Optimization of electrospinning parameters using an artificial neural network (ANN) model for enhanced nanofiber production

Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter and bead-free morphology. Conventional trial-and-error strategies...

Full description

Saved in:
Bibliographic Details
Published inJournal of Applied Engineering Science Vol. 22; no. 4; pp. 804 - 809
Main Authors Javier, Laguna, Shetty, Sawan, Das, Animita, Chethan, K.N., Keni, Laxmikant, Salins, Sampath
Format Journal Article
LanguageEnglish
Published 2024
Online AccessGet full text
ISSN1451-4117
1821-3197
DOI10.5937/jaes0-53043

Cover

Abstract Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter and bead-free morphology. Conventional trial-and-error strategies are frequently protracted and may not necessarily result in optimal outcomes. This investigation delineates the formulation of an artificial neural network (ANN) model specifically designed to systematically optimize electrospinning parameters. Crucial input variables, such as applied voltage, feed rate, and polymer concentration, were utilized to train the ANN model, which was constructed with multiple hidden layers to effectively encapsulate the intricate relationships between input parameters and the resultant nanofiber properties. In this research, an ANN was devised with a 4-3-1 architecture that was trained on a dataset extrapolated from experimental data documented in prior literature and employed the Levenberg-Marquardt algorithm to ascertain robust performance. Upon validation, the model proficiently predicted optimal parameters conducive to the production of smooth, bead-free nanofibers. The model achieved a root mean square error (RMSE) of 7.77%, which is lower than previous models for predicting electrospun Kefiran nanofiber diameter. The results indicate that the ANN-based methodology substantially augments the efficiency and precision of electrospinning parameter optimization, thereby providing a significant resource for researchers and engineers engaged in the domain of nanomaterials. Future investigations could delve into the application of this model to various polymer systems and further refine the ANN architecture to accommodate more intricate electrospinning configurations.
AbstractList Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter and bead-free morphology. Conventional trial-and-error strategies are frequently protracted and may not necessarily result in optimal outcomes. This investigation delineates the formulation of an artificial neural network (ANN) model specifically designed to systematically optimize electrospinning parameters. Crucial input variables, such as applied voltage, feed rate, and polymer concentration, were utilized to train the ANN model, which was constructed with multiple hidden layers to effectively encapsulate the intricate relationships between input parameters and the resultant nanofiber properties. In this research, an ANN was devised with a 4-3-1 architecture that was trained on a dataset extrapolated from experimental data documented in prior literature and employed the Levenberg-Marquardt algorithm to ascertain robust performance. Upon validation, the model proficiently predicted optimal parameters conducive to the production of smooth, bead-free nanofibers. The model achieved a root mean square error (RMSE) of 7.77%, which is lower than previous models for predicting electrospun Kefiran nanofiber diameter. The results indicate that the ANN-based methodology substantially augments the efficiency and precision of electrospinning parameter optimization, thereby providing a significant resource for researchers and engineers engaged in the domain of nanomaterials. Future investigations could delve into the application of this model to various polymer systems and further refine the ANN architecture to accommodate more intricate electrospinning configurations.
Author Das, Animita
Salins, Sampath
Shetty, Sawan
Keni, Laxmikant
Javier, Laguna
Chethan, K.N.
Author_xml – sequence: 1
  givenname: Laguna
  surname: Javier
  fullname: Javier, Laguna
– sequence: 2
  givenname: Sawan
  surname: Shetty
  fullname: Shetty, Sawan
– sequence: 3
  givenname: Animita
  surname: Das
  fullname: Das, Animita
– sequence: 4
  givenname: K.N.
  surname: Chethan
  fullname: Chethan, K.N.
– sequence: 5
  givenname: Laxmikant
  surname: Keni
  fullname: Keni, Laxmikant
– sequence: 6
  givenname: Sampath
  surname: Salins
  fullname: Salins, Sampath
BookMark eNotkM1OwzAQhC1UJAr0xAv4CEIBb-zUybGq-JOq9gLnaOOswZDYkZ0KAS9PWzjNaA4zmu-UTXzwxNgFiJuikvr2HSmJrJBCySM2hTKHTEKlJzuvCsgUgD5hs5RcI3IJcy3Lcsp-NsPoeveNowueB8upIzPGkAbnvfOvfMCIPY0UE9-mfYCeYxyddcZhxz1t40HGzxA_-OVivb7ifWip4zZETv4NvaGWe_TBuoYiH2Jot2Y_d86OLXaJZv96xl7u756Xj9lq8_C0XKwyA0rKzKp5iQgEspS50lAqawuSupIkUORQGZlL0xAUotIgGtUKEk2OSuu2QW3kGbv-6zW7XymSrYfoeoxfNYh6j64-oKsP6OQvU3Fl6w
Cites_doi 10.1109/IDAP.2017.8090329
10.1016/j.foodchem.2012.01.046
10.1016/j.jmatprotec.2008.07.032
10.3390/polym15132813
10.1177/15280837221142641
10.1016/j.carbpol.2019.115100
10.1007/s12221-013-1849-x
10.1039/C6RA21596C
10.1007/s00521-014-1554-8
10.1002/app.36319
10.1515/epoly-2014-0198
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.5937/jaes0-53043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 1821-3197
EndPage 809
ExternalDocumentID 10_5937_jaes0_53043
GroupedDBID AAYXX
ALMA_UNASSIGNED_HOLDINGS
CITATION
OK1
ID FETCH-LOGICAL-c1433-f468aa1e1383247184ff5e3793e0a0219c323cbe1509710b4d0e0b2a477dba7c3
ISSN 1451-4117
IngestDate Tue Jul 01 00:41:53 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://creativecommons.org/licenses/BY/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c1433-f468aa1e1383247184ff5e3793e0a0219c323cbe1509710b4d0e0b2a477dba7c3
OpenAccessLink https://doi.org/10.5937/jaes0-53043
PageCount 6
ParticipantIDs crossref_primary_10_5937_jaes0_53043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationTitle Journal of Applied Engineering Science
PublicationYear 2024
References ref8
ref7
ref12
ref9
ref4
ref3
ref6
ref11
ref5
ref10
ref2
ref1
References_xml – ident: ref7
  doi: 10.1109/IDAP.2017.8090329
– ident: ref12
  doi: 10.1016/j.foodchem.2012.01.046
– ident: ref1
– ident: ref3
  doi: 10.1016/j.jmatprotec.2008.07.032
– ident: ref5
  doi: 10.3390/polym15132813
– ident: ref8
  doi: 10.1177/15280837221142641
– ident: ref11
  doi: 10.1016/j.carbpol.2019.115100
– ident: ref10
  doi: 10.1007/s12221-013-1849-x
– ident: ref4
  doi: 10.1039/C6RA21596C
– ident: ref9
  doi: 10.1007/s00521-014-1554-8
– ident: ref2
  doi: 10.1002/app.36319
– ident: ref6
  doi: 10.1515/epoly-2014-0198
SSID ssib023167388
ssib044742397
ssib046627593
Score 2.2589648
Snippet Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial...
SourceID crossref
SourceType Index Database
StartPage 804
Title Optimization of electrospinning parameters using an artificial neural network (ANN) model for enhanced nanofiber production
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCuXBBIEB8y4ceQNUGr-3N7h4jKKpADYe2Um-RvZklReq2ahIhtRI_iF_JjGc_TKlE4bKJrLW1ybz1jO03b4TYTn2FbsFlCWgHiZ0UKnEeTJKVroC8rBcqHMXszyZ7R_bTcXY8Gv2MWEubtR9XlzfmlfyPVbEN7UpZsv9g2X5QbMDvaF-8ooXxeisbf8H3_bRNpKSor61pszo_CYWIdkjX-5T4LqudzYqzEUnU6KRVjSAty_ARmOAUa05nM9omCOVxWAy8WbYUAdfgo3q4IEbXgiVn_xLYRlKH3RTS83UcuWPOy_66aXrXcLCENVcpOHDfB9x-4KyzaUPZWAO1CG9e8v7t5_FsHO9fcMJ0O9naDNevKedujoHbCp2iX2DObjdDax0h0UbTbcGlizvPHYQW_nAKWRlkBb45WKkkM4ploX6X3r7mEnuiIi6RqPs8dJ6HznfEXZ3nKdFH93_sdnOXJkUBM0i_WUtH4MMJrQ1C-0EDuv_ZnC5K47-LHi4KkKJI5_CBuN9aUk4Zbw_FCJpH4irGmjyr5TWsyQFrMmBNukYOWJOMNdliTb5BpL2VAWcScSY7nMkeZ3LA2WNx9HH38P1e0hbuSCoMv01S4zvvXAqpQX9B0Y-t6wwMugJQDoPKsjLaVB5wMVJihOvtQoHy2tk8X3iXV-aJ2GrOGngqpFcOxyhLD6W2kOPyuoRJ7QJ9q1Bgnont7t-an7M-y_wGoz2_3W0vxD2CKG-xvRRb64sNvMKgc-1fB2v_Aj5ghcY
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+electrospinning+parameters+using+an+artificial+neural+network+%28ANN%29+model+for+enhanced+nanofiber+production&rft.jtitle=Journal+of+Applied+Engineering+Science&rft.au=Javier%2C+Laguna&rft.au=Shetty%2C+Sawan&rft.au=Das%2C+Animita&rft.au=Chethan%2C+K.N.&rft.date=2024&rft.issn=1451-4117&rft.eissn=1821-3197&rft.volume=22&rft.issue=4&rft.spage=804&rft.epage=809&rft_id=info:doi/10.5937%2Fjaes0-53043&rft.externalDBID=n%2Fa&rft.externalDocID=10_5937_jaes0_53043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4117&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4117&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4117&client=summon