The Pressureless Damped Euler-Riesz System in the Critical Regularity Framework

We are concerned with a system governing the evolution of the pressureless compressible Euler equations with Riesz interaction and damping in Rd (d≥1), where the interaction force is given by ∇(-Δ)(α-d)/2ρ with d-2<α<d. It is observed by the eigenvalue analysis that the density exhibits fracti...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical fluid mechanics Vol. 27; no. 4
Main Authors Chi, Meiling, Shou, Ling-Yun, Xu, Jiang
Format Journal Article
LanguageEnglish
Published Heidelberg Springer Nature B.V 01.11.2025
Subjects
Online AccessGet full text
ISSN1422-6928
1422-6952
DOI10.1007/s00021-025-00964-w

Cover

Loading…
Abstract We are concerned with a system governing the evolution of the pressureless compressible Euler equations with Riesz interaction and damping in Rd (d≥1), where the interaction force is given by ∇(-Δ)(α-d)/2ρ with d-2<α<d. It is observed by the eigenvalue analysis that the density exhibits fractional heat diffusion behavior at low frequencies, which enables us to establish the global existence and large-time behavior of solutions to the Cauchy problem in the critical Lp framework. Precisely, the density and its σ-order derivative converge to the equilibrium at the Lp-rate (1+t)-(σ-σ1)/(α-d+2) with -d/p-1≤σ1<d/p-1, consistent with the rate of solutions for the frictional heat equation. A non-local hypercoercivity argument and the effective unknown z=u+∇Λα-dρ associated with the Darcy law are introduced to overcome the difficulty from the absence of hyperbolic symmetrization for first-order dissipative systems.
AbstractList We are concerned with a system governing the evolution of the pressureless compressible Euler equations with Riesz interaction and damping in Rd (d≥1), where the interaction force is given by ∇(-Δ)(α-d)/2ρ with d-2<α<d. It is observed by the eigenvalue analysis that the density exhibits fractional heat diffusion behavior at low frequencies, which enables us to establish the global existence and large-time behavior of solutions to the Cauchy problem in the critical Lp framework. Precisely, the density and its σ-order derivative converge to the equilibrium at the Lp-rate (1+t)-(σ-σ1)/(α-d+2) with -d/p-1≤σ1<d/p-1, consistent with the rate of solutions for the frictional heat equation. A non-local hypercoercivity argument and the effective unknown z=u+∇Λα-dρ associated with the Darcy law are introduced to overcome the difficulty from the absence of hyperbolic symmetrization for first-order dissipative systems.
ArticleNumber 60
Author Shou, Ling-Yun
Chi, Meiling
Xu, Jiang
Author_xml – sequence: 1
  givenname: Meiling
  surname: Chi
  fullname: Chi, Meiling
– sequence: 2
  givenname: Ling-Yun
  surname: Shou
  fullname: Shou, Ling-Yun
– sequence: 3
  givenname: Jiang
  orcidid: 0000-0001-8125-5432
  surname: Xu
  fullname: Xu, Jiang
BookMark eNo9kF1LAzEQRYNUsK3-AZ8CPkcnk_1IHqW2KhSUWp9Dms7q1t1uTXYp9de7WvHpzoXDXDgjNtg2W2LsUsK1BMhvIgCgFICpADBZIvYnbCgTRJGZFAf_N-ozNopxAyDz1OCQPS3fiT8HirELVPXB71y9ozWfdhUFsSgpfvGXQ2yp5uWWtz09CWVbelfxBb11levbgc-Cq2nfhI9zdlq4KtLFX47Z62y6nDyI-dP94-R2LrxMVCuSzMu19i5NTa41FeCN1s5JwiQH1FmhtPJOY5FmTik0qyJdoURfaJWstM_VmF0d_-5C89lRbO2m6cK2n7QKVWZyA5D0FB4pH5oYAxV2F8rahYOVYH_E2aM424uzv-LsXn0DoOtiYA
Cites_doi 10.1007/s00028-020-00639-1
10.3934/dcds.2011.29.1393
10.57262/ade/1355867266
10.1007/s00205-004-0330-9
10.1016/j.matpur.2022.07.001
10.1007/978-3-642-16830-7
10.4171/aihpc/48
10.1016/j.jde.2016.05.009
10.1007/s00220-005-1483-6
10.4171/jems/401
10.1016/j.na.2017.12.003
10.1007/BF03167068
10.1007/s00526-024-02774-w
10.1016/j.jde.2011.09.003
10.1093/imrn/rnr272
10.1007/s00205-015-0860-3
10.1016/j.matpur.2012.06.002
10.1081/PDE-120020497
10.1007/s002200050388
10.1016/j.jde.2021.10.042
10.1007/s00205-016-1067-y
10.1090/conm/710
10.4171/emss/55
10.1137/15M1040475
10.1006/jdeq.2000.3937
10.1051/mmnp/201611507
10.1007/978-3-642-04048-1
10.1007/s00205-010-0321-y
10.1016/0022-0396(90)90130-H
10.1007/s00021-022-00664-9
10.1215/00127094-2020-0019
10.1080/03605302.2012.696296
10.1137/22M1477295
10.1142/S0218202516500068
10.1007/s00205-011-0420-4
10.14492/hokmj/1381757663
10.1016/j.jde.2020.10.021
10.1007/s00205-003-0304-3
10.1007/s00208-022-02450-4
10.4171/jems/129
10.1016/j.optcom.2007.05.012
10.1090/proc/16516
10.1006/jdeq.1995.1131
10.1142/S0218202516500548
10.1007/s00205-013-0679-8
10.1016/j.jde.2014.10.003
10.1512/iumj.2001.50.2177
10.1007/s00033-002-8154-7
10.1007/978-1-4612-1116-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
DBID AAYXX
CITATION
DOI 10.1007/s00021-025-00964-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1422-6952
ExternalDocumentID 10_1007_s00021_025_00964_w
GroupedDBID -Y2
-~C
.86
.VR
06D
0VY
1N0
1SB
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFGCZ
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9T
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ID FETCH-LOGICAL-c143t-46c1d8ca559788ef0c988aa1e2470286f383ca82f56a3329bf5b212cf834b8c73
ISSN 1422-6928
IngestDate Wed Aug 06 19:20:16 EDT 2025
Thu Aug 07 06:29:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c143t-46c1d8ca559788ef0c988aa1e2470286f383ca82f56a3329bf5b212cf834b8c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8125-5432
PQID 3236979004
PQPubID 2043894
ParticipantIDs proquest_journals_3236979004
crossref_primary_10_1007_s00021_025_00964_w
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Journal of mathematical fluid mechanics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References S Junca (964_CR35) 2002; 53
JA Carrillo (964_CR11) 2016; 26
C Bjorland (964_CR5) 2009; 14
T Crin-Barat (964_CR20) 2023; 55
M Di Francesco (964_CR29) 2018; 169
J Xu (964_CR53) 2016; 261
Z Xin (964_CR49) 2021; 274
Y-P Choi (964_CR16) 2023; 40
L Caffarelli (964_CR8) 2011; 202
M Banerjee (964_CR3) 2016; 11
T Crin-Barat (964_CR19) 2023; 386
Y Guo (964_CR31) 1998; 195
J Wu (964_CR48) 2005; 263
K Beauchard (964_CR4) 2011; 199
R Danchin (964_CR24) 2021; 21
S Serfaty (964_CR41) 2020; 169
J Xu (964_CR54) 2024; 152
H Bahouri (964_CR1) 2011
S Kawashima (964_CR37) 2004; 174
Y-P Choi (964_CR15) 2021; 31
T Crin-Barat (964_CR18) 2022; 165
R Danchin (964_CR25) 2021; 8
R Danchin (964_CR27) 2024; 63
W-A Yong (964_CR55) 2004; 172
Y Guo (964_CR32) 2012; 37
S Kawashima (964_CR38) 2009; 28
J Xu (964_CR50) 2013; 99
CM Dafermos (964_CR21) 2010
R Danchin (964_CR23) 2023; 9
S Kawashima (964_CR36) 1984
L Caffarelli (964_CR7) 2013; 15
X Bai (964_CR2) 2024; 37
E Tadmor (964_CR44) 2008; 10
J Xu (964_CR51) 2014; 211
C Huang (964_CR33) 2007; 277
R Danchin (964_CR28) 2017; 224
T Umeda (964_CR46) 1984; 1
964_CR39
T Sideris (964_CR43) 2003; 28
W Wang (964_CR47) 2001; 173
L Brandolese (964_CR6) 2016; 48
964_CR30
JA Carrillo (964_CR12) 2015; 258
T Crin-Barat (964_CR17) 2022; 4
J-Y Chemin (964_CR13) 1995; 121
AD Ionescu (964_CR34) 2013; 4
P Marcati (964_CR40) 1990; 84
JA Carrillo (964_CR10) 2016; 26
Y Shizuta (964_CR42) 1985; 14
R Danchin (964_CR22) 2018
Z Tan (964_CR45) 2012; 252
R Danchin (964_CR26) 2022; 24
L Caffarelli (964_CR9) 2011; 29
Y-P Choi (964_CR14) 2022; 306
J Xu (964_CR52) 2015; 218
References_xml – volume: 21
  start-page: 3035
  year: 2021
  ident: 964_CR24
  publication-title: J. Evol. Equ.
  doi: 10.1007/s00028-020-00639-1
– volume: 29
  start-page: 1393
  year: 2011
  ident: 964_CR9
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2011.29.1393
– volume: 14
  start-page: 241
  year: 2009
  ident: 964_CR5
  publication-title: Adv. Differential Equations
  doi: 10.57262/ade/1355867266
– volume: 174
  start-page: 345
  year: 2004
  ident: 964_CR37
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-004-0330-9
– volume: 165
  start-page: 1
  year: 2022
  ident: 964_CR18
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2022.07.001
– volume-title: Fourier Analysis and Nonlinear Partial Differential Equations, Grundlehren der mathematischen Wissenschaften
  year: 2011
  ident: 964_CR1
  doi: 10.1007/978-3-642-16830-7
– volume: 40
  start-page: 593
  issue: 3
  year: 2023
  ident: 964_CR16
  publication-title: Ann. Inst. H. Poincaré C Anal. Non Linéaire
  doi: 10.4171/aihpc/48
– volume: 261
  start-page: 2670
  year: 2016
  ident: 964_CR53
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2016.05.009
– volume: 263
  start-page: 803
  issue: 3
  year: 2005
  ident: 964_CR48
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s00220-005-1483-6
– volume: 15
  start-page: 1701
  year: 2013
  ident: 964_CR7
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/401
– volume: 169
  start-page: 94
  year: 2018
  ident: 964_CR29
  publication-title: Nonlinear Anal.
  doi: 10.1016/j.na.2017.12.003
– volume: 28
  start-page: 1
  year: 2009
  ident: 964_CR38
  publication-title: J. Anal. Appl.
– volume: 1
  start-page: 435
  year: 1984
  ident: 964_CR46
  publication-title: Jpn. J. Appl. Math.
  doi: 10.1007/BF03167068
– volume: 63
  start-page: 148
  year: 2024
  ident: 964_CR27
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-024-02774-w
– volume: 252
  start-page: 1546
  year: 2012
  ident: 964_CR45
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2011.09.003
– volume: 37
  year: 2024
  ident: 964_CR2
  publication-title: Nonlinearity
– volume: 4
  start-page: 761
  year: 2013
  ident: 964_CR34
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnr272
– volume: 218
  start-page: 275
  year: 2015
  ident: 964_CR52
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-015-0860-3
– volume: 99
  start-page: 43
  year: 2013
  ident: 964_CR50
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2012.06.002
– volume: 28
  start-page: 953
  year: 2003
  ident: 964_CR43
  publication-title: Comm. Partial Differential Equations
  doi: 10.1081/PDE-120020497
– volume: 195
  start-page: 249
  year: 1998
  ident: 964_CR31
  publication-title: Comm. Math. Phys.
  doi: 10.1007/s002200050388
– volume: 306
  start-page: 296
  year: 2022
  ident: 964_CR14
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2021.10.042
– volume: 224
  start-page: 53
  year: 2017
  ident: 964_CR28
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-016-1067-y
– volume-title: Handbook of Mathematical Analysis in Mechanics of Viscous Fluids
  year: 2018
  ident: 964_CR22
  doi: 10.1090/conm/710
– volume: 9
  start-page: 135
  issue: 1
  year: 2023
  ident: 964_CR23
  publication-title: EMS Surv. Math. Sci.
  doi: 10.4171/emss/55
– volume: 48
  start-page: 1616
  issue: 3
  year: 2016
  ident: 964_CR6
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/15M1040475
– volume: 173
  start-page: 410
  year: 2001
  ident: 964_CR47
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.2000.3937
– volume: 11
  start-page: 103
  issue: 5
  year: 2016
  ident: 964_CR3
  publication-title: Math. Model. Nat. Phenom.
  doi: 10.1051/mmnp/201611507
– volume-title: Hyperbolic conservation laws in continuum physics
  year: 2010
  ident: 964_CR21
  doi: 10.1007/978-3-642-04048-1
– volume: 199
  start-page: 177
  year: 2011
  ident: 964_CR4
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-010-0321-y
– volume: 84
  start-page: 129
  year: 1990
  ident: 964_CR40
  publication-title: J. Differential Equations
  doi: 10.1016/0022-0396(90)90130-H
– volume: 24
  start-page: 48
  year: 2022
  ident: 964_CR26
  publication-title: J. Math. Fluid Mech.
  doi: 10.1007/s00021-022-00664-9
– volume: 169
  start-page: 2887
  issue: 15
  year: 2020
  ident: 964_CR41
  publication-title: Duke Math. J.
  doi: 10.1215/00127094-2020-0019
– volume: 37
  start-page: 2165
  year: 2012
  ident: 964_CR32
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605302.2012.696296
– volume: 55
  start-page: 4445
  issue: 5
  year: 2023
  ident: 964_CR20
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/22M1477295
– volume: 26
  start-page: 185
  issue: 1
  year: 2016
  ident: 964_CR10
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202516500068
– volume: 202
  start-page: 537
  year: 2011
  ident: 964_CR8
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-011-0420-4
– volume: 14
  start-page: 249
  year: 1985
  ident: 964_CR42
  publication-title: Hokkaido Math. J.
  doi: 10.14492/hokmj/1381757663
– volume: 274
  start-page: 543
  year: 2021
  ident: 964_CR49
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2020.10.021
– volume: 172
  start-page: 247
  year: 2004
  ident: 964_CR55
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-003-0304-3
– volume: 386
  start-page: 2159
  year: 2023
  ident: 964_CR19
  publication-title: Math. Ann.
  doi: 10.1007/s00208-022-02450-4
– volume: 10
  start-page: 757
  year: 2008
  ident: 964_CR44
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/jems/129
– volume: 8
  start-page: 169
  issue: 1
  year: 2021
  ident: 964_CR25
  publication-title: J. Hyperbolic Differ. Equ.
– volume: 277
  start-page: 414
  year: 2007
  ident: 964_CR33
  publication-title: Optics Communications
  doi: 10.1016/j.optcom.2007.05.012
– volume: 31
  start-page: 1
  issue: 6
  year: 2021
  ident: 964_CR15
  publication-title: J. Nonlinear Sci.
– volume: 152
  start-page: 239
  year: 2024
  ident: 964_CR54
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/16516
– volume: 121
  start-page: 314
  issue: 2
  year: 1995
  ident: 964_CR13
  publication-title: J. Differential Equations
  doi: 10.1006/jdeq.1995.1131
– volume: 26
  start-page: 2311
  issue: 12
  year: 2016
  ident: 964_CR11
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202516500548
– volume: 211
  start-page: 513
  year: 2014
  ident: 964_CR51
  publication-title: Arch. Rational Mech. Anal.
  doi: 10.1007/s00205-013-0679-8
– volume: 258
  start-page: 736
  year: 2015
  ident: 964_CR12
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2014.10.003
– volume: 4
  start-page: 85
  year: 2022
  ident: 964_CR17
  publication-title: Appl. Anal.
– ident: 964_CR30
  doi: 10.1512/iumj.2001.50.2177
– volume-title: Systems of a hyperbolic-parabolic composite type, with applications to the equations of magneto-hydrodynamics
  year: 1984
  ident: 964_CR36
– volume: 53
  start-page: 239
  year: 2002
  ident: 964_CR35
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/s00033-002-8154-7
– ident: 964_CR39
  doi: 10.1007/978-1-4612-1116-7
SSID ssj0017592
Score 2.3591278
Snippet We are concerned with a system governing the evolution of the pressureless compressible Euler equations with Riesz interaction and damping in Rd (d≥1), where...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
SubjectTerms Cauchy problems
Compressibility
Damping
Darcys law
Density
Eigenvalues
Euler-Lagrange equation
Thermodynamics
Title The Pressureless Damped Euler-Riesz System in the Critical Regularity Framework
URI https://www.proquest.com/docview/3236979004
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLa6cuGyscE0NoZ82K0yKrHjOEdgrdDGioRaqZws27FHpVImaITEX89z7KQpg2nbJYocKbHe-_L8Pfv9QOgLZWliLcuJzhgnzImC5FkOXopi2ljg-zZU-xzx0wn7Nk2nnc73VtRSudQH5uHZvJL_0SqMgV59luw_aLZ5KQzAPegXrqBhuP61jkN-n299AibrqwIWXPQG5dzekgtwgh9iSfI6nLHpbHBR9aD3nes8dw3xWS8Q1eumsqtPdpyXs6J3bX3CcCtQ_uRq1vthZ_N6IfQhPnBPLsuwv3p1U9bj07JCDsDyZ3vLIUlj7t3TLUcfT-1POZqUmMqCMvBueR4zvm17LF0zu6EkQIQXe9aahwAOX-kqgQnAPLzDxcj9au2qz-tH53I4OTuT48F0_AptJOAzJF20cTQ8Ph41h0pZWvXIbmYYc6iqTMrfvrHOU9aX6Yp7jLfQ66gLfBQQ8BZ17OIdehMdCBzN8902OgdA4DYgcAAEbgECB0Dg2QKDWnENCLwCBG4AsYMmw8H45JTEjhnEAO9dEsbNYSGM8m6iENb1TS6EUofw02VAJLmjgholEpdyRWmSa5dq4C7GCcq0MBl9j7qLm4X9gLBSnAvhKOVFznTfAmsxvhJT31nmNM93Ua-Wj_wVCqPIpgR2JU0J0pSVNOX9LtqrRSjjD3QnaUK5Nwx99vHPjz-hzRUM91B3eVvaz8AFl3o_6vgRx5hfAw
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Pressureless+Damped+Euler-Riesz+System+in+the+Critical+Regularity+Framework&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Chi+Meiling&rft.au=Ling-Yun%2C+Shou&rft.au=Xu%2C+Jiang&rft.date=2025-11-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=27&rft.issue=4&rft_id=info:doi/10.1007%2Fs00021-025-00964-w&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon