AUXILIARY ELEMENTARY NOTIONS

We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in the appendices are independent, intended for reference while addressing the main text. Our own Introduction to the Analysis of Algorithms [538]...

Full description

Saved in:
Bibliographic Details
Published inAnalytic Combinatorics pp. 721 - 738
Main Author Flajolet, Philippe
Format Book Chapter
LanguageEnglish
Published 15.01.2009
Online AccessGet full text
ISBN9780521898065
0521898064
DOI10.1017/CBO9780511801655.012

Cover

Abstract We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in the appendices are independent, intended for reference while addressing the main text. Our own Introduction to the Analysis of Algorithms [538] is a gentle introduction to many of the concepts underlying analytic combinatorics at a level accessible to any college student and is reasonable preparation for undergraduates or anyone undertaking to read this book for self-study.This appendix contains entries that are arranged in alphabetical order, regarding the following topics:Arithmetical functions; Asymptotic notations; Combinatorial probability; Cycle construction; Formal power series; Lagrange inversion; Regular languages; Stirling numbers; Tree concepts.The corresponding notions and results are used throughout the book, and especially in Part A relative to Symbolic Methods. Accessible introductions to the subject of this appendix are the books by Graham–Knuth–Patashnik [307], and Wilf [608], regarding combinatorial enumeration, and De Bruijn's vivid booklet [142], regarding asymptotic analysis. Reference works in combinatorial analysis are the books by Comtet [129], Goulden–Jackson [303], and Stanley [552, 554].Arithmetical functionsA general reference for this section is Apostol's book [16]. First, the Euler totient function ϕ(k) intervenes in the unlabelled cycle construction (pp. 27, 84, 165, as well as 729 below). It is defined as the number of integers in [1 ‥ k] that are relatively prime to k.
AbstractList We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in the appendices are independent, intended for reference while addressing the main text. Our own Introduction to the Analysis of Algorithms [538] is a gentle introduction to many of the concepts underlying analytic combinatorics at a level accessible to any college student and is reasonable preparation for undergraduates or anyone undertaking to read this book for self-study.This appendix contains entries that are arranged in alphabetical order, regarding the following topics:Arithmetical functions; Asymptotic notations; Combinatorial probability; Cycle construction; Formal power series; Lagrange inversion; Regular languages; Stirling numbers; Tree concepts.The corresponding notions and results are used throughout the book, and especially in Part A relative to Symbolic Methods. Accessible introductions to the subject of this appendix are the books by Graham–Knuth–Patashnik [307], and Wilf [608], regarding combinatorial enumeration, and De Bruijn's vivid booklet [142], regarding asymptotic analysis. Reference works in combinatorial analysis are the books by Comtet [129], Goulden–Jackson [303], and Stanley [552, 554].Arithmetical functionsA general reference for this section is Apostol's book [16]. First, the Euler totient function ϕ(k) intervenes in the unlabelled cycle construction (pp. 27, 84, 165, as well as 729 below). It is defined as the number of integers in [1 ‥ k] that are relatively prime to k.
Author Flajolet, Philippe
Author_xml – sequence: 1
  givenname: Philippe
  surname: Flajolet
  fullname: Flajolet, Philippe
  organization: Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt
BookMark eNpdT8tKw0AUnaKC2uYPuvAHUu-dd5ZjiDWQJlBTqKuQO5kWtW2gceHnW7GbejhwHosD555dH_pDYGyKMENA85g-VYmxoBAtoFZqBshHLLrors6Zo00saHXLomH4gBMQBIC8Y1O3WudF7pZvD1mRLbKy_rVlVedV-TphN5t2N4TorGO2es7q9CUuqnmeuiL2KMVXbDwaToQkFCkUiW6NpeBtsvEndqhMIJICO286bDkJLkh6yVFyDhC0GDP3t-vbPR3fu21ofH8M1PefQ3NxqPne75r_zx2CFj-Qf0em
ContentType Book Chapter
Copyright P. Flajolet and R. Sedgewick 2009
Copyright_xml – notice: P. Flajolet and R. Sedgewick 2009
DOI 10.1017/CBO9780511801655.012
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISBN 9780511801655
0511801653
EndPage 738
ExternalDocumentID 9780511801655_xml_CBO9780511801655A106
GroupedDBID -G2
-VX
089
20A
38.
92K
A4I
A4J
AAAAZ
AABBV
AAHFW
AALIM
ABARN
ABESS
ABIAV
ABMRC
ABZUC
ACCTN
ACLGV
ACNOG
ADCGF
ADQZK
ADVEM
AEDFS
AERYV
AEWAL
AEWQY
AGSJN
AHAWV
AIAQS
AIXPE
AJFER
AJXXZ
AKHYG
ALMA_UNASSIGNED_HOLDINGS
AMJDZ
ANGWU
ASYWF
AZZ
BBABE
BFIBU
BJUTA
COBLI
COXPH
CYGLA
CZZ
DUGUG
EBSCA
EBZNK
ECOWB
FH2
FVPQW
GEOUK
ICERG
JJU
MYL
OLDIN
OTBUH
OZASK
OZBHS
PP-
PQQKQ
S36
SACVX
SN-
SUPCW
WZT
XI1
ZXKUE
ID FETCH-LOGICAL-c143t-7c172bb1b35b51396a78bec89fc9fcd157ebb431dc7d1a2b323b4c42142200e63
ISBN 9780521898065
0521898064
IngestDate Wed Mar 12 03:59:22 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c143t-7c172bb1b35b51396a78bec89fc9fcd157ebb431dc7d1a2b323b4c42142200e63
PageCount 18
ParticipantIDs cambridge_corebooks_9780511801655_xml_CBO9780511801655A106
PublicationCentury 2000
PublicationDate 20090115
PublicationDateYYYYMMDD 2009-01-15
PublicationDate_xml – month: 01
  year: 2009
  text: 20090115
  day: 15
PublicationDecade 2000
PublicationTitle Analytic Combinatorics
PublicationYear 2009
SSID ssj0000103004
Score 1.3374803
Snippet We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in...
SourceID cambridge
SourceType Publisher
StartPage 721
Title AUXILIARY ELEMENTARY NOTIONS
URI https://doi.org/10.1017/CBO9780511801655.012?locatt=mode:legacy
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46X9QXr3iZsgffJLpe0_o2x2SK20A2mE8lJ20fpG7iKqi_3nPamq7TBy9QQghJSHNy-XL5vjB24noQIxCQXFmWze0YLA5SOLwppHJisxnGitjIvb7bHdk3Y2dcPr6asUtSOFPv3_JK_mJVDEO7Ekv2F5bVmWIA-tG-6KKF0V0Av9Vt1kL6WCZvJLeKXRqXtzJT-yjZHIl8mCb5SUO-afJUaR6t0fgal_F396ed20zQn7z9QUYqruwE0D0nnnMh9YKQqLieT4elc4OSyDnIxfwmcjWVL0NnrrfUvhxk2ZAynOE6pGlqllOFvsBXiRO8PibBYsKWQULoy8Kza2wFp9hOT2990dMSaMWCOZwV1y60kHTxP1mOhjj_rkjzShhzeGC4wdaJI9Ig8gaWd5MtRZMtttbTErizbVbXNdwoa7hR1PAOG111hu0uL56i4AoBZcqFQqAHYIDlgIOg2ZXCw9bv-bHCLzQcEQEgFguVCA1pgmVaYCub9OzQUpFr7bLaZDqJ9ljD8yNcJWJPAIlYVIHf9EIVColxMWEU77ML_WsBSZlSC5sFP6vxg_8kPmSrZbOqs1r6_BIdIeRK4bgw4QfXhhkg
linkProvider ProQuest Ebooks
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Analytic+Combinatorics&rft.au=Flajolet%2C+Philippe&rft.atitle=AUXILIARY+ELEMENTARY+NOTIONS&rft.date=2009-01-15&rft.isbn=9780521898065&rft.spage=721&rft.epage=738&rft_id=info:doi/10.1017%2FCBO9780511801655.012&rft.externalDocID=9780511801655_xml_CBO9780511801655A106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780521898065/lc.gif&client=summon&freeimage=true
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780521898065/mc.gif&client=summon&freeimage=true
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780521898065/sc.gif&client=summon&freeimage=true