Continuous Time-Series Land Cover Maps for South Korea using Google Earth Engine
In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover maps with a spatial resolution of 30 meters. Derived from the surface reflectance data of the Landsat satellite series, a total of 44 input var...
Saved in:
Published in | Geo Data Vol. 5; no. 4; pp. 304 - 313 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
GeoAI Data Society
31.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover maps with a spatial resolution of 30 meters. Derived from the surface reflectance data of the Landsat satellite series, a total of 44 input variables were generated, including various spectral bands and indices related to land cover. For accuracy verification of the maps, 4,824 reference data were established using areas where land cover remained unchanged, identified by comparing the most recent (2018) and historical (1988) land cover maps from the Ministry of Environment. The Random Forest model was employed to classify seven land cover types (settlements, cropland, forest land, grassland, wetlands, bare land, and water bodies), with an overall accuracy of 0.97 and a Macro F1-score of 0.91, indicating a generally high performance of the model. However, considering the annual variability, potentially due to unidentified or untraceable errors, a composite land cover map dataset, integrated in five-year intervals, was suggested to ensure the generation of stable data. |
---|---|
AbstractList | In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover maps with a spatial resolution of 30 meters. Derived from the surface reflectance data of the Landsat satellite series, a total of 44 input variables were generated, including various spectral bands and indices related to land cover. For accuracy verification of the maps, 4,824 reference data were established using areas where land cover remained unchanged, identified by comparing the most recent (2018) and historical (1988) land cover maps from the Ministry of Environment. The Random Forest model was employed to classify seven land cover types (settlements, cropland, forest land, grassland, wetlands, bare land, and water bodies), with an overall accuracy of 0.97 and a Macro F1-score of 0.91, indicating a generally high performance of the model. However, considering the annual variability, potentially due to unidentified or untraceable errors, a composite land cover map dataset, integrated in five-year intervals, was suggested to ensure the generation of stable data. |
Author | Choi, Chulhuyn Jang, Inyoung Han, Sanghak Kang, Sungryong |
Author_xml | – sequence: 1 givenname: Chulhuyn orcidid: 0000-0002-3303-013X surname: Choi fullname: Choi, Chulhuyn – sequence: 2 givenname: Inyoung orcidid: 0000-0002-1779-6928 surname: Jang fullname: Jang, Inyoung – sequence: 3 givenname: Sanghak orcidid: 0000-0002-7792-0417 surname: Han fullname: Han, Sanghak – sequence: 4 givenname: Sungryong orcidid: 0000-0002-8728-0732 surname: Kang fullname: Kang, Sungryong |
BookMark | eNpNkF1LwzAUhoNMcM5dep8_0JnPprmUbtbhRGHzOqRpUju2ZCSr4L-320S8Ou85Bx5enlsw8sFbAO4xmhEicvxQzWcEETpDiLErMCYC04wPy-hfvgHTlLYIISIJp4yNwXsZ_LHzfegT3HR7m61t7GyCK-0bWIYvG-GrPiToQoTr0B8_4UuIVsM-db6FVQjtzsKFjsNj4dvO2ztw7fQu2envnICPp8WmfM5Wb9WyfFxlBjPKMo6xE0Y3uSwsQlxIW1PhGiY5EtQxKQqTM1o03OG6sSbHAjvmuDSNxI5iTCdgeeE2QW_VIXZ7Hb9V0J06H0Js1dCqMzurtBV1QYRGGEnmsNTOaC5qIxmjWmA9sLILy8SQUrTuj4eROttV1Vyd7KqTXfoDBP1sfw |
Cites_doi | 10.1007/s10980-005-0070-8 10.1016/j.rse.2017.03.026 10.1109/access.2022.3175978 10.1016/j.patrec.2005.08.011 10.1016/j.advwatres.2008.07.012 10.1890/07-0539.1 10.1016/j.rse.2022.112905 10.3390/rs14092127 10.3390/data8010013 10.1016/j.ecolind.2013.07.025 10.1016/j.ejrs.2015.07.003 10.3390/land2030472 10.1080/01431160412331269698 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.22761/GD.2023.0044 |
DatabaseName | CrossRef Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2713-5004 |
EndPage | 313 |
ExternalDocumentID | oai_doaj_org_article_ae7b827a01094f19afca57bc9443a71a 10_22761_GD_2023_0044 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ |
ID | FETCH-LOGICAL-c1434-511f7cad698e00579eb37fd495073f4978c6438d5f1bdec6171f4f59cd91f3113 |
IEDL.DBID | DOA |
ISSN | 2713-5004 |
IngestDate | Tue Oct 22 15:08:44 EDT 2024 Fri Aug 23 00:24:08 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c1434-511f7cad698e00579eb37fd495073f4978c6438d5f1bdec6171f4f59cd91f3113 |
ORCID | 0000-0002-8728-0732 0000-0002-1779-6928 0000-0002-7792-0417 0000-0002-3303-013X |
OpenAccessLink | https://doaj.org/article/ae7b827a01094f19afca57bc9443a71a |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ae7b827a01094f19afca57bc9443a71a crossref_primary_10_22761_GD_2023_0044 |
PublicationCentury | 2000 |
PublicationDate | 2023-12-31 |
PublicationDateYYYYMMDD | 2023-12-31 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-31 day: 31 |
PublicationDecade | 2020 |
PublicationTitle | Geo Data |
PublicationYear | 2023 |
Publisher | GeoAI Data Society |
Publisher_xml | – name: GeoAI Data Society |
References | ref13 Park (ref11) 2022 ref12 ref15 ref10 ref2 ref1 ref16 ref8 ref9 ref4 ref3 ref6 ref5 Kim (ref7) 2005 Segal (ref14) 2004 |
References_xml | – ident: ref9 doi: 10.1007/s10980-005-0070-8 – ident: ref5 doi: 10.1016/j.rse.2017.03.026 – ident: ref4 doi: 10.1109/access.2022.3175978 – ident: ref6 doi: 10.1016/j.patrec.2005.08.011 – start-page: 301 volume-title: Analysis of runoff impact by land use change - using grid based kinematic wave storm runoff model (KIMSTROM) year: 2005 ident: ref7 contributor: fullname: Kim – ident: ref13 doi: 10.1016/j.advwatres.2008.07.012 – ident: ref2 doi: 10.1890/07-0539.1 – ident: ref15 doi: 10.1016/j.rse.2022.112905 – ident: ref3 doi: 10.3390/rs14092127 – ident: ref12 doi: 10.3390/data8010013 – ident: ref8 doi: 10.1016/j.ecolind.2013.07.025 – start-page: 1 volume-title: Machine learning benchmarks and random forest regression year: 2004 ident: ref14 contributor: fullname: Segal – ident: ref1 doi: 10.1016/j.ejrs.2015.07.003 – ident: ref16 doi: 10.3390/land2030472 – ident: ref10 doi: 10.1080/01431160412331269698 – start-page: 1761 volume-title: Research of water-related disaster monitoring using satellite bigdata based on Google Earth Engine cloud computing platform year: 2022 ident: ref11 contributor: fullname: Park |
SSID | ssj0002925344 |
Score | 2.2898467 |
Snippet | In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover... |
SourceID | doaj crossref |
SourceType | Open Website Aggregation Database |
StartPage | 304 |
SubjectTerms | land cover map landsat, google earth engine random forest, lulucf |
Title | Continuous Time-Series Land Cover Maps for South Korea using Google Earth Engine |
URI | https://doaj.org/article/ae7b827a01094f19afca57bc9443a71a |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFLQQEwsCAaJ8yQNic0sSp45H6KeAIgYqdYuevwoSSira_n_eiwsqEwtrlETOPSe-i-07xq5VAbmzJhVgXBDSQBAGyyxQikgAI8E1qSWT5-54Kh9m-Wwr6ovWhEV74AhcB7wyRaqApnBkSDQEC7kyVkuZgUoiNbrVW2KKvsGpTvNMymiqmaao1Tujfpuiwts0hflrENry6m8GleEB29-wQX4XW3HIdnx1xF7IMeq9WqMm57RDQ9AfLL_kTyj6eY-WXPIJLJYc6SZvEvD4Y43Uj9MS9jkf1fX8w_MBPtkbj26Dx2w6HLz2xmITfCAs0hcpkAQFZcF1deGb3aKoeFVwqGXwhQyUCWeRSBQuD4lx3iIJSYIMubZOJyFLkuyE7VZ15U8ZT4PKuuB8ppSXkGca6VKBl2uwqCwK02I330iUi-hvUaIuaCArR_2SICsJsha7J5x-TiJb6uYAFqvcFKv8q1hn_3GTc7ZHrYpuixdsd_W59pfIDFbmqukEX05itXA |
link.rule.ids | 315,783,787,867,2109,27936,27937 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Time-Series+Land+Cover+Maps+for+South+Korea+using+Google+Earth+Engine&rft.jtitle=Geo+Data&rft.au=Chulhuyn+Choi&rft.au=Inyoung+Jang&rft.au=Sanghak+Han&rft.au=Sungryong+Kang&rft.date=2023-12-31&rft.pub=GeoAI+Data+Society&rft.eissn=2713-5004&rft.volume=5&rft.issue=4&rft.spage=304&rft.epage=313&rft_id=info:doi/10.22761%2FGD.2023.0044&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae7b827a01094f19afca57bc9443a71a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2713-5004&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2713-5004&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2713-5004&client=summon |