An adaptive finite element DtN method for the acoustic-elastic interaction problem in periodic structures

Consider a time-harmonic acoustic plane wave incident onto an elastic body with an unbounded periodic surface. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid air/fluid of constant mass density, while the elastic body is assumed to be isotropic and line...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 51; no. 4
Main Authors Lin, Lei, Lv, Junliang
Format Journal Article
LanguageEnglish
Published New York Springer Nature B.V 01.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Consider a time-harmonic acoustic plane wave incident onto an elastic body with an unbounded periodic surface. The medium above the surface is supposed to be filled with a homogeneous compressible inviscid air/fluid of constant mass density, while the elastic body is assumed to be isotropic and linear. By introducing the Dirichlet-to-Neumann (DtN) operators for acoustic and elastic waves simultaneously, the model is formulated as an acoustic-elastic interaction problem in periodic structures. Based on a duality argument, an a posteriori error estimate is derived for the associated truncated finite element approximation. The a posteriori error estimate consists of the finite element approximation error and the truncation error of two different DtN operators, where the latter decays exponentially with respect to the truncation parameter. Based on the a posteriori error, an adaptive finite element algorithm is proposed for solving the acoustic-elastic interaction problem in periodic structures. Numerical experiments are presented to demonstrate the effectiveness of the proposed algorithm.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1019-7168
1572-9044
DOI:10.1007/s10444-025-10253-9