Continuous Time-Series Land Cover Maps for South Korea using Google Earth Engine

In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover maps with a spatial resolution of 30 meters. Derived from the surface reflectance data of the Landsat satellite series, a total of 44 input var...

Full description

Saved in:
Bibliographic Details
Published inGeo Data Vol. 5; no. 4; pp. 304 - 313
Main Authors Choi, Chulhuyn, Jang, Inyoung, Han, Sanghak, Kang, Sungryong
Format Journal Article
LanguageEnglish
Published GeoAI Data Society 31.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover maps with a spatial resolution of 30 meters. Derived from the surface reflectance data of the Landsat satellite series, a total of 44 input variables were generated, including various spectral bands and indices related to land cover. For accuracy verification of the maps, 4,824 reference data were established using areas where land cover remained unchanged, identified by comparing the most recent (2018) and historical (1988) land cover maps from the Ministry of Environment. The Random Forest model was employed to classify seven land cover types (settlements, cropland, forest land, grassland, wetlands, bare land, and water bodies), with an overall accuracy of 0.97 and a Macro F1-score of 0.91, indicating a generally high performance of the model. However, considering the annual variability, potentially due to unidentified or untraceable errors, a composite land cover map dataset, integrated in five-year intervals, was suggested to ensure the generation of stable data.
AbstractList In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover maps with a spatial resolution of 30 meters. Derived from the surface reflectance data of the Landsat satellite series, a total of 44 input variables were generated, including various spectral bands and indices related to land cover. For accuracy verification of the maps, 4,824 reference data were established using areas where land cover remained unchanged, identified by comparing the most recent (2018) and historical (1988) land cover maps from the Ministry of Environment. The Random Forest model was employed to classify seven land cover types (settlements, cropland, forest land, grassland, wetlands, bare land, and water bodies), with an overall accuracy of 0.97 and a Macro F1-score of 0.91, indicating a generally high performance of the model. However, considering the annual variability, potentially due to unidentified or untraceable errors, a composite land cover map dataset, integrated in five-year intervals, was suggested to ensure the generation of stable data.
Author Choi, Chulhuyn
Jang, Inyoung
Han, Sanghak
Kang, Sungryong
Author_xml – sequence: 1
  givenname: Chulhuyn
  orcidid: 0000-0002-3303-013X
  surname: Choi
  fullname: Choi, Chulhuyn
– sequence: 2
  givenname: Inyoung
  orcidid: 0000-0002-1779-6928
  surname: Jang
  fullname: Jang, Inyoung
– sequence: 3
  givenname: Sanghak
  orcidid: 0000-0002-7792-0417
  surname: Han
  fullname: Han, Sanghak
– sequence: 4
  givenname: Sungryong
  orcidid: 0000-0002-8728-0732
  surname: Kang
  fullname: Kang, Sungryong
BookMark eNpNkF1LwzAUhoNMcM5dep8_0JnPprmUbtbhRGHzOqRpUju2ZCSr4L-320S8Ou85Bx5enlsw8sFbAO4xmhEicvxQzWcEETpDiLErMCYC04wPy-hfvgHTlLYIISIJp4yNwXsZ_LHzfegT3HR7m61t7GyCK-0bWIYvG-GrPiToQoTr0B8_4UuIVsM-db6FVQjtzsKFjsNj4dvO2ztw7fQu2envnICPp8WmfM5Wb9WyfFxlBjPKMo6xE0Y3uSwsQlxIW1PhGiY5EtQxKQqTM1o03OG6sSbHAjvmuDSNxI5iTCdgeeE2QW_VIXZ7Hb9V0J06H0Js1dCqMzurtBV1QYRGGEnmsNTOaC5qIxmjWmA9sLILy8SQUrTuj4eROttV1Vyd7KqTXfoDBP1sfw
Cites_doi 10.1007/s10980-005-0070-8
10.1016/j.rse.2017.03.026
10.1109/access.2022.3175978
10.1016/j.patrec.2005.08.011
10.1016/j.advwatres.2008.07.012
10.1890/07-0539.1
10.1016/j.rse.2022.112905
10.3390/rs14092127
10.3390/data8010013
10.1016/j.ecolind.2013.07.025
10.1016/j.ejrs.2015.07.003
10.3390/land2030472
10.1080/01431160412331269698
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.22761/GD.2023.0044
DatabaseName CrossRef
Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2713-5004
EndPage 313
ExternalDocumentID oai_doaj_org_article_ae7b827a01094f19afca57bc9443a71a
10_22761_GD_2023_0044
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
ID FETCH-LOGICAL-c1434-511f7cad698e00579eb37fd495073f4978c6438d5f1bdec6171f4f59cd91f3113
IEDL.DBID DOA
ISSN 2713-5004
IngestDate Tue Oct 22 15:08:44 EDT 2024
Fri Aug 23 00:24:08 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c1434-511f7cad698e00579eb37fd495073f4978c6438d5f1bdec6171f4f59cd91f3113
ORCID 0000-0002-8728-0732
0000-0002-1779-6928
0000-0002-7792-0417
0000-0002-3303-013X
OpenAccessLink https://doaj.org/article/ae7b827a01094f19afca57bc9443a71a
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_ae7b827a01094f19afca57bc9443a71a
crossref_primary_10_22761_GD_2023_0044
PublicationCentury 2000
PublicationDate 2023-12-31
PublicationDateYYYYMMDD 2023-12-31
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-31
  day: 31
PublicationDecade 2020
PublicationTitle Geo Data
PublicationYear 2023
Publisher GeoAI Data Society
Publisher_xml – name: GeoAI Data Society
References ref13
Park (ref11) 2022
ref12
ref15
ref10
ref2
ref1
ref16
ref8
ref9
ref4
ref3
ref6
ref5
Kim (ref7) 2005
Segal (ref14) 2004
References_xml – ident: ref9
  doi: 10.1007/s10980-005-0070-8
– ident: ref5
  doi: 10.1016/j.rse.2017.03.026
– ident: ref4
  doi: 10.1109/access.2022.3175978
– ident: ref6
  doi: 10.1016/j.patrec.2005.08.011
– start-page: 301
  volume-title: Analysis of runoff impact by land use change - using grid based kinematic wave storm runoff model (KIMSTROM)
  year: 2005
  ident: ref7
  contributor:
    fullname: Kim
– ident: ref13
  doi: 10.1016/j.advwatres.2008.07.012
– ident: ref2
  doi: 10.1890/07-0539.1
– ident: ref15
  doi: 10.1016/j.rse.2022.112905
– ident: ref3
  doi: 10.3390/rs14092127
– ident: ref12
  doi: 10.3390/data8010013
– ident: ref8
  doi: 10.1016/j.ecolind.2013.07.025
– start-page: 1
  volume-title: Machine learning benchmarks and random forest regression
  year: 2004
  ident: ref14
  contributor:
    fullname: Segal
– ident: ref1
  doi: 10.1016/j.ejrs.2015.07.003
– ident: ref16
  doi: 10.3390/land2030472
– ident: ref10
  doi: 10.1080/01431160412331269698
– start-page: 1761
  volume-title: Research of water-related disaster monitoring using satellite bigdata based on Google Earth Engine cloud computing platform
  year: 2022
  ident: ref11
  contributor:
    fullname: Park
SSID ssj0002925344
Score 2.2898467
Snippet In this study, we utilized Google Earth Engine to construct, for the first time in South Korea, a long-term (1986-2021) continuous time series of land cover...
SourceID doaj
crossref
SourceType Open Website
Aggregation Database
StartPage 304
SubjectTerms land cover map
landsat, google earth engine
random forest, lulucf
Title Continuous Time-Series Land Cover Maps for South Korea using Google Earth Engine
URI https://doaj.org/article/ae7b827a01094f19afca57bc9443a71a
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwFLQQEwsCAaJ8yQNic0sSp45H6KeAIgYqdYuevwoSSira_n_eiwsqEwtrlETOPSe-i-07xq5VAbmzJhVgXBDSQBAGyyxQikgAI8E1qSWT5-54Kh9m-Wwr6ovWhEV74AhcB7wyRaqApnBkSDQEC7kyVkuZgUoiNbrVW2KKvsGpTvNMymiqmaao1Tujfpuiwts0hflrENry6m8GleEB29-wQX4XW3HIdnx1xF7IMeq9WqMm57RDQ9AfLL_kTyj6eY-WXPIJLJYc6SZvEvD4Y43Uj9MS9jkf1fX8w_MBPtkbj26Dx2w6HLz2xmITfCAs0hcpkAQFZcF1deGb3aKoeFVwqGXwhQyUCWeRSBQuD4lx3iIJSYIMubZOJyFLkuyE7VZ15U8ZT4PKuuB8ppSXkGca6VKBl2uwqCwK02I330iUi-hvUaIuaCArR_2SICsJsha7J5x-TiJb6uYAFqvcFKv8q1hn_3GTc7ZHrYpuixdsd_W59pfIDFbmqukEX05itXA
link.rule.ids 315,783,787,867,2109,27936,27937
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Continuous+Time-Series+Land+Cover+Maps+for+South+Korea+using+Google+Earth+Engine&rft.jtitle=Geo+Data&rft.au=Chulhuyn+Choi&rft.au=Inyoung+Jang&rft.au=Sanghak+Han&rft.au=Sungryong+Kang&rft.date=2023-12-31&rft.pub=GeoAI+Data+Society&rft.eissn=2713-5004&rft.volume=5&rft.issue=4&rft.spage=304&rft.epage=313&rft_id=info:doi/10.22761%2FGD.2023.0044&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ae7b827a01094f19afca57bc9443a71a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2713-5004&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2713-5004&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2713-5004&client=summon