use of adversarial noise; (ii) a density-ratio-to-probabilistic-classification reformulation with a Siamese objective estimates and mitigates domain shift while alleviating conflicts with cycle consistency; and (iii) a lightweight domain regularization module based on RRDB denoises and harmonizes features to stabilize the cycle. To address the challenges of large-scale facial image privacy computation and extreme computational load in deep learning, we employ GPU-accelerated parallel inference to meet throughput and latency requirements. Experiments across four public face datasets and five face recognizers show that MTO-GAN drives age and race predictability toward random-guessing levels while largely preserving identity verification, and it improves perceptual quality over prior perturbation approaches. Overall, MTO-GAN achieves a favorable balance among privacy protection, visual fidelity, and identity utility.
ArticleNumber 1258
Author Jin, Biao
Hu, Renyuan
Chen, Zheyu
Yao, Zhiqiang
Author_xml – sequence: 1
  givenname: Renyuan
  surname: Hu
  fullname: Hu, Renyuan
– sequence: 2
  givenname: Zheyu
  surname: Chen
  fullname: Chen, Zheyu
– sequence: 3
  givenname: Biao
  surname: Jin
  fullname: Jin, Biao
– sequence: 4
  givenname: Zhiqiang
  surname: Yao
  fullname: Yao, Zhiqiang
BookMark eNpNkEtPwzAQhC1UJNrCH-BkiXPAz6xzRBUvUQkOcLa2rk1T2jjYSaX21xMoBw6jmcPMrvRNyKiJjSfkkrNrzhjcZM6FgIIJXTAAXRaHEzLmGmTBlFGjf_mMTHJeM8aUBDkmz6-p3qHb0zb57NMOuzo2tFul2H-s6BY_fd_SLmGTg080xEHoatzQ4LHrk6dxEfrsfmfn5DTgJvuLP5-S9_u7t9ljMX95eJrdzgvHleyKpeIAlXbaB7HUyLUrDYCUJV_40iCCAbM0ZSgr6ZAZITxWEkEJXQUpQMkpuTrebVP86n3u7Dr2qRleWimUYEzqCoaWOLZcijknH2yb6i2mveXM_kCzR2h2gGZ_odmD_AbBOmGa
Cites_doi 10.1007/978-3-030-11021-5_5
10.1109/CVPR52733.2024.02151
10.1109/WACVW60836.2024.00124
10.1007/978-3-031-19787-1_9
10.1109/TIFS.2024.3424303
10.1109/TIFS.2021.3065495
10.1016/j.cosrev.2025.100785
10.1016/j.neucom.2022.06.039
10.1145/954339.954342
10.1109/CVPRW.2006.125
10.1186/s40537-016-0043-6
10.1109/WACV56688.2023.00138
10.1145/3664596
10.1007/s11042-021-10622-8
10.1109/TIP.2020.3024026
10.1109/CVPR.2017.463
10.1109/CVPR42600.2020.00813
10.1109/TIFS.2024.3449104
10.1109/TIFS.2022.3215913
10.1109/CVPR.2018.00745
10.1109/WACV48630.2021.00159
10.1109/BTAS.2014.6996249
10.1109/TIFS.2023.3262112
10.1109/TCSVT.2025.3543408
10.1007/978-3-319-16181-5_52
10.1109/FG.2018.00020
10.1109/ICCV48922.2021.00332
10.24963/ijcai.2018/91
10.1109/ICCV.2019.01058
10.1109/ICB2018.2018.00023
10.1109/CVPRW53098.2021.00366
10.1007/978-3-030-58568-6_2
10.1109/TIFS.2023.3274359
10.24963/ijcai.2021/173
10.1016/j.patcog.2025.112063
10.1109/TIFS.2024.3388976
10.1109/TKDE.2005.32
10.1109/ICCV.2019.00947
10.1109/TPAMI.2024.3522994
10.1007/s11263-024-02088-6
10.1109/CVPR42600.2020.00524
10.1109/TPAMI.2020.3034267
10.1007/978-3-030-33720-9_44
10.1109/CVPR.2018.00916
10.1109/BTAS.2018.8698605
10.1109/CVPR42600.2020.00926
10.1145/3474085.3475367
10.1109/CVPR52688.2022.01459
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
DOI 10.1007/s11227-025-07756-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
ExternalDocumentID 10_1007_s11227_025_07756_z
GroupedDBID -~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BSONS
CITATION
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
MA-
N9A
NB0
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCJ
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
BGNMA
M4Y
NU0
ID FETCH-LOGICAL-c143t-d417795c5ef2d5a15c68773361be68aa7878d86f693ca0822ea93a74259f32743
ISSN 1573-0484
0920-8542
IngestDate Fri Aug 22 20:15:29 EDT 2025
Wed Aug 27 16:23:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c143t-d417795c5ef2d5a15c68773361be68aa7878d86f693ca0822ea93a74259f32743
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3242003597
PQPubID 2043774
ParticipantIDs proquest_journals_3242003597
crossref_primary_10_1007_s11227_025_07756_z
PublicationCentury 2000
PublicationDate 2025-08-21
PublicationDateYYYYMMDD 2025-08-21
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-21
  day: 21
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Journal of supercomputing
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References W Zhao (7756_CR1) 2003; 35
7756_CR5
7756_CR8
H Yang (7756_CR6) 2024; 19
7756_CR2
7756_CR49
7756_CR47
7756_CR48
7756_CR45
7756_CR46
7756_CR43
7756_CR44
7756_CR41
7756_CR42
7756_CR40
Y Xu (7756_CR3) 2025; 35
Y Shen (7756_CR39) 2022; 44
Z Sun (7756_CR10) 2025
V Mirjalili (7756_CR17) 2020; 29
Q Chen (7756_CR9) 2024
S Chen (7756_CR4) 2025
7756_CR38
7756_CR36
7756_CR34
7756_CR33
7756_CR30
7756_CR31
P Melzi (7756_CR11) 2024; 56
K Weiss (7756_CR19) 2016; 3
Y Wen (7756_CR28) 2022; 501
7756_CR29
7756_CR27
A Liu (7756_CR32) 2021; 16
7756_CR25
7756_CR26
7756_CR23
J Li (7756_CR35) 2023; 18
7756_CR24
Y Zhang (7756_CR16) 2023; 18
7756_CR21
7756_CR20
B Razeghi (7756_CR37) 2023; 18
T Xie (7756_CR7) 2025; 47
7756_CR18
7756_CR14
7756_CR12
7756_CR13
7756_CR54
7756_CR52
7756_CR53
7756_CR50
7756_CR51
Z Chen (7756_CR15) 2024
EM Newton (7756_CR22) 2005; 17
References_xml – ident: 7756_CR44
  doi: 10.1007/978-3-030-11021-5_5
– ident: 7756_CR2
  doi: 10.1109/CVPR52733.2024.02151
– ident: 7756_CR14
  doi: 10.1109/WACVW60836.2024.00124
– ident: 7756_CR51
  doi: 10.1007/978-3-031-19787-1_9
– ident: 7756_CR38
  doi: 10.1109/TIFS.2024.3424303
– volume: 16
  start-page: 2759
  year: 2021
  ident: 7756_CR32
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2021.3065495
– year: 2025
  ident: 7756_CR10
  publication-title: Comput Sci Rev
  doi: 10.1016/j.cosrev.2025.100785
– volume: 501
  start-page: 197
  year: 2022
  ident: 7756_CR28
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.06.039
– volume: 35
  start-page: 399
  issue: 4
  year: 2003
  ident: 7756_CR1
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/954339.954342
– year: 2024
  ident: 7756_CR15
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2024.3424303
– ident: 7756_CR21
  doi: 10.1109/CVPRW.2006.125
– volume: 3
  start-page: 1
  issue: 1
  year: 2016
  ident: 7756_CR19
  publication-title: J Big Data
  doi: 10.1186/s40537-016-0043-6
– ident: 7756_CR54
– ident: 7756_CR52
  doi: 10.1109/WACV56688.2023.00138
– volume: 56
  start-page: 1
  issue: 12
  year: 2024
  ident: 7756_CR11
  publication-title: ACM Comput Surv
  doi: 10.1145/3664596
– ident: 7756_CR5
  doi: 10.1007/s11042-021-10622-8
– volume: 29
  start-page: 9400
  year: 2020
  ident: 7756_CR17
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2020.3024026
– ident: 7756_CR48
  doi: 10.1109/CVPR.2017.463
– ident: 7756_CR40
  doi: 10.1109/CVPR42600.2020.00813
– ident: 7756_CR24
– ident: 7756_CR20
  doi: 10.1109/TIFS.2024.3449104
– volume: 18
  start-page: 1
  year: 2023
  ident: 7756_CR35
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2022.3215913
– ident: 7756_CR53
  doi: 10.1109/CVPR.2018.00745
– ident: 7756_CR47
  doi: 10.1109/WACV48630.2021.00159
– ident: 7756_CR33
  doi: 10.1109/BTAS.2014.6996249
– volume: 18
  start-page: 2060
  year: 2023
  ident: 7756_CR37
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2023.3262112
– volume: 35
  start-page: 6926
  issue: 7
  year: 2025
  ident: 7756_CR3
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2025.3543408
– ident: 7756_CR31
  doi: 10.1007/978-3-319-16181-5_52
– ident: 7756_CR49
  doi: 10.1109/FG.2018.00020
– ident: 7756_CR29
  doi: 10.1109/ICCV48922.2021.00332
– ident: 7756_CR13
  doi: 10.24963/ijcai.2018/91
– ident: 7756_CR46
– ident: 7756_CR50
  doi: 10.1109/ICCV.2019.01058
– ident: 7756_CR12
  doi: 10.1109/ICB2018.2018.00023
– ident: 7756_CR36
  doi: 10.1109/CVPRW53098.2021.00366
– ident: 7756_CR30
  doi: 10.1007/978-3-030-58568-6_2
– volume: 18
  start-page: 3074
  year: 2023
  ident: 7756_CR16
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2023.3274359
– ident: 7756_CR8
  doi: 10.24963/ijcai.2021/173
– year: 2025
  ident: 7756_CR4
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2025.112063
– year: 2024
  ident: 7756_CR9
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2024.3388976
– volume: 17
  start-page: 232
  issue: 2
  year: 2005
  ident: 7756_CR22
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.32
– ident: 7756_CR27
  doi: 10.1109/ICCV.2019.00947
– volume: 47
  start-page: 2089
  issue: 3
  year: 2025
  ident: 7756_CR7
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2024.3522994
– ident: 7756_CR42
  doi: 10.1007/s11263-024-02088-6
– ident: 7756_CR45
  doi: 10.1109/CVPR42600.2020.00524
– volume: 19
  start-page: 8773
  year: 2024
  ident: 7756_CR6
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2024.3449104
– volume: 44
  start-page: 2004
  issue: 4
  year: 2022
  ident: 7756_CR39
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2020.3034267
– ident: 7756_CR26
  doi: 10.1007/978-3-030-33720-9_44
– ident: 7756_CR41
  doi: 10.1109/CVPR.2018.00916
– ident: 7756_CR34
  doi: 10.1109/BTAS.2018.8698605
– ident: 7756_CR43
  doi: 10.1109/CVPR42600.2020.00926
– ident: 7756_CR23
  doi: 10.1109/BTAS.2014.6996249
– ident: 7756_CR18
  doi: 10.1145/3474085.3475367
– ident: 7756_CR25
  doi: 10.1109/CVPR52688.2022.01459
SSID ssj0004373
Score 2.3829064
Snippet Automated facial recognition can infer sensitive attributes from facial images without consent, posing substantial privacy risks. Existing adversarial...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Face recognition
Perturbation methods
Privacy
Regularization
Title Privacy preservation through makeup transfer for facial feature obfuscation
URI https://www.proquest.com/docview/3242003597
Volume 81
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEG5m9eJlfS7rkz54k8gknXQnRxVFFMWDgngwdHe6dVacGWcmgvPrrX7kocyCegmhCZWQ7-uqSqUeCO1GsRnoInkAHx9JEDORwp7jAnZ8V6pQKxlqE9C_uKSnN_HZbXLb6dy3spbKidiX05l1JT9BFdYAV1Ml-w1ka6GwAOeALxwBYTh-CeOrUe_VjGs3yaxVcLWevPPMn1Q5NDMgwDNVI5tPqLmNkGtl23nuDYQux7LB5l9DnZajOi6HaiTt9IfKzlkeOHT6b2VDsCNf63H3qN7KOjnHj4Tv8UGtY_jAXdZ7AXo-tEMPUWJiqa6eudKWjARd14wUjMmMNa9i07BNJTJTdXd9KXMYRSywN2MsocG0MVTVz_lP9qvOKmw6MBsZOcjIrYx8-gvNR_AZAXpw_uDk8PCyqZwlNgehfmhfVuWKKz8_yUfX5aPltu7I9RL67eHBB44Uy6ij-itosZrRgb3KXkXnniO4zRHsOYIdR3DFEQwcwY4j2HMEtziyhm5Ojq-PTgM_QCOQ4AZPgiIOGcsSmSgdFQkPE0lTZvpfhkLRlHNQ1mmRUk0zIrlp_a94RjgDNZ5pAluY_EFz_UFf_UWYFDrjqhBUFhp8QC4YVVlMNCW06IqUr6O96t3kQ9cnJf8_Hutoq3p9ud9P49y49rajJNv4lrBNtNCQcwvNTUal2gZPcSJ2PNzvEwdn5Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Privacy+preservation+through+makeup+transfer+for+facial+feature+obfuscation&rft.jtitle=The+Journal+of+supercomputing&rft.au=Hu%2C+Renyuan&rft.au=Chen%2C+Zheyu&rft.au=Jin%2C+Biao&rft.au=Yao%2C+Zhiqiang&rft.date=2025-08-21&rft.issn=1573-0484&rft.eissn=1573-0484&rft.volume=81&rft.issue=13&rft_id=info:doi/10.1007%2Fs11227-025-07756-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11227_025_07756_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-0484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-0484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-0484&client=summon