AUXILIARY ELEMENTARY NOTIONS
We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in the appendices are independent, intended for reference while addressing the main text. Our own Introduction to the Analysis of Algorithms [538]...
Saved in:
Published in | Analytic Combinatorics pp. 721 - 738 |
---|---|
Main Author | |
Format | Book Chapter |
Language | English |
Published |
15.01.2009
|
Online Access | Get full text |
ISBN | 9780521898065 0521898064 |
DOI | 10.1017/CBO9780511801655.012 |
Cover
Abstract | We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in the appendices are independent, intended for reference while addressing the main text. Our own Introduction to the Analysis of Algorithms [538] is a gentle introduction to many of the concepts underlying analytic combinatorics at a level accessible to any college student and is reasonable preparation for undergraduates or anyone undertaking to read this book for self-study.This appendix contains entries that are arranged in alphabetical order, regarding the following topics:Arithmetical functions; Asymptotic notations; Combinatorial probability; Cycle construction; Formal power series; Lagrange inversion; Regular languages; Stirling numbers; Tree concepts.The corresponding notions and results are used throughout the book, and especially in Part A relative to Symbolic Methods. Accessible introductions to the subject of this appendix are the books by Graham–Knuth–Patashnik [307], and Wilf [608], regarding combinatorial enumeration, and De Bruijn's vivid booklet [142], regarding asymptotic analysis. Reference works in combinatorial analysis are the books by Comtet [129], Goulden–Jackson [303], and Stanley [552, 554].Arithmetical functionsA general reference for this section is Apostol's book [16]. First, the Euler totient function ϕ(k) intervenes in the unlabelled cycle construction (pp. 27, 84, 165, as well as 729 below). It is defined as the number of integers in [1 ‥ k] that are relatively prime to k. |
---|---|
AbstractList | We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in the appendices are independent, intended for reference while addressing the main text. Our own Introduction to the Analysis of Algorithms [538] is a gentle introduction to many of the concepts underlying analytic combinatorics at a level accessible to any college student and is reasonable preparation for undergraduates or anyone undertaking to read this book for self-study.This appendix contains entries that are arranged in alphabetical order, regarding the following topics:Arithmetical functions; Asymptotic notations; Combinatorial probability; Cycle construction; Formal power series; Lagrange inversion; Regular languages; Stirling numbers; Tree concepts.The corresponding notions and results are used throughout the book, and especially in Part A relative to Symbolic Methods. Accessible introductions to the subject of this appendix are the books by Graham–Knuth–Patashnik [307], and Wilf [608], regarding combinatorial enumeration, and De Bruijn's vivid booklet [142], regarding asymptotic analysis. Reference works in combinatorial analysis are the books by Comtet [129], Goulden–Jackson [303], and Stanley [552, 554].Arithmetical functionsA general reference for this section is Apostol's book [16]. First, the Euler totient function ϕ(k) intervenes in the unlabelled cycle construction (pp. 27, 84, 165, as well as 729 below). It is defined as the number of integers in [1 ‥ k] that are relatively prime to k. |
Author | Flajolet, Philippe |
Author_xml | – sequence: 1 givenname: Philippe surname: Flajolet fullname: Flajolet, Philippe organization: Institut National de Recherche en Informatique et en Automatique (INRIA), Rocquencourt |
BookMark | eNpdT8tKw0AUnaKC2uYPuvAHUu-dd5ZjiDWQJlBTqKuQO5kWtW2gceHnW7GbejhwHosD555dH_pDYGyKMENA85g-VYmxoBAtoFZqBshHLLrors6Zo00saHXLomH4gBMQBIC8Y1O3WudF7pZvD1mRLbKy_rVlVedV-TphN5t2N4TorGO2es7q9CUuqnmeuiL2KMVXbDwaToQkFCkUiW6NpeBtsvEndqhMIJICO286bDkJLkh6yVFyDhC0GDP3t-vbPR3fu21ofH8M1PefQ3NxqPne75r_zx2CFj-Qf0em |
ContentType | Book Chapter |
Copyright | P. Flajolet and R. Sedgewick 2009 |
Copyright_xml | – notice: P. Flajolet and R. Sedgewick 2009 |
DOI | 10.1017/CBO9780511801655.012 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISBN | 9780511801655 0511801653 |
EndPage | 738 |
ExternalDocumentID | 9780511801655_xml_CBO9780511801655A106 |
GroupedDBID | -G2 -VX 089 20A 38. 92K A4I A4J AAAAZ AABBV AAHFW AALIM ABARN ABESS ABIAV ABMRC ABZUC ACCTN ACLGV ACNOG ADCGF ADQZK ADVEM AEDFS AERYV AEWAL AEWQY AGSJN AHAWV AIAQS AIXPE AJFER AJXXZ AKHYG ALMA_UNASSIGNED_HOLDINGS AMJDZ ANGWU ASYWF AZZ BBABE BFIBU BJUTA COBLI COXPH CYGLA CZZ DUGUG EBSCA EBZNK ECOWB FH2 FVPQW GEOUK ICERG JJU MYL OLDIN OTBUH OZASK OZBHS PP- PQQKQ S36 SACVX SN- SUPCW WZT XI1 ZXKUE |
ID | FETCH-LOGICAL-c143t-7c172bb1b35b51396a78bec89fc9fcd157ebb431dc7d1a2b323b4c42142200e63 |
ISBN | 9780521898065 0521898064 |
IngestDate | Wed Mar 12 03:59:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c143t-7c172bb1b35b51396a78bec89fc9fcd157ebb431dc7d1a2b323b4c42142200e63 |
PageCount | 18 |
ParticipantIDs | cambridge_corebooks_9780511801655_xml_CBO9780511801655A106 |
PublicationCentury | 2000 |
PublicationDate | 20090115 |
PublicationDateYYYYMMDD | 2009-01-15 |
PublicationDate_xml | – month: 01 year: 2009 text: 20090115 day: 15 |
PublicationDecade | 2000 |
PublicationTitle | Analytic Combinatorics |
PublicationYear | 2009 |
SSID | ssj0000103004 |
Score | 1.3374803 |
Snippet | We combine in the three appendices definitions and theorems related to key mathematical concepts not covered directly in the text. Generally, the entries in... |
SourceID | cambridge |
SourceType | Publisher |
StartPage | 721 |
Title | AUXILIARY ELEMENTARY NOTIONS |
URI | https://doi.org/10.1017/CBO9780511801655.012?locatt=mode:legacy |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46X9QXr3iZsgffJLpe0_o2x2SK20A2mE8lJ20fpG7iKqi_3nPamq7TBy9QQghJSHNy-XL5vjB24noQIxCQXFmWze0YLA5SOLwppHJisxnGitjIvb7bHdk3Y2dcPr6asUtSOFPv3_JK_mJVDEO7Ekv2F5bVmWIA-tG-6KKF0V0Av9Vt1kL6WCZvJLeKXRqXtzJT-yjZHIl8mCb5SUO-afJUaR6t0fgal_F396ed20zQn7z9QUYqruwE0D0nnnMh9YKQqLieT4elc4OSyDnIxfwmcjWVL0NnrrfUvhxk2ZAynOE6pGlqllOFvsBXiRO8PibBYsKWQULoy8Kza2wFp9hOT2990dMSaMWCOZwV1y60kHTxP1mOhjj_rkjzShhzeGC4wdaJI9Ig8gaWd5MtRZMtttbTErizbVbXNdwoa7hR1PAOG111hu0uL56i4AoBZcqFQqAHYIDlgIOg2ZXCw9bv-bHCLzQcEQEgFguVCA1pgmVaYCub9OzQUpFr7bLaZDqJ9ljD8yNcJWJPAIlYVIHf9EIVColxMWEU77ML_WsBSZlSC5sFP6vxg_8kPmSrZbOqs1r6_BIdIeRK4bgw4QfXhhkg |
linkProvider | ProQuest Ebooks |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Analytic+Combinatorics&rft.au=Flajolet%2C+Philippe&rft.atitle=AUXILIARY+ELEMENTARY+NOTIONS&rft.date=2009-01-15&rft.isbn=9780521898065&rft.spage=721&rft.epage=738&rft_id=info:doi/10.1017%2FCBO9780511801655.012&rft.externalDocID=9780511801655_xml_CBO9780511801655A106 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780521898065/lc.gif&client=summon&freeimage=true |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780521898065/mc.gif&client=summon&freeimage=true |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=9780521898065/sc.gif&client=summon&freeimage=true |