Optimization of electrospinning parameters using an artificial neural network (ANN) model for enhanced nanofiber production
Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter and bead-free morphology. Conventional trial-and-error strategies...
Saved in:
Published in | Journal of Applied Engineering Science Vol. 22; no. 4; pp. 804 - 809 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
2024
|
Online Access | Get full text |
ISSN | 1451-4117 1821-3197 |
DOI | 10.5937/jaes0-53043 |
Cover
Abstract | Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter and bead-free morphology. Conventional trial-and-error strategies are frequently protracted and may not necessarily result in optimal outcomes. This investigation delineates the formulation of an artificial neural network (ANN) model specifically designed to systematically optimize electrospinning parameters. Crucial input variables, such as applied voltage, feed rate, and polymer concentration, were utilized to train the ANN model, which was constructed with multiple hidden layers to effectively encapsulate the intricate relationships between input parameters and the resultant nanofiber properties. In this research, an ANN was devised with a 4-3-1 architecture that was trained on a dataset extrapolated from experimental data documented in prior literature and employed the Levenberg-Marquardt algorithm to ascertain robust performance. Upon validation, the model proficiently predicted optimal parameters conducive to the production of smooth, bead-free nanofibers. The model achieved a root mean square error (RMSE) of 7.77%, which is lower than previous models for predicting electrospun Kefiran nanofiber diameter. The results indicate that the ANN-based methodology substantially augments the efficiency and precision of electrospinning parameter optimization, thereby providing a significant resource for researchers and engineers engaged in the domain of nanomaterials. Future investigations could delve into the application of this model to various polymer systems and further refine the ANN architecture to accommodate more intricate electrospinning configurations. |
---|---|
AbstractList | Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial for producing nanofibers with desirable attributes, such as uniform diameter and bead-free morphology. Conventional trial-and-error strategies are frequently protracted and may not necessarily result in optimal outcomes. This investigation delineates the formulation of an artificial neural network (ANN) model specifically designed to systematically optimize electrospinning parameters. Crucial input variables, such as applied voltage, feed rate, and polymer concentration, were utilized to train the ANN model, which was constructed with multiple hidden layers to effectively encapsulate the intricate relationships between input parameters and the resultant nanofiber properties. In this research, an ANN was devised with a 4-3-1 architecture that was trained on a dataset extrapolated from experimental data documented in prior literature and employed the Levenberg-Marquardt algorithm to ascertain robust performance. Upon validation, the model proficiently predicted optimal parameters conducive to the production of smooth, bead-free nanofibers. The model achieved a root mean square error (RMSE) of 7.77%, which is lower than previous models for predicting electrospun Kefiran nanofiber diameter. The results indicate that the ANN-based methodology substantially augments the efficiency and precision of electrospinning parameter optimization, thereby providing a significant resource for researchers and engineers engaged in the domain of nanomaterials. Future investigations could delve into the application of this model to various polymer systems and further refine the ANN architecture to accommodate more intricate electrospinning configurations. |
Author | Das, Animita Salins, Sampath Shetty, Sawan Keni, Laxmikant Javier, Laguna Chethan, K.N. |
Author_xml | – sequence: 1 givenname: Laguna surname: Javier fullname: Javier, Laguna – sequence: 2 givenname: Sawan surname: Shetty fullname: Shetty, Sawan – sequence: 3 givenname: Animita surname: Das fullname: Das, Animita – sequence: 4 givenname: K.N. surname: Chethan fullname: Chethan, K.N. – sequence: 5 givenname: Laxmikant surname: Keni fullname: Keni, Laxmikant – sequence: 6 givenname: Sampath surname: Salins fullname: Salins, Sampath |
BookMark | eNotkM1OwzAQhC1UJAr0xAv4CEIBb-zUybGq-JOq9gLnaOOswZDYkZ0KAS9PWzjNaA4zmu-UTXzwxNgFiJuikvr2HSmJrJBCySM2hTKHTEKlJzuvCsgUgD5hs5RcI3IJcy3Lcsp-NsPoeveNowueB8upIzPGkAbnvfOvfMCIPY0UE9-mfYCeYxyddcZhxz1t40HGzxA_-OVivb7ifWip4zZETv4NvaGWe_TBuoYiH2Jot2Y_d86OLXaJZv96xl7u756Xj9lq8_C0XKwyA0rKzKp5iQgEspS50lAqawuSupIkUORQGZlL0xAUotIgGtUKEk2OSuu2QW3kGbv-6zW7XymSrYfoeoxfNYh6j64-oKsP6OQvU3Fl6w |
Cites_doi | 10.1109/IDAP.2017.8090329 10.1016/j.foodchem.2012.01.046 10.1016/j.jmatprotec.2008.07.032 10.3390/polym15132813 10.1177/15280837221142641 10.1016/j.carbpol.2019.115100 10.1007/s12221-013-1849-x 10.1039/C6RA21596C 10.1007/s00521-014-1554-8 10.1002/app.36319 10.1515/epoly-2014-0198 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.5937/jaes0-53043 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1821-3197 |
EndPage | 809 |
ExternalDocumentID | 10_5937_jaes0_53043 |
GroupedDBID | AAYXX ALMA_UNASSIGNED_HOLDINGS CITATION OK1 |
ID | FETCH-LOGICAL-c1433-f468aa1e1383247184ff5e3793e0a0219c323cbe1509710b4d0e0b2a477dba7c3 |
ISSN | 1451-4117 |
IngestDate | Tue Jul 01 00:41:53 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | http://creativecommons.org/licenses/BY/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c1433-f468aa1e1383247184ff5e3793e0a0219c323cbe1509710b4d0e0b2a477dba7c3 |
OpenAccessLink | https://doi.org/10.5937/jaes0-53043 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_5937_jaes0_53043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-00-00 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – year: 2024 text: 2024-00-00 |
PublicationDecade | 2020 |
PublicationTitle | Journal of Applied Engineering Science |
PublicationYear | 2024 |
References | ref8 ref7 ref12 ref9 ref4 ref3 ref6 ref11 ref5 ref10 ref2 ref1 |
References_xml | – ident: ref7 doi: 10.1109/IDAP.2017.8090329 – ident: ref12 doi: 10.1016/j.foodchem.2012.01.046 – ident: ref1 – ident: ref3 doi: 10.1016/j.jmatprotec.2008.07.032 – ident: ref5 doi: 10.3390/polym15132813 – ident: ref8 doi: 10.1177/15280837221142641 – ident: ref11 doi: 10.1016/j.carbpol.2019.115100 – ident: ref10 doi: 10.1007/s12221-013-1849-x – ident: ref4 doi: 10.1039/C6RA21596C – ident: ref9 doi: 10.1007/s00521-014-1554-8 – ident: ref2 doi: 10.1002/app.36319 – ident: ref6 doi: 10.1515/epoly-2014-0198 |
SSID | ssib023167388 ssib044742397 ssib046627593 |
Score | 2.2589648 |
Snippet | Electrospinning is a simple and cost-effective technique for creating nanofibers with diverse applications. Optimizing electrospinning parameters is crucial... |
SourceID | crossref |
SourceType | Index Database |
StartPage | 804 |
Title | Optimization of electrospinning parameters using an artificial neural network (ANN) model for enhanced nanofiber production |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELVCuXBBIEB8y4ceQNUGr-3N7h4jKKpADYe2Um-RvZklReq2ahIhtRI_iF_JjGc_TKlE4bKJrLW1ybz1jO03b4TYTn2FbsFlCWgHiZ0UKnEeTJKVroC8rBcqHMXszyZ7R_bTcXY8Gv2MWEubtR9XlzfmlfyPVbEN7UpZsv9g2X5QbMDvaF-8ooXxeisbf8H3_bRNpKSor61pszo_CYWIdkjX-5T4LqudzYqzEUnU6KRVjSAty_ARmOAUa05nM9omCOVxWAy8WbYUAdfgo3q4IEbXgiVn_xLYRlKH3RTS83UcuWPOy_66aXrXcLCENVcpOHDfB9x-4KyzaUPZWAO1CG9e8v7t5_FsHO9fcMJ0O9naDNevKedujoHbCp2iX2DObjdDax0h0UbTbcGlizvPHYQW_nAKWRlkBb45WKkkM4ploX6X3r7mEnuiIi6RqPs8dJ6HznfEXZ3nKdFH93_sdnOXJkUBM0i_WUtH4MMJrQ1C-0EDuv_ZnC5K47-LHi4KkKJI5_CBuN9aUk4Zbw_FCJpH4irGmjyr5TWsyQFrMmBNukYOWJOMNdliTb5BpL2VAWcScSY7nMkeZ3LA2WNx9HH38P1e0hbuSCoMv01S4zvvXAqpQX9B0Y-t6wwMugJQDoPKsjLaVB5wMVJihOvtQoHy2tk8X3iXV-aJ2GrOGngqpFcOxyhLD6W2kOPyuoRJ7QJ9q1Bgnont7t-an7M-y_wGoz2_3W0vxD2CKG-xvRRb64sNvMKgc-1fB2v_Aj5ghcY |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+electrospinning+parameters+using+an+artificial+neural+network+%28ANN%29+model+for+enhanced+nanofiber+production&rft.jtitle=Journal+of+Applied+Engineering+Science&rft.au=Javier%2C+Laguna&rft.au=Shetty%2C+Sawan&rft.au=Das%2C+Animita&rft.au=Chethan%2C+K.N.&rft.date=2024&rft.issn=1451-4117&rft.eissn=1821-3197&rft.volume=22&rft.issue=4&rft.spage=804&rft.epage=809&rft_id=info:doi/10.5937%2Fjaes0-53043&rft.externalDBID=n%2Fa&rft.externalDocID=10_5937_jaes0_53043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1451-4117&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1451-4117&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1451-4117&client=summon |